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Abstract. We give an effective bound on how much time orbits of a
unipotent group U on an arithmetic quotient G/Γ can stay near ho-
mogeneous subvarieties of G/Γ corresponding to Q-subgroups of G. In
particular, we show that if such a U -orbit is moderately near a proper
homogeneous subvariety of G/Γ for a long time, it is very near a dif-
ferent homogeneous subvariety. Our work builds upon the linearization
method of Dani and Margulis.

Our motivation in developing these bounds is in order to prove quan-
titative density statements about unipotent orbits, which we plan to
pursue in a subsequent paper. New qualitative implications of our ef-
fective bounds are also given.

1. Introduction

A basic challenge in homogeneous dynamics is the quantitative under-
standing of behavior of orbits, in particular of unipotent orbits. In this pa-
per, we give a sharper form of the Dani-Margulis linearization method [16],
that allows to control the amount of time a unipotent trajectory spends near
invariant subvarieties of a homogeneous space; related techniques were also
considered by Shah in [46].

One important use of this technique is to be able to relate the behavior
of individual unipotent (or unipotent-like, see e.g. [20]) orbits with Rat-
ner’s landmark measure classification result [41]. This result says that any
measure invariant and ergodic under a connected unipotent group U on a
homogeneous space G/Γ has to be in one of countably many families; for
the cases of G/Γ and unipotent group U we will consider, the group U acts
ergodically on G/Γ with respect to the uniform measure on G/Γ, hence this
uniform measure is one of the countably many possibilities. All other ergodic
measures will be supported on proper homogeneous subvarieties of G/Γ. If
one is able to show, using linearization or a different technique, that a given
collection of orbits under consideration of increasing size do not spend much
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time next to any one of these countably many families of not fully supported
invariant measures, then one is able to conclude using the measure classifi-
cation that this collection of orbits tends to become equidistributed in G/Γ.
We note that for the special case when one looks at a single orbit of a one
parameter unipotent group Ratner was able to establish such an avoidance
by a different argument in [42].

However, the linearization technique of [16] is interesting in its own sake,
and in fact originated in work of Dani and Margulis before the proof of mea-
sure classification such as [15] in order to give a purely topological proof of
Raghunathan Conjecture for the action of a generic one parameter unipotent
group on SL3(R)/SL3(Z). Notably, unlike the techniques of Ratner used to
prove the measure classification result in [41, 43] or the techniques used to
give a related but different proof of this result by Margulis and Tomanov in
[35], which in particular rely on results such as the pointwise ergodic theo-
rem and Luzin’s theorem which are hard to make effective, the linearization
technique relies essentially only on the polynomial nature of the action: not
only are the elements of the unipotent group (considered as a subgroup of
some SLN ) polynomial, but the same holds for any linear representation
of G.

In a subsequent paper we plan to make essential use of the results of this
paper in order to provide a fully effective orbit closure classification theorem
for unipotent flows on arithmetic homogenous spaces (albeit with very slow
rates). We provide some other applications of independent interest here.

Somewhat surprisingly, many of the most striking applications of the the-
ory of unipotent flows to number theory require working in the S-arithmetic
context, i.e. for products of real and p-adic groups (here we prefer to use Σ
for the set of places instead of the more traditional S, so we refer to this case
as the Σ-arithmetic case). Ratner’s measure classification result was gen-
eralized to this context by Ratner [43] and by Margulis and Tomanov [35];
the linearization techniques of Dani and Margulis were adapted to this con-
text by Tomanov and by Gorodnik and Oh in [50, 25]. In view to potential
applications, our paper is written for Σ-arithmetic quotients. For simplicity
we state here in the introduction the main results in the special case where
we consider the action of a one-parameter unipotent group and consider
only real algebraic groups, deferring stating the slightly more technical gen-
eral statements to §3. We emphasize that in order to get a fully explicit and
effective result, we assume that the lattice is arithmetic. By Margulis Arith-
meticity Theorem this assumption automatically holds for a large class of
groups G, and in any case arithmetic quotients are the only type of quotients
G/Γ that seem to appear in number theoretic applications.

The nondivergence result of Margulis [32], which were sharpened by Dani
in [13] are effective and have been given a very explicit and effective form by
Kleinbock and Margulis in [29]. The technique of linearization is related, but
we are not aware of an effective treatment of the main results in [16], and do-
ing so in this paper relies on employing an effective Nullstellensatz by Masser
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and Wüstholz [36, Thm. IV] as well as some local non-vanishing theorems
related to Lojasiewicz inequality by Brownawell and Greenberg [12, 23, 24].
Moreover, since we are not content with analysing what happens in the
limit, we need to be able to analyse trajectories that are somewhat near a
subvariety for a long time, which is an issue that has not been discussed in
previous works on the linearization method.

Let G be a connected Q-group and put G = G(R). We assume Γ is an
arithmetic lattice in G. More specifically, fix an embedding ι : G → SLN ,
defined over Q so that ι(Γ) ⊂ SLN (Z). Using ι, we identify G with ι(G) ⊂
SLN and hence G ⊂ SLN (R). Note that using the restriction of scalars
from number fields to Q, our results are applicable also in the case of groups
defined over a general number field.

Let U = {u(t) : t ∈ R} ⊂ G be a one parameter unipotent subgroup of
G, and put X = G/Γ.

Define the following family

H =
{
H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)

}
where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of
H. Alternatively, H ∈ H if and only if H is a connected Q-subgroup which
is generated by unipotent subgroups over the algebraic closure of Q. By a
theorem of Borel and Harish-Chandra, H(R)∩Γ is a lattice in H(R) for any
H ∈ H.

Our standing assumption is that G ∈ H and that U is not
contained in H(R) for any proper normal HCG.

For any H ∈ H put H = H(R), we also write H ∈ H. Define

NG(U,H) := {g ∈ G : Ug ⊂ gH}.

Note that NG(U,H) is an R-subvariety of G. Moreover, if HCG and U ⊂ H,
then NG(U,H) = G.

Put

S(U) =
( ⋃
H∈H
H 6=G

NG(U,H)
)
/Γ and G(U) = X \ S(U).

Following Dani and Margulis, [16], points in S(U) are called singular with
respect to U, and points in G(U) are called generic with respect to U — these
are, a priori, different from the measure theoretically generic points in the
sense of Furstenberg for the action of U on X equipped with the the G-
invariant probability measure (see e.g. [22, p. 98] for a definition); however,
any measure theoretically generic point is generic in this explicit sense as
well. In the early 1990’s Ratner proved the remarkable result [42], previously
conjectured by Raghunathan, that for every x ∈ G(U) we have Ux = X.
Prior to Ratner’s proof of the general case of Raghunathan’s Conjecture
in [42], important cases of Raghunathan’s Conjecture were proven in [33,
14, 15].



4 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI, AND N. SHAH

Roughly speaking our main theorems guarantee that unless there is an
explicit obstruction, most points on a unipotent orbit are generic. We begin
with the following statement which follows from our main effective theorems
in this paper.

1.1. Theorem. Let η > 0. Let {Hi : 1 ≤ i ≤ r} ⊂ H be a finite subset
consisting of proper subgroups, and for each 1 ≤ i ≤ r let Ci ⊂ NG(U,Hi)
be a compact subset. There exists an open set O = O(η, {Hi}, {Ci}) so that
X \O is compact and disjoint from ∪iCiΓ/Γ, and so that for every x ∈ G(U)
there exists some T0 = T0(η, {Hi}, {Ci}, x) so that for all T ≥ T0 we have

|{t ∈ [−T, T ] : u(t)x ∈ O}| < ηT

We note that this theorem can also be deduced by combining Ratner’s
measure classification theorem, [41], and results in [16]; however this would
only give a non-effective proof of the above statement. Without appealing
to [41] and only utilizing statements in [16] (where the proof is essentially
effective), one does not get uniformity as in Theorem 1.1: indeed, from the
argument in [16] the set O above will depend on the initial point x. This
distinction is similar to the difference between the non-divergence statement
given by Dani in [13] and the dependence on the base point in Margulis’ [32].

1.2. Effective versions of linearization. The main theorems in this pa-
per yield a more precise and effective information about the compact set
X \ O appearing above, with a polynomial dependence on the relevant pa-
rameters. We need some preliminary notation before we can state our main
results.

Let ‖ ‖∞ (or simply ‖ ‖) denote the max norm on slN (R) with respect
to the standard basis; this induces a family of norms on ∧slN (R), which we
continue to denote by ‖ ‖∞ (or simply ‖ ‖). We also let ‖ ‖ be a norm on
SLN (R) fixed once and for all. For every g ∈ SLN (R), in particular for any
g ∈ G, we let

|g| = max{‖g‖, ‖g−1‖}.
Let g = Lie(G) and put g(Z) := g ∩ slN (Z).
For every η > 0, we define

Xη =
{
gΓ ∈ X : min

0 6=v∈g(Z)
‖Ad(g)v‖ ≥ η

}
.

For every η > 0 the space Xη is compact (see §2.7 and Lemma 2.8), and⋃
η>0Xη = G/Γ.
Recall that U is a one parameter unipotent subgroup of G. Fix a z ∈ g

with ‖z‖ = 1 so that

(1.1) U = {u(t) = exp(tz) : t ∈ R}.
Let H ∈ H be a nontrivial proper subgroup of G and put

ρH := ∧dimH Ad and VH := ∧dimHg.

The representation ρH is defined over Q.
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Let vH be a primitive integral vector in ∧dimHLie(G) corresponding to
the Lie algebra of H, i.e., we fix a Z-basis for Lie(H) ∩ slN (Z), and let vH

be the corresponding wedge product.
We also view vH as an element in ∧dimHg; in order to put an emphasis

on the local nature of this vector, we will denote it by vH . Define

ηH(g) := ρH(g)vH for every g ∈ G.

With this notation, for an element H ∈ H, we have

NG(U,H) = {g ∈ G : z ∧ ηH(g) = 0}.

Note that NG(U,H) is a variety and could change drastically under small
perturbations of U . However, effective notions must be stable under small
perturbations. We will use the above finite dimensional representations to
give an effective notion of generic points. The integer vector vH also allows
us to give a notion of arithmetic complexity for subgroups in H by defining
the height of the group H to be

(1.2) ht(H) := ‖vH‖∞.

Thus the height of a Q-group H is given by the height of the correspoding
point in the Grassmanian of Lie(G); Cf. [4, §1.5].

The following definition will play a crucial role in this paper.

1.3. Definition. Let ε : R+ → (0, 1) be a monotone decreasing function, and
let t ∈ R+. Let z be as in (1.1). A point gΓ is called (ε, t)-Diophantine
for the action of U if for all H ∈ H with {e} 6= H 6= G

(1.3) ‖z ∧ ηH(g)‖ ≥ ε(‖ηH(g)‖) if ‖ηH(g)‖ < et.

A point is ε-Diophantine if it is (ε, t)-Diophantine for all t > 0.

Note that this is a condition on the pair (U, gΓ). Unless U < H(R) for some
(proper) HCG, the set G(U) is nonempty, and moreover any x ∈ G(U) is ε-
Diophantine for some ε as above. In most interesting examples the singular
set S(U) is a dense subset of X. Therefore, G(U) is usually a Gδ-set without
any interior points. For any t ∈ R+, on the other hand, the set of (ε, t)-
Diophantine points in Definition 1.3 is a nice closed set with interior points
(indeed, is the closure of its interior points).

We can now state our main theorem (in slightly simplified form, see The-
orem 3.2 below for the full version with all the features):

1.4. Theorem. There are constants A,D > 1 depending only on N , and
E1 > 1 depending on N , G and Γ, so that the following holds. Let g ∈ G,
t > 0, k ≥ 1, and 0 < η < 1/2. Assume ε : R+ → (0, 1) satisfies for any
s > 0 that

ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds.
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(1)∣∣∣{ξ ∈ [−1, 1] :
u(ekξ)gΓ 6∈ Xη or

u(ekξ)gΓ is not (ε, t)-Diophantine

}∣∣∣ < E1η
1/D

(2) There exist a nontrivial proper subgroup H ∈ H of

ht(H) ≤ E1(|g|A + eAt)η−A

so that the following hold for all ξ ∈ [−1, 1]:∥∥∥ηH(u(ekξ)g)
∥∥∥ ≤ E1(|g|A + eAt) η−A∥∥∥z ∧ ηH(u(ekξ)g)
∥∥∥ ≤ E1e

−k/D(|g|A + eAt) η−A

where z is as in (1.1).
(3) There exist a nontrivial proper normal subgroup HCG of

ht(H) ≤ E1e
Atη−A

so that ∥∥z ∧ vH
∥∥ ≤ ε(ht(H)1/Aη/E1)1/A.

Similar to [16], the proof of Theorem 1.4, and its Σ-arithmetic analogue,
relies on the polynomial like behavior of the unipotent orbits. However, in
addition to being polynomially effective, our results here also differ from [16]
in the following sense. They provide a compact subset of G(U) which is
independent of the base point and to which a unipotent orbit returns unless
there is an algebraic obstruction; this uniformity is used essentially in Theo-
rem 1.1 and Theorem 1.5. Regarding nondivergence properties of unipotent
orbits, such uniformity is well known and is due to Dani (see [13, 17]), but
in this context it is new.

These features have been made possible using two main ingredients. First
is the use of an effective notion of a generic point, Definition 1.3. The
second ingredient is the use of a group MH, see §4.7, to control the speed of
unipotent orbits in the representation space VH ; this group does not feature
in the analysis in [16].

Using Theorem 1.4 one can give a topological analogue of a result of
Mozes and Shah [39]. To deal with groups with infinitely many normal
Q-subgroups we need the following definition:

For any T > 0, put

σ(T ) = min

(
{1} ∪

{
‖z ∧ vH‖ :

H ∈ H,HCG,
ht(H) ≤ T, {1} 6= H 6= G

})
.

1.5. Theorem. There exists some D > 1 depending on N and E1 > 0
depending on N , G, and Γ so that the following holds. Let 0 < η < 1/2.

Let {xm} be a sequence of points in X, and let Tm → ∞ be a sequence
of real numbers. For each m let Im ⊂ [−Tm, Tm] be a measurable set with
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measure > ηTm. Let

Y =
⋂
k≥1

⋃
m≥k
{u(t)xm : t ∈ Im}.

Then exactly one of the following holds.

(1) Y contains an ε-Diophantine point for

ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
.

(2) There exists a countable (or finite) collection

F = {(Hi, Li) : i ∈ I} ⊂ H × R+

so that if

Yi = {g ∈ N(U,Hi) : ‖ηHi(g)‖ ≤ Li}Γ/Γ

then
(a) Y ⊂

⋃
i∈I Yi

(b) for any β > 0

#{i ∈ I : Y ∩Xβ ∩ Yi 6= ∅} <∞.

As we shall see in Corollary 4.10.1 below, for any H ∈ H and L > 0 the set

Y = {g ∈ N(U,H) : ‖ηH(g)‖ ≤ L}Γ/Γ
is a closed (though in general not compact) subset of X. For instance, for
G = SL2(R) and Γ = SL2(Z), if we take H to be the stabilizer of the vector(

0
1

)
∈ Z2, U = H = H(R) and define Y as above then Y is the union of all

periodic U -orbits of period ≤ L.

Theorem 1.5 is related to [16, Thm. 4]. Specifically in that paper it is
proved that if one assumes that sequence {xm} converges to a point in G(U)
then a less precise form of (1) of Theorem 1.5, namely that Y contains a
point in G(U), holds.

1.6. Friendly measures. In this section we discuss generalizations of The-
orem 1.5 to the class of friendly measures which were studied in [28].

Let (Y, d) be a σ-compact metric space; for every y ∈ Y and r > 0, let
B(y, r) denote the open ball of radius r centered at y. Let µ be a locally
finite Borel measure on Y . If A > 0 and O ⊂ Y is an open subset, the
measure µ is called A-Federer on O if for all y ∈ supp(µ) ∩O one has

µ(B(y, 3r))

µ(B(y, r))
< A

whenever B(y, 3r) ⊂ O.
Let Y = R be equipped with the standard metric. Given a point a ∈ R

and δ > 0, we let Iδ(a) = (a− δ, a+ δ). Given c, α > 0 and an open subset
O ⊂ R, we say µ is (c, α)-absolutely decaying on O if for every non-empty
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open interval J ⊂ O centered in supp(µ), every point a ∈ R, and every δ > 0
we have

(1.4) µ(J ∩ Iδ(a)) < c
(δ
r

)α
µ(J)

where J has length 2r, see [28, Lemma 2.2].
We will say a measure µ on R is uniformly friendly if µ is A-Federer and

(c, α)-absolutely decaying for some A, c, α > 0.
Let the notation be as in §1.2; in particular,

U = {u(t) = exp(tz) : t ∈ R}.

for some nilpotent element z ∈ g with ‖z‖ = 1.

1.7. Theorem. Let µ be a uniformly friendly measure on R. There exists
some D > 1 depending on N and µ, and E1 > 0 depending on N , G, Γ, and
µ so that the following holds.

Let 0 < η < 1/2. Let {xm} be a sequence of points in X, 0 < η < 1/2,
and let km →∞ be a sequence of real numbers. For each m let Im ⊂ [−1, 1]
be a measurable set with µ(Im) > η µ([−1, 1]). Let

Y =
⋂
`≥1

⋃
m≥`
{u(ekmt)xm : t ∈ Im}.

Then exactly one of the following holds.

(1) Y contains an ε-Diophantine point for

ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
.

(2) There exists a countable (or finite) collection

F = {(Hi, Li) : i ∈ I} ⊂ H × R+

so that if

Yi = {g ∈ N(U,H) : ‖ηHi(g)‖ ≤ Li}Γ/Γ,

then
(a) Y ⊂

⋃
i∈I Yi

(b) for any β > 0

#{i ∈ I : Y ∩Xβ ∩ Yi 6= ∅} <∞.

See §9 for a more detailed discussion of this generalization.

Acknowledgements. We would like to thank M. Einsiedler, H. Oh, and
A. Wieser for their helpful comments on earlier drafts of this paper.
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2. Notation

2.1. Let S = {∞} ∪ {p : p is a prime} denote the set of places of Q. We
let Sf = S \ {∞} denote the set of finite places in S. For every v ∈ S let Qv

be the completion of Q at v; we often write R for Q∞.
For every p ∈ Sf , we let Cp be the completion of the algebraic closure,

Qp, of Qp with respect to the p-adic norm. The field Cp is a complete and
algebraically closed field.

Given a finite subset Σ ⊂ S, we put Σf := Σ \ {∞}; also set QΣ =∏
v∈Σ Qv. Given an element r ∈ QΣ, we put |r|Σ = maxv∈Σ |r|v.
For any p ∈ Sf , let Zp denote the ring of p-adic integers in Qp. The ring

of Σ-integers in Q is as usual denoted by ZΣ.

Given a Q-variety Y, we put Yv = Y(Qv); given a finite subset Σ ⊂ S,
we also write YΣ, or simply Y if there is not confusion, for

∏
Σ Yv.

For any Q-variety Y, we denote by dim Y the dimension in the algebro
geometric sense. In particular dim G is the dimension of G as an algebraic
group. Note that dimQv Yv, the dimension of Yv as a Qv-manifold, equals
dim Y, see e.g. [34, Ch. I, §2.5]. We also put

dimYΣ :=
∑

Σ dimQp Yp =
(
#Σ
)

dim Y.

Given a Q-group, H, we denote by Lie(H) the Lie algebra of H. We will
use lower case gothic letters to denote the Lie algebra of H over various local
fields, e.g., hp = Lie(H(Qp)); similarly, we write hΣ, or simply h, for ⊕Σhp.

The space hΣ is a QΣ-module; and the notation rw for r ∈ QΣ and w ∈ hΣ

in the sequel refers to this module structure.
Given a natural number m ≤ dim(Lie(H)), we write ∧mh or ∧mhΣ to

denote ⊕Σ(∧mhv).

For any (compact) subset K ⊂ Qm
v and any δ > 0, we let Nδ(K) denote

the δ-neighborhood of K. Also let |K| denote the Haar measure of K.
Let H be a QΣ-group and put H = H(QΣ). Given a subset B ⊂ H, we

define

ZH(B) = {g ∈ H : gb = bg for all b ∈ B}.
Given two subsets B1, B2 ⊂ H, we define

NH(B1, B2) =
{
g ∈ H : g−1B1g ⊂ B2

}
,

and put NH(B) := NH(B,B) for any B ⊂ H.

2.2. For any place v ∈ S, let ‖ ‖v denote the max norm, with respect to the
standard basis, on slN (Qv) and on ∧slN (Qv). Given a finite subset Σ ⊂ S,
the norm ‖ ‖Σ (or simply ‖ ‖) is defined by

‖ ‖Σ = max
v∈Σ
‖ ‖v.

We let d denote the induced metric on the exterior algebra ∧slN (QΣ)
induced from ‖ ‖.
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We also fix norms, which we continue to denote by ‖ ‖v, on SLN (Qv) for
all v; and put ‖ ‖ = maxΣ ‖‖v. For every g ∈ SLN (QΣ), in particular for
every g ∈ G, we set

(2.1) |g| := max{‖g‖, ‖g−1‖}.

Note that

(2.2) |g| = |g−1| and |g1g2| � |g1||g2|,

Fix A1 and A2 both depending only on N so that

(2.3) ‖ ∧r Ad(g)z‖ ≤ A2|g|A1‖z‖ for all z ∈ slN (QΣ) and 1 ≤ r ≤ N2.

2.3. Let W ⊂ slN be a rational subspace, then ∧dimWW defines a rational
line in ∧dimWslN . This line is diagonally embedded in ∧dimWslN (QΣ), and
we do not distinguish between this diagonal embedding and the line.

Fix a Z-basis for W(R) ∩ slN (Z). Let vW denote the corresponding
primitive integral vector on ∧dimWW, and define

ht(W) = ‖vW‖.

Note that we used the max norm in the above definition, in particular, we
have: ht(W) is an integer.

Alternatively, ht(W) may be defined as follows. Let {e1, . . . , edimW} be
a Q-basis for W. Then

ht(W) =
∏
v∈S
‖e1 ∧ · · · ∧ edimW‖v

In view of the product formula, the above is independent of our choice of
the rational basis for W, see [4, §1.5].

Given a Q-subgroup H of SLN , we put vH := vLie(H) and define

(2.4) ht(H) := ht
(
Lie(H)

)
= ‖vH‖.

2.4. For the rest of this paper, fix a finite subset Σ ⊂ S containing ∞.
The exponents in this paper are denoted by A with numerical indecies.

These constants depend only on N . The understanding is that A· > 1.
Similarly, the constants C,D, and F in the sequel depend only on N , and

are implicitly assumed to be > 1.
We use the notation T � R to denote T ≤ cR where the multiplica-

tive constant c is allowed to depend on N , the number of places #Σ, and
polynomially on the finite primes in Σ and on ht(G). Similarly we define
T � R.

It will also be convenient to use ? to denote a constant. More precisely,
we write T � R? if T ≤ cRA or T ≤ cRα where c is allowed to depend on
N , #Σ, polynomially on the finite primes in Σ and ht(G), and the exponent
is either a “big enough” constant or a “small enough” constant depending
only on N ; hopefully the context will make it clear if the exponent needs to
be large or small.
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2.5. For all v ∈ Σ, let ‖ ‖v denote the max norm with respect to the
standard basis on Qm

v ; we put ‖z‖ = ‖z‖Σ = max ‖zv‖v for all z = (zv) ∈
Qm

Σ .
Define

(2.5) c(z) =
∏
v∈Σ

‖z‖v for all z ∈ Qm
Σ .

Note that c(rz) = c(z) for all r ∈ Z×Σ and all z ∈ Qm
Σ .

2.6. Lemma. There exists A3 and some Cm,Σ ≥ 1 so that the following
holds. Let z ∈ Qm

Σ be a vector so that c(z) 6= 0.

(1) There exists some r0 ∈ Z×Σ so that

C−1
m,Σ‖r0z‖Σ ≤ ‖r0z‖v ≤ Cm,Σ‖r0z‖Σ

for all v ∈ Σ, in particular, we have

(2.6) min
r∈Z×Σ

‖rz‖Σ ≤ Cm,Σ‖r0z‖Σ ≤ Cm,Σc(r0z)1/#Σ.

(2) Let ‖z‖Σ = 1, and let T > 0. Then

(2.7) #{r ∈ Z×Σ : ‖rz‖Σ ≤ T} ≤ Cm,Σ
(
log

T

c(z)

)A3 .

Proof. The claim in part (1) is proved in [30, Lemma 8.6].
We now turn to the proof of part (2). Let ` = #Σ and for every a > 0

put

Ea =
{

(w1, . . . , w`) ∈ R`+ :
∏
wi = a

}
.

Note that Ea is invariant under multiplication by positive diagonal matrices
in SL`(R).

Let DΣ denote the group of positive diagonal matrices in SL`(Q) whose
entries are in ZΣ. Let a = c(z). Then (|z|v) ∈ Ea , and for every r ∈ Z×Σ we
have Diag(|r|v) ∈ DΣ.

Let ‖ ‖op denote the operator norm on SL`(R) and let ‖ ‖m denote the

max norm on R`. We have

(2.8) #{A ∈ DΣ : ‖A‖op ≤ S} �m,Σ (logS)?.

Further, if w = (w1, . . . , w`) ∈ Ea is so that |wi| �m,Σ ‖w‖m �m,Σ |wi| for
all i, then ‖A‖op‖w‖m �m,Σ ‖wA‖m �m,Σ ‖A‖op‖w‖m.

Hence, the claim follows from (2.8) if we replace z by r0z so that

‖r0z‖Σ �m,Σ ‖r0z‖v �m,Σ ‖r0z‖Σ

for all v ∈ Σ. �

Similar to (2.5), we define c(w) =
∏
‖w‖v for all w ∈ ∧slN (QΣ).
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2.7. Let G be a connected Q-group of class H. Fix an embedding ι : G→
SLN defined over Q. Put G = GΣ and g = gΣ.

We identify G with ι(G) ⊂ SLN , hence, G ⊂ SLN (QΣ). Let g(ZΣ) :=
g ∩ slN (ZΣ), then [g(ZΣ), g(ZΣ)] ⊂ g(ZΣ).

We fix a Z-basis, BG = {z1, . . . , zd}, for g∩SLN (Z) so that c(zi)�ht(G)?

for all 1 ≤ i ≤ d. Using this basis, we identify Lie(G) with a d-dimensional
vector space with a Q-structure. We also identify the Z-span of BG with
Zd; hence we get a representation Ad : G→ SLd.

Let Γ ⊂ G ∩ SLN (ZΣ) be a lattice. Then Γ fixes g(ZΣ), which implies
that Ad(Γ) ⊂ SLd(ZΣ) — recall that we are using BG to define Ad over the
ring ZΣ (and not just as a Q-representation).

Let X := G/Γ. For any η > 0, set

(2.9) Xη :=
{
gΓ ∈ X : min

06=v∈g(ZΣ)
c(gv) ≥ η

}
where here and in what follows we often simply write gv for Ad(g)v; sim-
ilarly, for w ∈ ∧g, we simply write gw to denote the corresponding wedge
power of the adjoint representation.

For any η > 0, the set Xη is a compact subset of G/Γ, and G/Γ =⋃
η>0Xη.
We will need a quantitative version of the former statement:

2.8. Lemma. There exist some EG (depending on the geometry of G/Γ)
and F (depending only on N) so that the following holds. Let g ∈ G be so
that gΓ ∈ Xη. There exists some γ ∈ Γ so that

|gγ| ≤ EGη
−F

Remark. For a point gΓ to be Xη essentially means that the local injec-
tivity radius for G/Γ at gΓ is � η?. Thus Lemma 2.8 can be viewed as
an estimate of the diameter of the part of G/Γ which has injectivity radius
greater than η?. In particular, for G/Γ compact, F is essentially meaning-
less, and EG is the diameter of the smallest norm ball in G needed to cover
G/Γ, see [37, Thm. 1.7 and Thm. 6.9] for more explicit estimates.

For future convenience, we set ẼG = ht(G) · EG. In the proof of this
lemma implicit constants are allowed to depend on G and Γ where indicated.

Proof. By [37, Prop. 3.1] there exists a Levi subgroup L so that ht(L) is
bounded by ht(G)?, in particular, L ∩ Γ is a lattice1 in L.

For any g ∈ G, define

αg(g) := max{c(Ad(g)z)−1 : 0 6= z ∈ g(ZΣ)};
define similarly αl for any g ∈ L = L(QΣ).

Let g ∈ G and write g = g0gu where g0 ∈ L and gu ∈ Ru(G). Then
αl(g

0) ≤ αg(g
0) and by [37, Lemmas 4.4 and 6.8] we have αg(g

0) �G,Γ

1Note that without the estimate on the the height, the existence of a Levi subgroup so
that L ∩ Γ is a lattice in L is a theorem of Mostow [38].
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αg(g)?. It follows from reduction theory for L, ([40, Thm. 4.8] and [40, Thm
4.17]) that there exists some γ0 ∈ L ∩ Γ so that

|g0γ0| �G,Γ αl(g
0)?,

and combining the above we get |g0γ0| � αg(g)?. Moreover, γ−1
0 guγ0 ∈

Ru(G) and ht(Ru(G)) � 1, see Lemma 4.2. Therefore, there exists some
γ1 ∈ Ru(G) ∩ Γ so that

|γ−1
0 guγ0γ1| �G,Γ 1,

see, e.g., [37, Lemma 5.6].
Put γ = γ0γ1. Then

|gγ| = |g0guγ0γ1|
�G,Γ|g0γ0||γ−1

0 guγ0γ1| �G,Γ αg(g)?;

as was claimed. �

2.9. Let U =
∏
v∈Σ Uv ⊂ G where for all v ∈ Σ we have Uv is a (possibly

trivial) unipotent subgroup of G. We will refer to such groups as a QΣ-
unipotent subgroup of G. Define

(2.10) Σ′ = {v ∈ Σ : Uv 6= {e}}.
Let u (resp. uv) denote the Lie algebra of U (resp. Uv). The exponential

map defines an isomorphism of QΣ-varieties from u onto U. We fix once and
for all a basis BU for u consisting of elements which are nontrivial at only
one place.

For δ > 0, let Bu(0, δ) =
{∑

z∈BU rz z : |rz |Σ ≤ δ
}

where rz ∈ QΣ and

|r|Σ := maxΣ |rv|v; put

BU (e) := exp
(
Bu(0, 1)

)
.

Thus BU (e) is a product of neighborhoods of 1 in Uv for v ∈ Σ. A subset
B ⊂ BU (e) will be called a ball if it is the image, under the exponential map,
of a norm ball in u.

Let λ : u → u be a QΣ-diagonalizable expanding linear map, and for all
k ∈ N let λk : u → u denote the k-fold composition of λ with itself, i.e.,
λk = λ ◦ · · · ◦ λ, k-times. We will throughout make the assumption that for
some fixed κ > 0 and all k ≥ 1

(2.11) exp
(
λk−κ(Bu(0, 1))

)
· exp

(
λk−1(Bu(0, 1))

)
⊂ exp

(
λk(Bu(0, 1))

)
.

We now explicate two examples of λ which satisfy the required conditions.
One may take λ to be an expanding automorphism of the Lie algebra u as
Margulis and Tomanov did in [35]; more explicitly, we may embed G in a
larger group in which one can find an element h so that λ = Ad(h) expands u.

The following is an alternative construction for a λ which satisfies the
required assumptions: Let v ∈ Σ, and consider the lower central series for
uv. That is:

uv = uv,0 ⊃ uv,1 ⊃ · · · ⊃ uv,nv = {0}
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where uv,i+1 = [uv, uv,i] for all 0 ≤ i < nv.
For each i, let uiv denote an orthogonal complement2 of uv,i+1 in uv,i. In

particular, we have
uv,i = uv,i+1 ⊕ uiv.

Fixing an orthonormal basis of uiv for all 0 ≤ i < nv, we obtain an
orthonormal basis of uv. Let ap = p−3 if p is a finite prime and a∞ = e3.
For each k ∈ N, define λk : uv → uv by

λk(z) = a(i+1)k
v z for all z ∈ uiv.

We leave the verification that this example does indeed satisfy (2.11) to the
reader.

Abusing the notation, for an element u = exp(z) ∈ U we set λ(u) :=
exp(λ(z)); that is: λ and λk are also considered as function on U .

In this paper, we assume that a linear expanding map λ satisfying (2.11)

is fixed; moreover, we assume that the parameters κ, |λ1(BU (e))|
|BU (e))| , etc. depend

only on N and polynomially on ht(G). E.g., the examples above satisfy
these properties, and the reader may take λ to be one of these examples.

However, if for some reason, the reader is keen on taking some particularly
wild expanding linear map λ satisfying (2.11), the only adverse effect would
be that the implicit multiplicative constants need to be allowed to depend
polynomially on the parameters of λ.

3. Statements of the main theorems: Σ-arithmetic

Let G ⊂ SLN be a Q-group. Recall the family

H =
{
H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)

}
,

where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of
H. We always assume that G ∈ H. Recall also our notation Gv = G(Qv)
for all v ∈ Σ, and G =

∏
v∈ΣGv.

Let H ∈ H be a proper subgroup and put

ρH := ⊕Σ(∧dimH Ad) and VH := ∧dimHg = ⊕Σ(∧dimHgv).

We shall identify between the the representation ρH ofG and the Q-representaiton
∧dimH Ad of G.

Let vH be a primitive integral vector in ∧dimHLie(G) corresponding to
the Lie algebra of H. Recall from (2.4) that

(3.1) ht(H) = ‖vH‖Σ = ‖vH‖.
The vector vH is diagonally embedded in VH (which is a product of local

factors); in order to put an emphasis on the local nature of this diagonally
embedded vector, we will denote it by vH . Define

ηH(g) := ρH(g)vH for every g ∈ G.

2Recall that for a finite prime p, a set of unit vectors in Qm
p is called orthonormal if it

can be extended to a Zp-basis for Zm
p .
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Throughout, U =
∏
v∈Σ Uv ⊂ G is a QΣ-unipotent subgroup. We will use

the notation from §2.9. In particular, BU is an orthonormal basis for u, and

BU (e) = exp
({∑

z∈BU rz z : |rz |Σ ≤ 1
})
.

Recall also from §2.9 the notion of an admissible expanding map λk : U → U
for all k ∈ N.

The following is a Σ-arithmetic version of Definition 1.3, and plays a
crucial role in this paper.

3.1. Definition. Let ε : R+ → (0, 1) be a monotone decreasing function,
t ∈ R+, and F ⊂ H a subcollection that is Γ-invariant with respect to
conjugation. A point gΓ is called (ε, t,F)-Diophantine for the action of U
if for all H ∈ F with {e} 6= H 6= G and c(ηH(g)) < et

(3.2) max
z∈BU

‖z ∧ ηH(g)‖ ≥ ε(c(ηH(g))).

A point is (ε, t)-Diophantine if it is (ε, t,H)-Diophantine. A point is ε-
Diophantine if it is (ε, t)-Diophantine for all t > 0.

Note that if there exists some nontrivial H CG so that U ⊂ H(QΣ), then
for any ε : R+ → (0, 1) the set of ε-Diophantine points is empty.

We now state the main result of this paper.

3.2. Theorem. There exist constants A and D depending only on N , and
constants E depending on N,#Σ and polynomially on ht(G) and the primes
in Σ, and E1 depending in addition also (polynomially) on EG, so that the
following holds. Let g ∈ G, t > 0, k ≥ 1, and 0 < η < 1/2. Assume
ε : R+ → (0, 1) satisfies for any s ∈ R+ that

(3.3) ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds.

(1)∣∣∣{u ∈ BU (e) :
λk(u)gΓ 6∈ Xη or

λk(u)gΓ is not (ε, t)-Diophantine

}∣∣∣ < E1η
1/D

(2) There exist a nontrivial proper subgroup H ∈ H with

ht(H) ≤ (E|g|A + E1e
At)η−A

so that the following hold for all u ∈ BU (e):

c(ηH(λk(u)g)) ≤ (E|g|A + E1e
At)η−A

max
z∈BU

∥∥z ∧ ηH(λk(u)g)
∥∥ ≤ e−k/D(E|g|A + E1e

At)η−A

(3) There exist a nontrivial proper normal subgroup HCG with

ht(H) ≤ E1(etη−1)A



16 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI, AND N. SHAH

so that

max
z∈BU

∥∥z ∧ vH
∥∥ ≤ ε(ht(H)1/Aη/E1)1/A.

Of course if G is Q-simple, possibility (3) cannot hold. A typical example
where there are infinitely many normal subgroups is

G = SLn n ((Ga)n × (Ga)n)

with Ga denoting the the one dimensional additive group (the simplest pos-
sible algebraic group!). The group G is a perfect group, and for any l, k ∈ Z
the subgroup

Hl,k = {(g, lv , kv) : g ∈ SLn, v ∈ Gn
a}

is a normal subgroup of G.
We note the following interesting corollary of Theorem 3.2. For simplicity

we state it in the case where G has only finitely many normal Q-subgroups
(it is fairly easy to adjust the statement and the proof to accommodate
general G, but they become a bit messier). Results of similar flavour were
given by Lindenstrauss and Margulis in [31, Prop. 4.4].

3.3. Corollary. Let G, G,Γ, U be as above, with G having only finitely many
normal Q-subgroups, and U 6⊂ H(QΣ) for all H C G. There are A4, A5

depending only on N and ε1, ε2 depending on N,#Σ and polynomially on
ht(G), the primes in Σ, and EG, and t0 that depend in addition also on
U and how far it is from lying in any H CG, so that if ε(s) = ε1η

A4s−A4

then if t > t0, and if t′, k ≥ A5(t + log(1/η) + log(1/ε2)), then for any
(ε, t′)-Diophantine gΓ ∈ Xη,∣∣∣{u ∈ BU (e) :

λk(u)gΓ 6∈ Xη or
λk(u)gΓ is not (ε, t)-Diophantine

}∣∣∣ < E1η
1/D

Proof of Corollary 3.3 assuming Theorem 3.2. Assuming that the constants
in Corollary 3.3 were appropriately chosen, ε satisfies (3.3) and we may apply
Theorem 3.2.

If (1) of that theorem holds there is nothing to prove. Otherwise either
(2) or (3) of that theorem holds. (3) is ruled out by our assumption that
U 6⊂ H(QΣ) for all HCG if t0 is large enough.

Suppose then we are in case (2). As gΓ ∈ Xη it follows that there is a
nontrivial subgroup H ∈ H for which in particular3

c(ηH(g)) ≤ 2E1e
Atη−A

max
z∈BU

∥∥z ∧ ηH((u)g)
∥∥ ≤ 2E1e

−k/DeAtη−A(3.4)

Chose A5, ε2 so that in particular t′ > log(2E1e
Atη−A). Then since gΓ is

(ε, t′)-Diophantine

max
z∈BU

∥∥z ∧ ηH((u)g)
∥∥ ≥ ε1ηA4

(
2E1e

Atη−A
)−A4 � η2AA4e−AA4t.

3Possibly for a slightly larger A than in the theorem.
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But this contradicts (3.4) if k ≥ A5(t+ log(1/η) + log(1/ε2)) for sufficiently
large A5. �

4. The family H and the Diophantine condition

4.1. Recall the family

H =
{
H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)

}
where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of
H.

For any subgroup H ∈ H, we put H = H(QΣ). Sometimes we write
H ∈ H.

4.2. Lemma. There exists some A6 so that the following holds. Let L ⊂ SLN
be a connected algebraic group defined over Q. Then

ht([L,L])�ht(L)A6 ; ht(R(L))�ht(L)A6 ; and ht(Ru(L))�ht(L)A6 .

Proof. Let B be a Z-basis for Lie(L) ∩ SLN (Z) so that ‖z‖ � ht(L)? for all
z ∈ B. Then {[z, z ′] : z, z ′ ∈ B} generates [Lie(L),Lie(L)]. Hence,

ht([Lie(L),Lie(L)])�ht(L)?.

It remains to bound ht(Ru(L)). To that end, first note that

R(Lie(L)) =
{

z ∈ Lie(L) : kL(z, [w ,w ′]) = 0,∀w ,w ′ ∈ Lie(L)
}

where kL is the killing form of Lie(L). Therefore, ht(R(Lie(L)))�ht(L)?.
Now let B′ be a Z-basis for R(Lie(L)) ∩ SLN (Z) so that ‖z‖�ht(L)? for

all z ∈ B′. Then

Ru(Lie(L)) =
{

z ∈ R(Lie(L)) : tr(w1 · · ·wsz) = 0,∀1 ≤ s ≤ N,wi ∈ B′
}
.

Hence, ht(Ru(Lie(L)))�ht(L)?. �

4.3. Algebraic properties of subgroups in class H. A quantitative no-
tion of a point satisfying a Diophantine condition was given in Definition 3.1.
This definition is formulated in terms of certain representations whose con-
structions and basic properties we now recall.

Let H ∈ H be a proper subgroup. Recall that g = ⊕Σ gv where gv =
Lie(Gv). Put

ρH := ∧dimH Ad and VH := ⊕Σ ∧dimH gv.

The representation ρH is defined over Q.
Let vH be a primitive integral vector in ∧dimHLie(G) (or ∧dimHslN )

corresponding to the Lie algebra of H, see §2.3. We embed vH diagonally in
VH and denote this vector by vH . Let ηH : G → VH denote the orbit map,
that is

ηH(g) = ρH(g)vH for all g ∈ G.

Note that ρH and VH depend only on dim H, however, vH (similarly vH)
uniquely determines Lie(H) and hence H.
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4.4. Lemma. (1) NG(H) =
{
g ∈ G : ρH(g)vH =

(
χH(gp)

)
v∈Σ

vH
}
,

where χH is a rational character.
(2) The orbit ηH(Γ) is discrete and closed in VH .

Proof. Property (1) is a consequences of the definition.
In light of our assumption that Γ is arithmetic, property (2) also follows

from the definitions. We note, however, that this qualitative result does not
require arithmeticity of Γ, see [16, Thm. 3.4]. �

4.5. Lemma. There exists some constant A7 so that the following holds.

(4.1) #{H ∈ H : ht(H) ≤ T} � TA7 .

Proof. This follows from the definitions of vH and ht(H). �

4.6. Lemma. There exists some A8 > 0 so that the following holds. Given
any Q-group L ⊂ G, there exists a normal subgroup LH ⊂ L which is
maximal among all subgroups of L which belong to class H; moreover,

(4.2) ht
(
LH
)
� ht(L)A8 .

Proof. Since L/Ru(L) is a reductive group and unipotent subgroups in L
map to unipotent subgroups in L/Ru(L), we have

(4.3) Lie(LH) = [Lie(L),Lie(L)] + Lie(Ru(L));

in particular, LH exists.
By Lemma 4.2 we have ht([L,L])�ht(L)? and ht(Ru(L))�ht(L)?. The

claim thus follows from (4.3). �

4.7. Let
LH =

{
g ∈ G : ∧dimH Ad(g)vH = vH

}
.

Then LH is a Q-group. The subgroup LH is not necessarily in H. Define

MH := LHH,

see (4.2) for the notation.
Put LH = LH(QΣ) and MH = MH(QΣ). Note that

LH = {g ∈ G : ρH(g)vH = vH}.
We will simply denote these groups by L, L, M, and M when there is no

confusion.

4.8. Lemma. There exist A9 with the following property. For any H ∈ H
we have

(4.4) ht(LH)� ht(H)A9 and ht(MH)� ht(H)A9 .

Proof. Since MH := LHH, the second inequality is a consequence of the first
inequality and (4.2).

Recall now that

Lie
(
LH

)
=
{

z ∈ Lie(G) : ∧dimH ad(z)vH = 0
}
,

and that vH is an integral vector with ‖vH‖ = ht(H).
The first inequality thus follows, and the proof is complete. �
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4.9. Lemma. (1) For any γ ∈ Γ and any H ∈ H, we have

1 ≤ ht(γHγ−1) = c
(
ηH(γ)

)
.

(2) Let r > 1 and suppose γ ∈ Γ is so that c
(
ηH(γ)

)
≤ r. Then

(a) ht(γLHγ
−1)� r?.

(b) ht(γMHγ
−1)� r?.

Proof. Recall that Ad(Γ) ⊂ SLd(ZΣ). Recall that vH is primitive, in par-
ticular, ‖ηH(γ)‖p = 1 for all p 6∈ Σ. Part (1) of the lemma thus follows from
the definition of ht(γHγ−1).

To see parts (2)a and (2)b, note that

γLHγ
−1 = LγHγ−1 and γMHγ

−1 = MγHγ−1 .

Hence, the claim follows from part (1) and (4.4). �

Let H ∈ H. For any g ∈ G and any r > 1, put

(4.5) mH(g, r) := dlog
(
RH(g, r)

)
e,

where RH(g, r) := max{c
(
ηMH

(gγ)
)

: γ ∈ Γ, c
(
ηH(γ)

)
≤ r}.

4.9.1. Corollary. (1) RH(g, r)� |g|?r?.
(2) #

(
ηH(Γ) ∩BVH (vH , r)

)
� r?.

Proof. We first prove part (1). For any γ ∈ Γ so that c
(
ηH(γ)

)
≤ r, we have

ht(γMHγ
−1) � r?, see Lemma 4.9(2)(b). Moreover, by Lemma 4.9(1), we

have

1 ≤ ht(γMHγ
−1) = c

(
ηMH

(γ)
)
.

Using (2.3) to control the effect of g, the above implies the claim in part (1).
The second claim follows from the fact that Ad(Γ) ⊂ SLd(ZΣ). �

4.10. Lemma. Let H ∈ H. Assume there exist an L > 0, a sequence `n → 0,
and a sequence gnΓ→ gΓ satisfying the following.

(1) c(ηH(gn)) ≤ L for all n, and
(2) maxz∈BU ‖z ∧ ηH(gn)‖ ≤ `n for all n.

Then g ∈ {g′ ∈ NG(U,H) : c(ηH(g′)) ≤ L}Γ.

Proof. In view of our assumption, there exists a sequence {γn} so that

gnγ
−1
n → g.

Hence, using the assumption in (1), we get that

(4.6) c(ηH(gnγ
−1
n γn)) = c(ηH(gn)) ≤ L.

Moreover, since gnγ
−1
n → g, we have |gnγ−1

n | ≤ 1+ |g| for all large enough n.
This and the above imply that for some constant A′ depending only on N ,
we have

c(ηH(γn)) = ht(γnHγ−1
n ) ≤ L(2 + |g|)A′

for all large enough n.
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Using (4.1) and passing to a subsequence, we assume that γnHγ−1
n =

γHγ−1 for all n, or equivalently that ηH(γn) = ηH(γ). Then for any z ∈ BU
z ∧ ηγHγ−1(gnγ

−1
n ) = z ∧ ηH(gnγ

−1
n γn)

= z ∧ ηH(gn).

This computation and the assumption in (2) now imply that

‖z ∧ ηγHγ−1(gγ−1
n )‖ ≤ `n for all z ∈ BU .

Passing to the limit, we get that z ∧ ηγHγ−1(g) = 0 for all z ∈ BU . That is

(4.7) z ∧ ηH(gγ) = 0 for all z ∈ BU .

Similarly, using the fact that ηH(γn) = ηH(γ) for all n and passing to the
limit in (4.6) we get that

(4.8) c(ηH(gγ)) ≤ L.

In view of (4.7) and (4.8) we obtain

gγ ∈ {g′ ∈ NG(U,H) : c(ηH(g′)) ≤ L},

as we claimed. �

4.10.1. Corollary. Let H ∈ H and let L > 0. The set

{g ∈ NG(U,H) : c(ηH(g)) ≤ L}Γ/Γ

is a closed subset of G/Γ.

Proof. Recall that NG(U,H) = {g ∈ G : z ∧ ηH(gγ) = 0 for all z ∈ BU}.
The claim thus follows from Lemma 4.10. �

4.11. Theorems A and B below will be used in the proof of Lemma 4.12. We
begin by recalling an effective versions of Hilbert’s Nullstellensatz theorem;
the statement presented here is due to D. Masser, G. Wüstholz, [36, Thm.
IV], see also [45, 26] and references there.

Theorem (Effective Nullstellensatz). Assume f, f1, . . . , fn ∈ Z[t1, . . . , tm]
have total degree at most D0 and logarithmic height at most h. Suppose f
vanishes at all the common zeros (if any) of {fi} in Cm.

Put M = 2m−1. Then there exist

• some b ∈ N with b� (8D0)2M ,
• q1, . . . , qn ∈ Z[t1, . . . , tm] of total degree at most (8D0)2M+1 and log-

arithmic height at most (8D0)4M−1(h + 8D0 log(8D0)), and
• some a ∈ Z with log |a| ≤ (8D0)4M−1(h + 8D0 log(8D0))

so that

af b =
∑
i

qifi.

We need the following theorem of W. Brownawell which can be thought
of as a local version of the above theorem.
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Theorem A (Cf. [12]). Let f1, . . . , fn ∈ Z[t1, . . . , tm] have total degree at
most D0 and logarithmic height at most h. If f1, . . . , fn have no common
zero within 0 < b ≤ 1 of some w ∈ Cm, then

max{|fj(w)| : 1 ≤ j ≤ n} ≥ C1 e
−A10h

(‖w‖2
b
)−A10

where C1 and A10 are explicit constants depending only on n,m, and D0.

In the p-adic setting, we have the following theorem. This theorem is
proved by M. Greenberg, we reconstruct Greenberg’s proof in Appendix A
to make the dependence on the height of the polynomials in question explicit.

Theorem B (Cf. [23] and [24]). Let f1, . . . , fn ∈ Z[t1, . . . , tm] have total
degree at most D0 and logarithmic height at most h. There exists A11 de-
pending only on m, n, and D0 so that the following holds.

Suppose w1, . . . , wm ∈ Zp and C2 > 2A11h are such that

fj(w1, . . . , wm) ≡ 0 (mod pC2) for all j.

Then, there exist y1, . . . , ym ∈ Zp such that

yi ≡ wi
(

mod p
dC2−A11h

A11
e
)

and fj(y1, . . . , ym) = 0 for all j.

The following lemma is a crucial ingredient for our inductive argument in
the proof of Theorem 3.2.

4.12. Lemma. There exist A12, A13, and C0 where C0 depends on N , the
number of places #Σ, and polynomially on the finite primes in Σ and on
ht(G) so that the following holds.

Let r > 1, ε > 1, and g ∈ G be fixed. Suppose H1,H2 < G are two
Q-subgroups of class-H with c

(
ηHi(g)

)
≤ r for i = 1, 2. Assume that

(4.9) max
z∈BU

∥∥z ∧ ηHi(g)
∥∥ ≤ ε for i = 1, 2.

Let H1,2 := (H1 ∩H2)H. Then if ε ≤ C0|g|−A12r−A12, the group H1,2 is not
trivial, ht(H1,2)� |g|?r?, and

(4.10) max
z∈BU

∥∥z ∧ ηH1,2(g)
∥∥� |g|A13rA13ε1/A13 .

Proof. First note that (4.9) and (2.3) imply the following:

‖Ad(g−1)z ∧ vHi‖�|g|?ε for i = 1, 2 and all z ∈ BU .
Rewriting this at the level of the Lie algebra, we have

(4.11) d(Ad(g−1)z, hi)� |g|?r?ε for i = 1, 2 and all z ∈ BU ,
where hi denotes the Lie algebra of Hi = Hi(QΣ).

Now (2.3) and c
(
ηHi(g)

)
≤ r imply

ht(Hi) = c
(

vHi

)
�r|g|? for i = 1, 2.
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Therefore, ht(H1 ∩ H2) � ht(H1) · ht(H2) and hence by (4.2) we have
ht(H1,2)� |g|?r?.

As h1 and h2 are rational subspaces of g with height � |g|?r?, the esti-
mates (4.11) thus imply that

(4.12) d(Ad(g−1)z, h1 ∩ h2)� |g|?r?ε for all z ∈ BU ,
see, e.g., [18, §13.4].

For every finite place p ∈ Σ let Ωp = Qp, and let Ω∞ = C. Set ΩΣ =∏
Σ Ωp. Let N denote the cone of ad-nilpotent elements in g⊗ ΩΣ. Then

(4.13) Ad(g−1)z ∈ N .
There are n,m � 1 so that the subspace h1 ∩ h2 and the cone N are

Q-varieties defined by {fsp,j : 1 ≤ j ≤ n} ⊂ Z[t1, . . . , tm] and {fcn,j : 1 ≤
j ≤ n} ⊂ Z[t1, . . . , tm], respectively4; further, the logarithmic heights h of
these polynomials are bounded by

B0 + log r

for some B0 depends on N , the number of places #Σ, and polynomially on
the finite primes in Σ and on ht(G).

In particular, conditions of Theorems A and B are satisfied for {fsp,j} ∪
{fcn,j}. In view of Theorems A and B, thus, (4.12) and (4.13) imply the
following estimate

d
(

Ad(g−1)z,N ∩
((
h1 ∩ h2

)
⊗ ΩΣ

))
� |g|?r?ε?.

Let h1,2 = Lie(H1,2). By the definition of the family H, see §4.1, we have

h1,2 contains the Lie algebra generated by N ∩
((
h1 ∩ h2

)
⊗ΩΣ

)
. Therefore,

the above estimate implies that

(4.14) d
(
Ad(g−1)z, h1,2 ⊗ ΩΣ

)
� |g|?r?ε? for all z ∈ BU .

Now since Ad(g−1)z ∈ g, we get the following from (4.14).

(4.15) d(Ad(g−1)z, h1,2)� |g|?r?ε? for all z ∈ BU .
Equations (4.15) implies h1,2 6= {0} so long as right hand side of (4.15) is a
sufficiently high power of |g|−1; this is satisfied if ε� |g|?r?. Equation (4.10)
is now an immediate consequence of (4.15). �

5. Non-divergence of unipotent flows in SLN (QΣ)/SLN (ZΣ) with
an application to almost invariant Lie algebras

In this section we recall the basic nondivergence results regarding the
action of unipotent groups on SLN (QΣ)/SLN (ZΣ), and deduce some impor-
tant corollaries that will play a central role in the following sections. The
basic reference for this section is the paper [30] by Kleinbock and Tomanov,
which can be viewed as a Σ-arithmetic adaptation of [29] by Kleinbock and
Margulis (which itself relies on the nondivergence result of Margulis [32],

4The subscript sp stands for subspace and cp stands for cone.
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perhaps the first general result regarding dynamics of unipotent groups on
arithmetic quotients, and Dani [13]).

Some of the implicit multiplicative constants in this section satisfy a
stricter requirement, i.e., they depend on N , #Σ, and polynomially on the
finite primes in Σ, but not on ht(G). We will explicate these by an index,
i.e., we write �N,Σ or �N,Σ for these implicit multiplicative constants.

5.1. Let GL1
N (QΣ) denote the group

GL1
N (QΣ) =

{
(gv) ∈ GL(QΣ) :

∏
v∈Σ

det(gv) = 1

}
.

Then we can identify GL1
N (QΣ)/GL(ZΣ) with the space of discrete ZΣ-

modules in QN
Σ of covolume 1, and there is a natural injective proper map

from SLN (QΣ)/SLN (ZΣ) to GL1
N (QΣ)/GL(ZΣ) obtained by assigning to

(gv)v∈Σ the QΣ-module spanned by the elements in QN
Σ formed by taking

the ith column of all gv for i = 1, . . . , N . In view of this, we will view
SLN (QΣ)/SLN (ZΣ) as embedded in GL1

N (QΣ)/GL(ZΣ).
Let Γ1 = GLN (ZΣ) and G1 = GL1

N (QΣ). For x = gΓ1/Γ1 ∈ G1/Γ1, let

α(x) = max
{

1/c(z) : z ∈ gZNΣ \ {0}
}

;

this function is a proper map from G1/Γ1 to R+ (as well as from the quo-
tient space SLN (QΣ)/SLN (ZΣ) to R+) and any compact subset of G1/Γ1

is contained in the compact subset of the form {x : α(x) < M} for some
M > 0. Let ∆ be a ZΣ-submodule of rank k in a discrete ZΣ-module
gZNΣ , say generated over ZΣ by v1, . . . , vk ∈ QN

Σ . Then while v1, . . . , vk are

not uniquely defined, the wedge v1 ∧ · · · ∧ vk in ∧kQN
Σ is, and we define

c(∆) = c(v1 ∧ · · · ∧ vk). A ZΣ-submodule ∆ of gZNΣ is said to be primitive
in gZNΣ if it is maximal with respect to finite-index extensions, i.e. it is not
a proper ZΣ-submodule of finite index in any ZΣ-submodule of gZNΣ .

The results of [30] are more general in that they deal with general “(c, α)-
good” maps from a convex B in a product of parameter spaces over Qv for
v in some subset of Σ to G1/Γ1, but the basic nondivergence estimate of the
paper [30, Thm. 9.4] gives the following:

5.2. Theorem (cf. [30]). Let U =
∏
v∈Σ Uv be a QΣ-unipotent subgroup,

BU (e) an open ball in U and λk as in §2.9. Let g ∈ GL1
N (QΣ) and assume

that for every primitive ZΣ-submodule ∆ of gZNΣ of rank 1 ≤ k ≤ N − 1

(5.1) max
u∈BU (e)

c(λk(u)∆) ≥ η.

Then ∣∣{u ∈ BU (e) : α(λk(u)gΓ1) > ε−1
}∣∣ < E

(
ε

η

)1/D

|BU (e)|,

with D depending only on N and E depending on N , #Σ, and polynomially
on finite primes in Σ.
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In fact, the basic inductive argument used to prove Theorem 5.2, specifi-
cally [30, Thm. 6.1] can be used to provide a more precise result that would
be important for us in the sequel. This result does not seem to appear in
the literature. One can view Kleinbock’s [27, Thm. 0.2] as a step in this
direction, and a result very close to what we give below can be found in a
draft by Breuillard and de Saxce [10].

For gΓ1 ∈ G1/Γ1 and 1 ≤ i ≤ N − 1 let

αi(gΓ1) = 1/min
{
c(∆) : ∆ is a primitive ZΣ-submodule of gZNΣ of rank i

}
.

5.3. Theorem. With the notations of Theorem 5.2 (but without the assump-
tion (5.1)), there are 0 = k0 < k1 < k2 < · · · < k` < k`+1 = N , and prim-
itive ZΣ-submodules ∆k1 < ∆k2 < · · · < ∆k` of gZNΣ of rank corresponding
to their index so that if η(k0), . . . , η(k`+1) ∈ (0, 1] is defined by

η(0) = η(N) = 1

η(ki) = max
u∈BU (e)

c(λk(u)∆ki) for 1 ≤ i ≤ `(5.2)

then η(•) can be extended to a function [1, N ] → (0, 1] so that − log η :
[1, N ] → R+ is concave and linear on each interval [k0, k1], . . . , [k`, k`+1]
and ∣∣∣∣{u ∈ BU (e) : ∃i s.t.

αi(λk(u)gΓ1)−1

η(i)
< εi

}∣∣∣∣ < Eε1/D|BU (e)|,

with D depending only on N and E depending on N , #Σ, and polynomially
on finite primes in Σ. Moreover, given a primitive ZΣ-submodule ∆̃ < gZNΣ ,
we can choose ∆k1 < ∆k2 < · · · < ∆k` so that

η(rk(∆̃)) ≤ max
u∈BU (e)

c(λk(u)∆̃).

Note that it easily follows from the Σ-arithmetic version of Minkowski’s sec-
ond theorem, [4, §C.2, specifically Thm. C.2.11], that under the assumption
(5.2) for any u ∈ BU (e) one can complete the partial flag ∆k1 < ∆k2 <
· · · < ∆k` of submodules of gZNΣ to a full flag of primitive ZΣ-modules
∆1 < · · · < ∆N−1 so that if ki < r < ki+1 and τ = (ki+1 − r)/(ki+1 − ki)
then

(5.3)
c(λk(u)∆r) < Ac (λk(u)∆ki)

τ c
(
λk(u)∆ki+1

)1−τ
≤ Aη(ki)

τη(ki+1)1−τ = Aη(r),

with A depending only on N and Σ. Hence for all u ∈ BU (e)

αr(λk(u)gΓ1)−1

η(r)
< A.

Proof. Consider the (finite) collection of all primitive ZΣ-submodules ∆ <
gZNΣ so that

(5.4) max
u∈BU (e)

c(λk(u)∆) < 1,
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and for each such ∆, let

η∆ = max
u∈BU (e)

c(λk(u)∆).

From all the possible partial flags of primitive ZΣ-submodules ∆k1 < ∆k2 <
· · · < ∆k` with all ∆ki in this sub collection, choose one for which the convex
hull of the pairs of points

(5.5)
{

(0, 0), (k1,− log η∆k1
), . . . , (k1,− log η∆k`

), (N, 0)
}

is maximal (with respect to the usual partial order by inclusion on subsets
of R2). There could be more than one possible choice, but any one of these

choices would be good enough for us, and if ∆̃ satisfies (5.4) we can choose
such a ∆k1 < ∆k2 < · · · < ∆k` so that the convex hull of the points in (5.5)

contains the point (rk(∆̃),− log η∆̃).
Fix the choice of primitive ZΣ-submodules ∆k1 < ∆k2 < · · · < ∆k` and

let η : [0, N ] → R+ be as in the statement of the theorem. Then the graph
of − log η(•) forms the upper half of the boundary of the convex hull of the

set in (5.5), and η(rk(∆̃)) ≤ η∆̃.
By the choice of the ∆ki and definition of η(•), it follows that for any 1 ≤

r ≤ N − 1 and any ZΣ-primitive submodule ∆ of rank r of gZNΣ compatible
with ∆k1 < ∆k2 < · · · < ∆k` ,

max
u∈BU (e)

c(λk(u)∆) ≥ η(r).

Applying [30, Thm. 6.1] similarly to the way it is used to prove [30,
Thm. 9.3], but with the poset used in [30, Thm. 6.1] being the collection
of ZΣ-submodules of gZNΣ compatible with the chosen partial flag ∆k1 <
∆k2 < · · · < ∆k` one obtains that outside a subset C ⊂ BU (e) of measure
|C| �N,Σ ε? we can find for every u ∈ BU (e) \ C a completion ∆1 < · · · <
∆N−1 (depending on u) of the fixed partial flag ∆k1 < · · · < ∆k` so that for
every i

(5.6) εη(i) ≤ c(λk(u)∆i) ≤ A′η(i),

with A′ depending only on N and Σ. To be precise, we apply a variant of
[30, Thm. 6.1] where the marking equations (M1) and (M2) on [30, p. 540]
for a partial flag Gu (compatible with our fixed flag ∆k1 < · · · < ∆k`) are
replaced by (in the notations of this paper)

(M1) η(rk∆) ≥ c(λk(u)∆) ≥ εη(rk∆) for every ∆ ∈ Gu

(M2) c(λk(u)∆) ≥ η(rk∆) for every ∆ compatible with Gu and ∆k1 <
· · · < ∆k` but not in Gu.

The argument of [30, Thm. 6.1] would give us that for u outside the set C
as above there exists a partial flag Gu for which (M1), (M2) holds. Subse-
quently applying Minkowski’s 2nd theorem (cf. note following the statement
of Theorem 5.3, particularly (5.3)) we can complete the flag Gu to a full flag
so that (5.6) holds.
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Such a marking was used in [30] (and [29]) to show that there is no
primitive v ∈ λk(u)gZNΣ with small c(v), i.e. to control α(gΓ1) = α1(gΓ1),
but in fact can be used to show αi(λk(u)gΓ1) �N,Σ ε−iη(i)−1, as we now
show.

The proof is by induction on the rank of the submodule ∆ < gZNΣ , and
all implicit constants may depend on the step in the induction. Note that
since − log η(i) is a concave function,

(5.7)
η(i)

η(i− 1)
≤ η(i+ 1)

η(i)
for all 1 ≤ i ≤ N − 1.

We also recall the following important inequality for any primitive ∆,∆′ <
gZNΣ and any u ∈ U

(5.8) c(u∆) c(u∆′) ≥ c(u∆ ∩ u∆′) c(u∆′ + u∆)/A,

with A depending only on N,Σ.
We start induction with rank one primitive submodules ZΣv < gZNΣ . Let

i be such that v ∈ ∆i+1 but not in ∆i (where for this purpose we take
∆0 = {0} and ∆N = gZNΣ ). Then by (5.8) and (5.7),

c(λk(u)ZΣv) ≥ c(λk(u)∆i+1)

Ac(λk(u)∆i)
≥ εη(i+ 1)

AA′η(i)
≥ εη(1)

AA′
.

Consider now a rank-r primitive submodule ∆ < gZNΣ , let i be such that
∆ < ∆i+1 and i is minimal such (clearly, i + 1 ≥ r). Applying (5.8) once
again, we obtain

c(λk(u)∆) c(λk(u)∆i) ≥ c(λk(u)(∆i ∩∆)) c(λk(u)∆i+1)/A.

By induction c(λk(u)(∆i ∩∆))�N,Σ εr−1η(r − 1) hence

c(λk(u)∆)�N,Σ εr−1η(r − 1)
c(λk(u)∆i+1)

c(λk(u)∆i)

�N,Σ εrη(r − 1)
η(i+ 1)

η(i)

�N,Σ εrη(r − 1)
η(r)

η(r − 1)
= εrη(r),

and we are done. �

A key ingredient in the works of Margulis, Dani, Kleinbock-Margulis, and
Kleinbock-Tomanov quoted above is an estimate on the size of the set where
a polynomial function is small. The result needed, at least for the real case
(i.e. Σ = {∞}) is known as Remez inequality, and is used in [29] and [30] to
verify the “(C,α)-good” property. Since we will also use it in the sequel, we
quote it below (in a slightly sharper form, though this is not relevant to us;
Cf. e.g. [29, Prop. 3.2]).



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 27

5.4. Lemma. Let F be a local field with absolute value | |. Let B be a compact
convex subset of F r, and let f ∈ F [t1, · · · , tr] be a nonzero polynomial of
degree d. Then for any δ > 0 we have

(5.9)
∣∣{z ∈ B : |f(z)| < δ sup

z∈B
|f(z)|

}∣∣ ≤ cδ1/d|B|,

where |K| denotes the Haar measure of K for any subset K ⊂ F r, with c
depending only on d and r.

See [11] for a proof for k = R; the general case is essentially identical.

Sketch of proof. Let δ′ = δ supz∈B |f(z)|. For r = 1 this follows from La-
grange’s interpolation formula. For higher dimension, let x ∈ B be such
that f(x) = supz∈B |f(z)|. Then there is a line ` through x where

|
{
z ∈ B : |f(z)| < δ′

}
∩ `|

|B ∩ `|
> c1

|
{
z ∈ B : |f(z)| < δ′

}
|

|B|
.

Since x ∈ ` by the choice of x we have

sup
z∈B
|f(z)| = sup

z∈B∩`
|f(z)|;

now apply the one dimensional result. �

5.5. Lemma. Let Σ′ ⊂ Σ. For all positive integers r and d, there exist
explicit constant c = c(r, d,Σ′) with the following property. For every v ∈ Σ′

and every 1 ≤ j ≤ r′v let fv,j ∈ Qv[t1, · · · , trv ] be a nonzero polynomial of
degree ≤ d. Define

fv(t1, · · · , trv) = ‖(fv,1(t), . . . , fv,r′v(t))‖v = max{|fv,j(t)|v : 1 ≤ j ≤ r′v}.

Let B =
∏
v∈Σ′ Bv where Bv is a convex set in Qrv

v for each v, and set

F (tvi : v ∈ Σ′, 1 ≤ i ≤ rv) =
∏
v∈Σ′

fv(t1, · · · , trv).

Then for any δ > 0 we have∣∣{z ∈ B : F (z) < δ sup
z∈B

F (z)
}∣∣ ≤ c| log δ|#Σ′−1δ1/d|B|.

Similarly, if we put F (tvi) = maxΣ′ fv(tvi), then∣∣{z ∈ B : F (z) < δ sup
z∈B

F (z)
}∣∣ ≤ cδ1/d|B|.

Proof. We first prove the first claim. Hence, let F =
∏
v∈Σ′ fv be as in that

statement; note that maxF =
∏

max fv. Moreover, (5.9) holds true for fv
in place of |f |, see e.g. [30, Lemma 3.1].

Note also that it suffices to prove the lemma for δ = 2−m where m is a
non-negative integer. For all nonnegative integers m′ and any v ∈ Σ′, put

Bfv ,m
′

v =
{
z ∈ Bv : fv(z) ≤ 2−m

′
max
Bv

fv
}
.
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Then we have{
z ∈ B : F (z) < 2−m sup

z∈B
F (z)

}
=
⋃∏

Σ′ B
fv ,mv
v

where the union is taken over all partitions m =
∑

Σ′mv with mv nonnega-
tive integer for all v ∈ Σ.

Now by (5.9) applied for fv implies that |Bfv ,mv
v | ≤ C2−mv/d|Bv| for all

v ∈ Σ′ and mv. The claim follows from this as the number partitions
m =

∑
Σ′mv is ≤ m#Σ′−1.

To see the second claim, let v be so that maxBv fv = maxF . The claim
then follows from the fact that (5.9) holds for fv. �

Note that replacing 1
d with 1

d − ε, for a small enough ε depending only
on d and the constant c by a bigger constant depending on Σ′ if necessary,
we have the following. There exists some α = α(d) so that for all F as in
Lemma 5.5 we have

(5.10)
∣∣{z ∈ B : F (z) < δ sup

z∈B
F (z)

}∣∣ ≤ cδα|B|
where c = c(r, d,Σ′).

In the sequel, we will deal with functions defined on U of the form u 7→
c(ηH(λk(u)g)) and u 7→ ‖z ∧ ηH(λk(u)g)‖, see §4 for the notation. We let α
be so that (5.10) holds true for all of these functions; note that α depends
only on N .

5.6. Lemma. There exists some A14 so that the following holds. Let H ∈ H
and g ∈ G. Put εg = max{‖z ∧ ηMH

(g)‖ : z ∈ BU}. Assume εg > 0, i.e. that
g−1Ug does not normalize H. Then∣∣{u ∈ BU (e) : c

(
ηH(λk(u)g)

)
≤ R

}∣∣� (
R|g| ht(H)/εg

)A14e−k/A14 .

We need the following lemma for the proof of Lemma 5.6.

5.7. Lemma. There exists some A15 so that the following holds. Let the
notation and assumptions be as in Lemma 5.6. Moreover, let DerρH denote
the derivative of ρH . Then

max{‖DerρH(z)ηH(g)‖ : z ∈ BU} � δ

where δ =
(
εg ht(H)−1|g|−1

)A15.

Proof. Let b > 0 and assume that max{‖DerρH(z)ηH(g)‖ : z ∈ BU} ≤ b.
Using (2.3), then we have

(5.11) max
{
‖DerρH(Ad(g−1)z)vH‖ : z ∈ BU

}
� |g|?b.

Recall from the definition of LH that

Lie(LH) = {w ∈ g : DerρH(w)vH = 0}.
That is: Lie(LH) is the kernel of the linear map w 7→ DerρH(w)vH from g
to VH . The vector vH is an integral vector of size ht(H). Therefore, the map
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w 7→ DerρH(w)vH can be realized by an integral matrix whose entries are
bounded by ht(H)?.

Now by (5.11), for all z ∈ u with ‖z‖ = 1 the vector Ad(g−1)z almost
belongs to the kernel of this map, in view of the above bound we get that

(5.12) d(Ad(g−1)z,Lie(LH))� |g|? ht(H)?b?,

see e.g. [18, §13.4].
Recall that u is a nilpotent Lie algebra and MH = LHH. Hence, arguing

as in the proof of Lemma 4.12, i.e. using Theorems A and B, we get the
following from (5.12).

d(Ad(g−1)z,Lie(MH))� |g|? ht(H)?b? for all z ∈ BU .

The above estimate thus implies that∥∥z ∧ ηMH
(g)
∥∥� |g|?r?b? for all z ∈ BU ;

as we wanted to show. �

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove that

(5.13) max{c(ηH(λk(u)g)) : u ∈ B} �
( εg

ht(H)|g|
)?
e?k.

To see this, for any z ∈ BU define

fz(t) = ρH(exp(tz))ηH(g).

Then fz is a polynomial map from Qv into VH . Let us write fz = cz,0 + f̂z

where cz,0 ∈ VH and f̂z(0) = 0.
Let δ be as in the previous lemma. By the conclusion of that lemma,

there exists some z0 ∈ BU so that

(5.14) max{|c|v : c is a coefficient of f̂z0} � δ?.

For any nonzero T ∈ Qv, define the renormalized polynomial

f̂z0,T (t) := 1
T f̂z0(Tt).

Then by (5.14), we have sup|t|v≤1 ‖f̂z0,T (t)‖ � δ?.
Hence, there exists some v ∈ Σ so that

max{uv ∈ BUw(e) : ‖ηH(λk(uv)g)‖v} � δ?e?k;

we also used the fact that for all w ∈ Σ we have ‖ηH(g)‖w � |g|−? ht(H)−?;
this lower bound follows as vH is an integral vector whose∞-norm is ht(H).

Altogether, we get that

max{c(ηH(λk(u)g) : u ∈ BU (e)}
≥ max{‖ηH(λk(uv)g‖v

∏
w 6=v ‖ηH(g)‖w : uv ∈ BUv(e)}

≥ δ?|g|−? ht(H)−?e?k;

this completes the proof of (5.13) and hence the lemma. �
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5.8. Proposition. There is a constant D′ depending only on N so that the
following holds. Let H ∈ H and r > 1. Suppose that k > 1 and

(5.15) c(ηH(λk(u)g)) < r for all u ∈ BU (e).

Then
c(ηMH

(λk(u)g))� r?|g|? for all u ∈ BU (e),

moreover, for all u ∈ BU (e) and z ∈ BU we have

‖z ∧ ηMH
(λk(u)g)‖ � r?|g|?e−k/D′ .

Proof. Let l = dim(H). Recall that vH denotes the integer vector corre-
sponding to Lie(H) in ∧lg ⊂ ∧lslN (QΣ) — here and in what follows we view
∧rg as a rational subspace of ∧rslN (QΣ) of height� 1 (recall from §2.4 that
the implicit constants for � and � are allowed to depend polynomialy on
ht(G)).

In the notations of §2.9, let B = BU (e) and set

ϑ = 0.1
|B|
|λ1(B)|

.

For any primitive ZΣ-submodule ∆ of gZNΣ , it holds that c(∆) � |g|−rk∆,
hence by Theorem 5.2 there exists a subset Bg ⊂ λk(B) with

|λk(B) \ Bg| < ϑ|λk(B)|
so that

α(ugΓ)� |g|? for all u ∈ Bg.

This implies that for every u ∈ Bg there exists some γu ∈ SLN (ZΣ) so that

(5.16) |ugγ−1
u | � |g|

?.

Now (5.16) and (5.15) imply that

(5.17) c(γuvH)� |ugγ−1
u |? · c(ugvH)� |g|?r.

Applying a similar argument to the integral vector w ∈ ∧dimGslN (QΣ)
corresponding to ∧dimGLie(G) and using the fact that

w = ugw = ugγ−1
u γuw ,

we have that Ad(γu)g is a rational subspace of slN (QΣ) of height � |g|?.
Define L′ = {g ∈ SLN (QΣ) : gvH = vH}. It follows from (5.15) applied

with u = e that c(vH)� |g|?r; hence, ht(L′)� |g|?r.
Moreover, the definitions imply that LH = G ∩ L′ and that MH = LHH,

see §4.7. Further, in view of (4.4) we have ht(MH)� |g|?r?.
Similarly, for each u ∈ Bg define

L′u = {g ∈ SLN (QΣ) : gγuvH = γuvH} = γuL
′γ−1
u ;

then ht(L′u) � |g|?r. Put Lu = γuLHγ
−1
u , and let Mu = LHu = γuMHγ

−1
u .

Then ht(Mu) = c(γuvMH
)� |g|?r?.

For every u ∈ Bg we have

(5.18) c(ηMH
(ug))� |ugγ−1

u |?c(γuvMH
)� |g|?r?.
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Since u 7→ ηMH
(ugγ) is a polynomial, the estimate in (5.18) and Lemma 5.5

imply that

(5.19) c(ηMH
(λk(u)g))� |g|?r? for all u ∈ B.

In particular, the first claim in the proposition holds.
We now turn to the proof of the second claim. Let u ∈ Bg ∩ λk−1(B).

By the choice of ϑ, this set has measure ≥ 0.9|λk−1(B)|, in particular is
nonempty. Let γu ∈ SLN (ZΣ) be as in (5.16).

By (2.11), λk−κ(B)λk−1(B) ⊂ λk(B); hence by (5.15) we have

c(ηH(λk−κ(v)ug)) < r for all v ∈ B.

Therefore, by Lemma 5.6 for every u ∈ Bg ∩ λk−1(B),

max{‖z ∧ ηMH
(ug)‖ : z ∈ BU} � r

∣∣ugγ−1
u

∣∣ · ht(γuHγ−1
u )e−k/A14

2
.

For u ∈ Bg,
∣∣ugγ−1

u

∣∣ � |g|? and ht(γuHγ−1
u ) = c(γuvH) � |g|?r hence for

u ∈ Bg ∩ λk−1(B)

max{‖z ∧ ηMH
(ug)‖ : z ∈ BU} � |g|?r?e−k/?.

Since u 7→ z ∧ ηMH
(λk−1(u)g) is a polynomial, the above estimate together

with Lemma 5.5 implies that

max{‖z ∧ ηMH
(λk(u)g)‖ : z ∈ BU} � |g|?r?e−k/? for all u ∈ B.

This finishes the proof of the second claim and the proposition. �

6. Non-divergence of unipotent flows for general algebraic
groups

Consider now G a Q-group of class-H and G = G(QΣ) as in §2. Let d =
dim G. Recall that g(ZΣ) = g∩slN (ZΣ), see §2.7. Let U =

∏
v∈Σ Uv ⊂ G be

a QΣ-unipotent group as in §2.9. By assumption G is equipped with an em-
bedding ι : G→ SLN , and a lattice Γ commensurable to G∩SLN (ZΣ). Tak-
ing a finite index subgroup if necessary, we assume that Γ < G ∩ SLN (ZΣ),
and that Ad(Γ) preserves g(ZΣ). Hence we get a finite to one map

G/Γ→ SLN (QΣ)/SLN (ZΣ),

or using the adjoint representation a different map

G/Γ→ SLd(QΣ)/SLd(ZΣ).

This latter map is in general not finite to one, but has compact fibers, since
if CG denotes the connected component of the center of G (necessarily a
unipotent group as G is of class-H) the fibers would be finite-to-one ex-
tension of the compact space CG(QΣ)/CG(ZΣ). Therefore we may apply
Theorem 5.2 to the image of G/Γ to either of these quotient spaces to de-
duce that for every g ∈ G and δ > 0, there is a compact K ⊂ G/Γ so that
for every k for all u ∈ BU (e) outside a set of measure < δ we have that
λk(u)gΓ ∈ K.
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Theorem 5.2 gives more: it also says that for a compact set K that does
not depend on the point gΓ, if λk(u)gΓ 6∈ K for a large set of u ∈ BU (e)
then there would be a ZΣ-submodule in gSLN (ZΣ) which is not changed
much by the action of U , at least not when we act by λk(BU (e)), and Theo-
rem 5.3 gives somewhat finer information. However both of these theorems
relate the properties of U orbits in G/Γ to the structure of the ambient
SL•(QΣ)/SL•(ZΣ) and not some intrinsic algebraic structure of G/Γ.

In [17] Dani and Margulis prove (in the real case) that given a one param-
eter unipotent subgroup ut of G and δ > 0, one can find an (fixed) compact
subset K ⊂ G/Γ so that if a trajectory of the one-parameter unipotent
group ut starting from gΓ does not eventually spend 1 − δ of its time in
K then there is a Q-parabolic subgroup P < G so that g ∈ P(QΣ). This
information is intrinsic for G/Γ.

The purpose of this section is to provide an effective version of [17], where
the existence of many u ∈ BU (e) for which λk(u)gΓ is outside a suitable fixed
compact region is used to imply some Diophantine conditions at appropriate
scale for gΓ. We note that in addition to [17], understanding intrinsically
behavior of orbits near the cusp in arithmetic quotients G/Γ, this time for
certain diagonalizable groups, was studied by Tomanov and Weiss in [51].

Recall from §2.7 the definition

Xη =
{
gΓ ∈ X : min

06=z∈g(ZΣ)
c(Ad(g)z) ≥ η

}
.

It follows from the discussion at the beginning of this section that for any
η > 0, the set Xη is a compact subset of G/Γ.

6.1. Lemma. There exists some 0 < κ(N,Σ) < 1 with the following prop-
erty. Let w ∈ g(ZΣ) and suppose that there exists some g ∈ G so that
c(Ad(g)w) ≤ κ(N,Σ). Then w is a nilpotent element.

Proof. Let σ̄(w) =
∏
σ where the product is taken over all the nonzero

eigenvalues of w ; if the product is empty, i.e., w is nilpotent, put σ̄(w) = 0.
Then σ̄(w) ∈ Q — indeed σ̄(w) is invariant under the Galois group of the
splitting field of w . Further, since w ∈ g(ZΣ), the product formula implies
that either c(σ̄(w)) ≥ 1 or σ̄(w) = 0.

Let κ > 0 and assume that c(Ad(g)w) ≤ κ for some g ∈ G. Using
Lemma 2.6, there exist some r ∈ Z×Σ and a constant A = A(N,Σ) so that

A−1c(Ad(g)w)1/#Σ ≤ ‖rAd(g)w‖v ≤ Ac(Ad(g)w)1/#Σ

for all v ∈ Σ. Therefore, all the eigenvalues of rAd(g)w have v-norm �N,Σ

κ?/#Σ.
Since c(r) = 1 and Ad(g)w has the same eigenvalues as w , we get that

c(σ̄(w)) ≥ 1 cannot hold for small enough κ; hence, w is nilpotent. �

6.2. Lemma. There exists some κ′(N,Σ) with the following property. Let
V ⊂ g be a nonzero rational subspace, and let v ∈ ∧g(ZΣ) be a primitive
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integral vector corresponding to V . Assume that there is some g ∈ G so that

max
u∈BU (e)

c(λk(u)gv) ≤ ρ < κ′(N,Σ).

Then there exists a unipotent Q-group W < G so that

(6.1) max
u∈BU (e)

c(λk(u)gvW )� ρdim(W )/dim(V )

where vW ∈ ∧dim(W)g(ZΣ) is the primitive integer vector corresponding
to W as in §2.3.

Proof. Let d = dim(G). We apply Theorem 5.3 on the image of G/Γ in

SLd(QΣ)/SLd(ZΣ) obtained via Ad, with ∆̃ the ZΣ-submodule of Ad(g)g(ZΣ)
corresponding to V (or more precisely gV (Q)); let r denote the dimension

of the Q-subspace V (equivalently, r = rk(∆̃)).
Let η(•) and ∆k1 < ∆k2 < · · · < ∆k` be as in that theorem. Then

η(r) ≤ ρ hence by concavity of − log η(•) we have that η(1) ≤ ρ1/r. Let s be

maximal so that η(s)
η(s−1) ≤ ρ

1/r; clearly 1 ≤ r ≤ d− 1, and because − log η(•)
changes its slope at s this implies that there is some 1 ≤ j ≤ ` for which
kj = rk(∆kj ) = s.

We claim that (assuming κ′(N,Σ) is small enough) the rational subspace
of g corresponding to rk(∆kj ) is the Lie algebra of a unipotent Q-subgroup

W < G. Let us denote by vW the vector in ∧rk(∆kj
)
g(ZΣ) corresponding to

this rational subspace. By the choice of ∆kj , we have

c(λk(u)gvW ) ≡ c(λk(u)∆kj ) = η(s) ≤ ρs/r

for all u ∈ BU (e); so (6.1) is satisfied.
It remains to show that ∆kj does indeed correspond to a rational nilpotent

Lie algebra. Fix an ε > 0 (depending only on N) so that for a set of
u ∈ BU (e) of size ≥ 0.5|BU (e)| we can find a completion ∆1 < · · · < ∆N−1

(depending on u) of the fixed partial flag ∆k1 < · · · < ∆k` so that for every i

(6.2) εη(i) ≤ c(λk(u)∆i)�N,Σ η(i).

Indeed, we will only use the existence of one such u.
Using (5.8), we can deduce from (6.2) that for every v ∈ λk(u)∆i+1 which

is not in λk(u)∆i

c(v)� c(λk(u)∆i+1)

c(λk(u)∆i)
� η(i+ 1)

η(i)

(since ε depends only on N , we absorbed it in the implicit constant).
Moreover by induction one easily shows that we can pick vi ∈ λk(u)∆i (in

particular, vi ∈ Ad(λk(u)g)g(ZΣ)) so that v1, . . . , vi generate λk(u)∆i and

c(vi)� η(i)
η(i−1) .

We conclude that there is some A depending only N and Σ so that if

v ∈ λk(u)∆i but not in λk(u)∆i−1 then c(v) ≥ η(i)
Aη(i−1) and c(vi) ≤ Aη(i)

η(i−1) .
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Recall that for i ≤ s we have that η(i)
η(i−1) ≤ ρ

1/r. As c([z, z′])� c(z)c(z′),

it follows that if κ′(N,Σ) (hence also ρ) is small enough, for i < i′ ≤ s we
have that c([vi, vi′ ]) is so small it forces [vi, vi′ ] to belong to ∆i−1.

It follows that ∆kj is closed under [·, ·]. Since by Lemma 6.1 if κ′(N,Σ)
is small enough, all the vi for i ≤ s = kj are nilpotent, it follows that
all v ∈ ∆kj are nilpotent. Hence ∆kj corresponds to the Lie algebra of a
unipotent Q-subgroup of G. �

6.3. Theorem. There exists a constant F depending on N and a constant
E depending on N,#Σ and polynomialy on ht(G) and the primes in Σ so
that for any g ∈ G, k ≥ 1, and any 0 < η ≤ 1/2 at least one of the following
holds.

(1)

|{u ∈ BU (e) : λk(u)gΓ 6∈ Xη}| ≤ Eη1/F .

(2) There exists a unipotent Q-subgroup W of height ht(W) ≤ E|g|F η1/F

so that

(6.3) c
(
ηW (λk(u)g)

)
≤ Eη1/F for all u ∈ BU (e).

Moreover, if we put M = MW, then M 6= G,

ht(M) ≤ E|g|F η1/F ,

and we have:
(a) For all u ∈ BU (e) we have

c(ηM (λk(u)g)) ≤ E|g|F η1/F .

(b) For all u ∈ BU (e) we have

max
z∈BU

‖z ∧ ηM (λk(u)g)‖ ≤ E|g|F η1/F e−k/F .

Proof. We may assume η < κ′(N,Σ) with κ′(N,Σ) as in Lemma 6.2 since
otherwise for sufficiently large implicit constant alternative (1) in the state-
ment of this theorem becomes vacuous.

Apply Theorem 5.2. Then either alternative (1) in the theorem holds, or
there exists some primitive integral vector v ∈ ∧rg(ZΣ) so that

max
u∈BU (e)

c(λk(u)gv) ≤ η.

By Lemma 6.2, we conclude that there is some unipotent Q-group W < G
so that

(6.4) max
u∈BU (e)

c(λk(u)gvW )� ηdim(W )/r

Applying (6.4) with u = e we get that ht(W)� |g|?ηdim(W )/r. Let M be
as in (2) in the statement of this theorem. Then ht(M)� ht(W)? � |g|?η?,
see (4.2). Moreover, if η is small enough, then (6.4) (say for u = e) implies
that

c(gvW ) < 1/2.
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As c(vW ) ≥ 1 this means that g does not fix vW and so (since G is of class-
H, hence fixes vH for any normal subgroup H CG) the group W is not a
normal subgroup of G. In particular, M 6= G.

Applying Proposition 5.8 for H = W, we have that parts (a) and (b)
in (2) of the statement of the theorem hold, concluding the proof of this
theorem. �

Theorem 6.3 allows us to give a new, and arguably more elementary, proof
to the main result of [17] (though the main ingredients are similar):

6.4. Corollary. Suppose G is semisimple, and g ∈ G is such that

(6.5) |{u ∈ BU (e) : λk(u)gΓ 6∈ Xη}| > Eη1/F for infinitely many k.

Then Ug ⊂ gP(QΣ) for some parabolic proper Q-subgroup of G.

6.5. Lemma. Assume G is semisimple. Let W ⊂ g be a rational subspace
which generates a unipotent subalgebra. There exists a Q-parabolic subgroup
P(W ) so that ht(P(W ))� ht(W )? and W ⊂ Lie(Ru(P(W )).

Proof. Let Ŵ be the algebra generated by W and let U0 = {exp(Ŵ )}.
Let U0 denote the corresponding algebraic group. Define inductively Ui =
Ru(NG(Ui−1)). Then Ui ⊂ NG(Ui−1) and Ui−1 ⊂ Ui. This process termi-
nates after d ≤ dim G number of steps and gives a unipotent subgroup Ud

so that Ud = Ru(NG(Ud)). Therefore, NG(Ud) is a parabolic subgroup,
see [8]; the claim holds with P(W ) = NG(Ud). �

Proof of Corollary 6.4. Suppose (6.5) holds along some sequence, say `1, `2, . . .
of ks (to avoid confusion with ki of Theorem 5.3 we use ` rather than k).
Then by Theorem 6.3 there exists for every j a unipotent Q-subgroup Wj

and Mj = MWj with Mj 6= G so that the heights of Wj and Mj are
bounded uniformly in j and so that

(6.6) max
z∈BU

‖z ∧ ηM (g)‖ ≤ E|g|F η1/F e−`j/F .

since the only finitely many Q-subgroups of a given height, passing to a
subsequence if necessary, we may assume that Wj = W and Mj = M
for all j, hence from (6.6) it follows that z ∧ ηM (g) = 0 for all z ∈ BU ,
hence Ug ⊂ gM(QΣ). By Lemma 6.5, M is contained in some nontrivial
Q-parabolic subgroup P < G (indeed, with ht(P)� |g|?). �

7. Proof of Theorem 3.2

For every Γ-invariant subcollection F ⊂ H, t ∈ R+, and ε : R+ → (0, 1),
let Exc(ε, t,F) be the set

Exc(ε, t,F) = {u ∈ BU (e) : λk(u)gΓ is not (ε, t,F)-Diophantine} .
For every ε ∈ (0, 1), we let ε denote the constant function ε : s 7→ ε. For
every 1 ≤ r ≤ dim G, we let Fr denote the collection of class-H subgroups
of G of dimension ≤ r. For notational simplicity, let F0 = ∅.

The bulk of the proof of Theorem 3.2 is the following estimate:
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7.1. Lemma. There are A16, A17 > 2, and D ≥ 1 depending on N , and
0 < c0 ≤ 1 depending on N , #Σ, and polynomially on the primes in Σ so
that the following holds. For 1 ≤ r ≤ dim G and η, β, τ ∈ (0, 1), n ∈ R+

with

(7.1) η1/A17 ≤ c0 · (τβe−nẼ−1
G )A16

at least one of the following holds:

(1)
∣∣(Exc(η, n,Fr) \ Exc(η′, n′,Fr−1)

)
∩ {u ∈ BU (e) : λk(u)gΓ ∈ Xτ}

∣∣�
β1/D for

n′ = A16(n+ log(1/τ) + log(1/β) + log ẼG) η′ = en
′
η1/A17 , or

(2) for some H of dimension r
(a) For all u ∈ BU (e) we have

c(ηH(λk(u)g)) ≤ β−1en.

(b) For all u ∈ BU (e) we have

max
z∈BU

∥∥z ∧ ηH(λk(u)g)
∥∥ ≤ η1/2.

Proof. Recall from §2.9 the definition

Bu(0, δ) =
{∑

z∈BU

rz z : |rz |Σ ≤ δ
}

so that BU (e) := exp
(
Bu(0, 1)

)
.

We will cover the set

log(Exc(η, n,Fr)) ⊂ B = Bu(0, 1)

by a collection of balls E = {Bi = Bu(0, ρi) + ui}i∈I and for each such ball
attach a class-H group Hi ∈ Fr so that

(E1)
∑

i∈I |Bi| � 1.
(E2) for every u ∈ Bi and u = exp(u)

c(ηHi(λk(u)g)) ≤ β−1en(7.2)

max
BU
‖z ∧ ηHi(λk(u)g)‖ ≤ η1/2(7.3)

(E3) For every i ∈ I, for some u ∈ Bi, equality holds in at least one of
(7.2) or (7.3).

More precisely, we will try to construct a cover E with these properties, and
if we fail this will establish that part (2) of Lemma 7.1 holds.

Assuming we succeed, we will show that these properties imply, for a
suitable choice of constants A16, A17, κ that for n′, η′ as above

(7.4)
(
Exc(η, n,Fr) \ Exc(η′, n′,Fr−1)

)
∩ {u ∈ BU (e) : λk(u)gΓ ∈ Xτ} ⊂⋃

i∈I

{
u ∈ exp(Bi) : λk(u)g satisfies (7.2)′ and (7.3)′

}
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where (7.2)′ and (7.3)′ denote inequalities (7.2) and (7.3) but with en and

η instead of β−1en and η1/2, respectively. Once (7.4) is established, we get
from Lemma 5.5 that∣∣(Exc(η, n,Fr) \ Exc(η′, n′,Fr−1)

)
∩ {u ∈ BU (e) : λk(u)gΓ ∈ Xτ}

∣∣
� max(η1/2, β)1/D.

The desired estimate in part (1) follows from this bound and (7.1).
The construction of the open cover is straightforward. For every u ∈

Bu(0, 1) for which u = exp(u) ∈ Exc(η, n,Fr), there is (by definition) a Q-

group Hu ∈ H of dimension ≤ r so that (7.2)′ and (7.3)′ holds (with Hu
replacing the yet undefined Hi).

For each such u, let B(u) denote the set B(u) = Bu(0, ρu) + u with
ρu chosen to be as small as possible so that for some v ∈ B(u) either

c(ηHu (λk(exp v)g)) = β−1en or maxBU ‖z ∧ ηHu (λk(exp v)g)‖ = η1/2. Un-
less the estimates (2)(a) and (2)(b) of the statement of this theorem holds
for some r-dimensional H ∈ H, for any u ∈ Bu(0, 1) it holds that B(u) ⊂
Bu(0, 3). Note that the estimate of (2)(a) together with (2.3) gives that
ht(H)� |g|?e2n.

Assuming there is no such H, the Vitali covering argument allows us to
find a subcollection E = {Bi = Bu(0, ρi) + ui}i∈I of {B(u)} so that the col-
lection of smaller balls {Bu(0, ρi/3) + ui}i∈I is a disjoint collection of subsets
of Bu(0, 3) but

(7.5)
⋃
i∈I

Bi ⊃ log(Exc(η, n,Fr)).

The resulting collection E clearly satisfies (E1)–(E3).

It remains to establish (7.4). Fix some u ∈ Exc(η, n,Fr) ∩ Xτ . Then
by (7.5) there is an i ∈ I so that u ∈ exp(Bi); put Hi = Hui . By the
definition of Bi estimates (7.2) and (7.3) hold, while by the definition of
Exc(η, n,Fr) there is an H ∈ H of dimension ≤ r so that c(ηH(λk(u)g)) ≤ en
and maxBU ‖z ∧ ηH(λk(u)g)‖ ≤ η. There are now two possibilities: either
H = Hi, in which case u is contained in the set on the right hand side of
(7.4), or H 6= Hi.

Thus suppose that H 6= Hi. By Lemma 2.8 there is a γ ∈ Γ so that
|λk(u)gγ| ≤ EGτ

−F . Since ηγ−1•γ(λk(u)gγ) = η•(λk(u)g), we have

c(ηL(λk(u)gγ)) ≤ β−1en

max
BU
‖z ∧ ηL(λk(u)gγ)‖ ≤ η1/2 for L = γ−1Hγ, γ−1Hiγ.

Since H 6= Hi, we have that H̃ = (γ−1Hγ ∩ γ−1Hiγ)H is of dimension

≤ r − 1. Applying Lemma 4.12 with ε = η1/2 and r = β−1en we get that if
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η � E?Gβ
−?τ−?e?n, the group H̃ is nontrivial and

c(ηH̃(λk(u)gγ))� (EGβ
−1τ−1en)A16

max
BU
‖z ∧ ηH̃(λk(u)gγ)‖ � (EGβ

−1τ−1en)A16η1/A17 .

Therefore (in view of our convention regarding implicit constants, and re-

calling that ẼG = EG ht(G)) we have that u ∈ Exc(η′, n′,Fr−1) for n′ =

A16(n+ log(1/β) + log(1/τ) + log ẼG) and η′ = en
′
η1/A17 . �

Proof of Theorem 3.2. We need to estimate the size of the set

Bad =
{
u ∈ BU (e) : λk(u)gΓ 6∈ Xη or is not (ε, t)-Diophantine

}
.

Set

Badη = {u ∈ BU (e) : λk(u)gΓ 6∈ Xη}
BadExc = {u ∈ BU (e) : λk(u)gΓ is not (ε, t)-Diophantine but is in Xη} .

Clearly Bad = Badη ∪ BadExc.

We can bound the size of Badη using Theorem 6.3, obtaining that

(7.6) |Badη| ≤ Eη1/F

unless there exists a group M 6= G,

ht(M) ≤ E|g|F η1/F ,

so that for all u ∈ BU (e)

c(ηM (λk(u)g)) ≤ E|g|F η1/F

max
z∈BU

‖z ∧ ηM (λk−1(u)g)‖ ≤ E|g|F η1/F e−k/F .

This clearly implies that (2) of Theorem 3.2 holds (if we choose A large
enough).

Assume therefore for the remainder of the proof that (7.6) holds. Let
d = dim G. It follows from Definition 3.1 that in the notations of Lemma 7.1

(7.7) BadExc ⊂ dte⋃
`=1

Exc
(
ε(e`), `+ 1,Fd−1

)
∪ Exc

(
ε(0), 1,Fd−1

) ∩ (BU (e) \ Badη
)
.

Fix `. To estimate
∣∣∣Exc

(
ε(e`), `+ 1,Fd−1

)
∩
(
BU (e) \ Badη

)∣∣∣, define itera-

tively, starting with r = d− 1, nd−1 = `+ 1 and ηd−1 = ε(e`). Proceed by
induction to define

nr−1 = A16(nr + `+ 2 log(1/η) + log ẼG) ηr−1 = enr−1η1/A17
r .
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Then

(7.8)
∣∣∣Exc

(
ε(e`), `+ 1,FdimG

)
∩
(
BU (e) \ Badη

)∣∣∣
≤

d−1∑
r=1

∣∣∣(Exc(ηr, nr,Fr) \ (Exc(ηr−1, nr−1,Fr−1)
)
∩
(
BU (e) \ Badη

)∣∣∣.
We want to apply Lemma 7.1 (with τ = η and β = ηe−` where η is as in

this theorem). In order to apply Lemma 7.1, our choice of parameters needs
to satisfy condition (7.1), with the critical case being that of r = 1. In this
case (7.1) becomes

(7.9) η
1/A17

1 ≤ c0 · (η2e−`e−n1Ẽ−1
G )A16 .

Iteratively working through the constants, there are A18 > A16, A19 > A17,
easily explicated in terms of d and A16 and A17 so that

en1 ≤

(
2ẼGe

`

η2e−`

)A18

η1 ≤ e2n1ε(e`)1/A19 .

Then assuming (3.3) with A large enough and suitable choice of constant

E1 we can ensure that η1 ≤ ε(e`)1/2A19 and that (7.9) holds.
By Lemma 7.1 and (3.3) (for A large enough), for every r

(7.10)
∣∣∣(Exc(ηr, nr,Fr) \ (Exc(ηr−1, nr−1,Fr−1)

)
∩
(
BU (e) \ Badη

)∣∣∣
� η1/De−`/D

unless for some H of dimension r, for all u ∈ BU (e) and some constant F

depending only on N and E′1 depending polynomially on ẼG and on N ,

c(ηH(λk(u)g)) ≤ η−1e`+nr ≤ E′1eF`η−F(7.11)

max
z∈BU

∥∥z ∧ ηH(λk(u)g)
∥∥ ≤ η1/2

r ≤ E′1eF`η−F ε(e`)1/F .(7.12)

If equations (7.11) and (7.12) hold for all u ∈ BU (e), there are two cases.
Firstly, it may happen that HCG in which case

ht(H) = c(ηH(λk(u)g)) ≤ E′1eF`η−F .

Then as we assumed ε(s) ≤ ηAs−A/E1 (for the constants A and E1 of the
theorem we are proving, which are yet to be fixed) if A was chosen large
enough, by (7.12)

(7.13) max
z∈BU

∥∥z ∧ ηH(λk(u)g)
∥∥ ≤ ε(e`)1/2F .

For a given H, the value of ` has to be large enough so that (7.11) holds,
namely

e` ≥ (ht(H)ηF /E′1)1/F ,
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so

max
z∈BU

∥∥z ∧ ηH(λk(u)g)
∥∥ ≤ ε(ht(H)1/F η/E′1)1/2F

and (3) of the statement of Theorem 3.2 is satisfied.

If equations (7.11) and (7.12) hold for all u ∈ BU (e), but H is not a
normal subgroup of G we apply Proposition 5.8 and conclude that M = MH

satisfies for all u ∈ BU (e)

(7.14)
c(ηM (λk(u)g))� EG

?e?`η−?

max
z∈BU

‖z ∧ ηM (λk(u)g)‖ � EG
?e?`η−?e−k/D

′
.

(the dependence of the upper bounds in (7.14) on |g| can be eliminated
as in the proof of Proposition 5.8 by using the fact that by (7.6) for most
u ∈ BU (e) there is a γu ∈ Γ so that |λk(u)gγu| � η−?). In this case, (2) of
Theorem 3.2 holds.

The only remaining case is if (7.10) holds for every r and ` (as well as the
analogous estimates for Exc(ε(0), 1,Fd−1), for which we omit the details,

but is handled similarly), in which case it follows from (7.7) and (7.8) that

|BadExc| � η1/D, establishing (1) of Theorem 3.2. �

8. Some corollaries of Theorem 3.2

In this section we discuss some of the consequences of Theorem 3.2. Recall
that for any T > 0, we put

(8.1) σ(T ) = min

(
{1} ∪

{
‖z ∧ vH‖ :

H ∈ H,HCG,
ht(H) ≤ T, {1} 6= H 6= G

})
.

8.1. Theorem. Let A, D, and E1 be as in Theorem 3.2. There exists some
ϑ depending only on N so that the following holds. Let 0 < η < 1/2. Let
{xm} be a sequence in X and let km →∞ be a sequence of natural numbers.

For each m let Vm ⊂ BU (e) be a measurable set with measure > ϑE1η
1/D.

Let

Y =
⋂
`≥1

⋃
m≥`
{λkm(u)xm : u ∈ Vm}.

Then exactly one of the following holds.

(1) Y contains an ε-Diophantine point for

ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
.

(2) There exists
(a) a finite collection {(Hi, Li) : 1 ≤ i ≤ `} ⊂ H × R+, and
(b) a countable (possibly finite) collection

W = {(Wj , Rj , rj) : j ∈ J} ⊂ H × R+ × R+

where Wj is a non-normal unipotent subgroup for all j ∈ J ,
and rj → 0



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 41

so that if we put

Yi = {g ∈ NG(U,Hi) : c(ηHi(g)) ≤ Li}Γ/Γ

and

Zj =
{
g ∈ NG(U,MWj ) :

c(ηMWj
(g)) ≤ Rj &

c(ηWj (g)) ≤ rj

}
Γ/Γ,

then

Y ⊂
(⋃̀
i=1

Yi

)⋃(⋃
j∈J

Zj

)
.

This theorem implies Theorem 1.5 since each Zj is contained in

{g ∈ NG(U,MWj ) : c(ηMWj
(g)) ≤ Rj}Γ/Γ,

and as rj → 0 for any β only finitely many of the Zj can interset Xβ.
Recall that for every i the sets Yi above are closed subsets of X (see Corol-
lary 4.10.1), and the same proof gives that the sets Zj are closed as well.

We first prove a special case of Theorem 8.1.

8.2. Lemma. Let A, D, and E1 be as in Theorem 3.2. There exists some
ϑ depending only on N so that the following holds. Let 0 < η < 1/2 and
let t ∈ R+. Let {xm} be a sequence in X and let km → ∞ be a sequence
of natural numbers. For each m let Vm ⊂ BU (e) be a measurable set with

measure > ϑE1η
1/D. Let

Y =
⋂
`≥1

⋃
m≥`
{λkm(u)xm : u ∈ Vm}.

Then at least one of the following holds.

(1) Y ∩Xη contains an (ε, t)-Diophantine point for

ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
.

(2) There exists
(a) a finite collection {(Hi, Li) : 1 ≤ i ≤ `} ⊂ H × R+, and
(b) a countable (possibly finite) collection

W = {(Wj , Rj , rj) : j ∈ J} ⊂ H × R+ × R+

where Wj is a non-normal unipotent subgroup for all j ∈ J ,
and rj → 0

so that if we put

Yi = {g ∈ NG(U,Hi) : c(ηHi(g)) ≤ Li}Γ/Γ

and

Zj =
{
g ∈ NG(U,MWj ) :

c(ηMWj
(g)) ≤ Rj &

c(ηWj (g)) ≤ rj

}
Γ/Γ,
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then

Y ⊂
(⋃̀
i=1

Yi

)⋃(⋃
j∈J

Zj

)
.

We need the following lemma.

8.3. Lemma. Let E and F be as in Theorem 6.3. Let the notation be as in
Theorem 8.1. Then one of the following holds.

(1) There exists some β0 > 0 and subsequence mi →∞ so that

|{u ∈ BU (e) : λkmi−1(u)xmi 6∈ Xβ}| ≤ Eβ1/F .

for all β ≤ β0, or
(2) Y = ∅.

Proof. In view of Theorem 6.3 it suffices to show that there exists some β′

and a subsequence {mi} so that

{u ∈ BU (e) : λkmi−1(u)xmi} ∩Xβ′ 6= ∅.

Indeed if this is established, then Theorem 6.3(2) cannot hold for any η =
β ≤ β′F /2E, xmi and kmi − 1, hence Theorem 6.3(1) holds which implies
part (1) in this lemma with β0 = β′F /2E.

Assume contrary to the above claim that for every β there exists some
mβ so that for all m ≥ mβ

{u ∈ BU (e) : λkm−1(u)xm} ∩Xβ = ∅.

Then by Theorem 6.3 applied with η = β and the point xm = hmΓ, we thus
get that there exists a unipotent Q-subgroup W which is not normal in G
so that

c
(
ηW (λkm−1(u)hm)

)
≤ Eβ1/F for all u ∈ BU (e);

see (6.3) also Lemma 6.2. This and Lemma 5.5 implies that

(8.2) c
(
ηW (λkm(u)hm)

)
≤ E′β1/F for all u ∈ BU (e).

Therefore, we get that

(8.3) {λkm(u)xm : u ∈ BU (e)} ∩XE′β1/F = ∅ for all m > mβ.

Hence the claim in part (2) holds. �

Proof of Lemma 8.2. The proof is based on applying Theorem 3.2 to the
pieces of the orbits

{λkm(u)xm : u ∈ Vm}.
We show that Theorem 3.2(3) cannot hold for the choice of ε we made in
the lemma. Further, we show that if there are infinitely many m so that
Theorem 3.2(1) holds, then part (1) in the lemma holds. In consequence,
we are reduced to the case that for all but finitely many m Theorem 3.2(2)
holds. In this case we use Lemma 4.10 to conclude that part (2) above holds.



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 43

We begin by replacing xm with a possibly different point in the orbit
which is chosen to have a representative of a controlled size.

Assuming Y 6= ∅ and repeatedly applying Lemma 8.3, we may find natural
numbers {ni : i ∈ I} with | log β0| < n1 < n2 < · · · so that if we put

Ji := {m ∈ N \ Ji−1 : |{u ∈ BU (e) : λkm−1(u)xm 6∈ X2−ni | ≤ E2−ni/F },
for all i ∈ I and J0 = ∅, then the following hold:

• for all i ∈ I, Ji is an infinite set, and
• for every x ∈ Y , there exists an i ∈ I, a sequence mp → ∞ in Ji,

and for any mp there is some ump ∈ BU (e) so that

λkmp
(ump)xmp → x.

We remark that by Lemma 8.3 if Y 6= ∅, then I 6= ∅, but it may well be
finite: for instance if {xm} is a bounded sequence, then we may choose n1

large enough so that I = {1}.
Recall the constants EG and F from Lemma 2.8. For every i ∈ I and

m ∈ Ji fix some gm ∈ G so that

(8.4) |gm| ≤ EG2niF =: Ti

and gmΓ = λkm−1(um)xm ∈ X2−ni for some um ∈ BU (e).
Recall also from (2.11) that for some κ > 0 we have

(8.5) λkm−κ(BU (e))λkm−1(um) ⊂ λkm(BU (e)).

Let
ϑ = 2|BU (e)|/|λ−κ(BU (e))|.

Apply Theorem 3.2 with gm, km − κ, η, t, and

(8.6) ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
;

note that ε satisfies the condition in (3.3).
We first argue that Theorem 3.2(3) cannot hold. Indeed, assume contrary

to this claim that there exists some HCG satisfying Theorem 3.2(3). That
is: ht(H) ≤ E1(etη−1)A and

max
z∈BU

∥∥z ∧ vH
∥∥ ≤ ε(ht(H)1/Aη/E1

)1/A
.

In view of (8.6) we thus get that

max
z∈BU

∥∥z ∧ vH
∥∥ ≤ ht(H)−1/Aσ(ht(H))/2 < σ(ht(H)).

However, this contradicts the definition of σ, see (8.1).
Assume now that the conclusion in Theorem 3.2(1) holds for a subse-

quence mi →∞. Then, since

λkmi−κ(BU (e))λkmi−1(umi) ⊂ λkmi
(BU (e)),

|λkmi−κ(BU (e))|/|λkmi
(BU (e))| ≥ 2/ϑ, and |Vmi | > ϑE1η

1/D, we have that

{λkmi
(u)xmi : u ∈ Vm} ∩ {x ∈ Xη : x is (ε, t)-Diophantine} 6= ∅
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for all mi. Hence Y ∩ {x ∈ Xη : x is (ε, t)-Diophantine} 6= ∅ and part (1) in
the lemma holds.

Altogether, we are reduced to the case that Theorem 3.2(2) holds for all
but finitely many m. Dropping the first few terms, which does not effect
Y , we assume that Theorem 3.2(2) holds for all m, or more precisely that
Theorem 3.2(2) holds for gm, km − κ, η, and (ε, t). In particular, we have
the following: For every m ∈ J1 there exists a nontrivial proper subgroup
Hm ∈ H with

ht(Hm) ≤ (E|gm|A + E1e
At)η−A ≤ (ETA1 + E1e

At)η−A =: L,

so that the following hold.

(†)1 For all u ∈ BU (e) we have

c(ηHm(λkm−κ(u)gm)) ≤ L.

(‡)1 For every u ∈ BU (e) we have

max
z∈BU

∥∥z ∧ ηHm(λkm−κ(u)gm)
∥∥ ≤ Le−km+κ/D.

Let F = {(H, L) : ht(H) ≤ L}. In view of (4.1), F is a finite family.

Let now i ∈ I and i ≥ 2 — we note again that it is possible that I = {1}
and this case is empty.

Arguing as in Lemma 8.3, see in particular (8.3), for all m ∈ Ji we have

{λkm(u)xm : u ∈ BU (e)} ∩Xθi = ∅.

where θi = E′2−ni−1/F . This, in view of (8.5) implies that

(8.7) {λkm−κ(u)gmΓ : u ∈ BU (e)} ∩Xθi = ∅.

Therefore, by Theorem 6.3, for every m ∈ Ji there exists some unipotent
subgroup Wm with

ht(Wm) ≤ ETFi θ
1/F
i =: Si

so that

(8.8) c
(
ηWm(λkm−κ(u)g)

)
≤ Eθ1/F

i =: si for all u ∈ BU (e).

Moreover, if we put Mm = MWm , then Mm 6= G,

ht(Mm) ≤ Si,

and the following hold:

(†)i For all u ∈ BU (e) we have

c(ηM (λkm−κ(u)g)) ≤ Si.

(‡)i For all u ∈ BU (e) we have

max
z∈BU

‖z ∧ ηM (λkm−κ(u)g)‖ ≤ Sie−km+κ/F .
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Let Ei = {(W, Si, si) : ht(W) ≤ Si,W ∈ H is unipotent and not normal}.
Then Ei is a finite family for each i.

We now show that the claim in part (2) holds with F and Ei, i ≥ 2. Let
x = gΓ ∈ Y . Then there exists an i ∈ I and a sequence mp → ∞ in Ji so
that the following holds. For any mp there is some ump ∈ Vmp so that

λkmp
(ump)gmpΓ→ gΓ.

Assume first that i = 1. Then passing to a subsequence we may assume
that (†)1 and (‡)1 hold with Hmp = H for all p. Hence by Lemma 4.10 we
have

g ∈ {g′ ∈ NG(U,MW ) : c(ηH(g′)) ≤ L}Γ.
Similarly, if i ≥ 2 we may pass to a subsequence and assume that Wmp =

Wm for all p. One then argues as in Lemma 4.10 and gets that

g ∈ {g′ ∈ NG(U,MW ) : c(ηMW
(g′)) ≤ Si, c(ηW (g′)) ≤ si}.

The proof is complete. �

Proof of Theorem 8.1. Let 0 < η < 1/2 and define ε as in part (1).
Recall from Definition 3.1 that

{x ∈ X : x is ε-Diophantine} =
⋂
t

{x ∈ X : x is (ε, t)-Diophantine}.

Moreover, {x ∈ Xη : x is (ε, t)-Diophantine} is a nested family of compact
sets. Therefore, if Lemma 8.2(1) holds for all t, then Theorem 8.1(1) holds.
Therefore, we may assume there exists some t so that Lemma 8.2(2) holds.
This implies that Theorem 8.1(2) holds and completes the proof. �

We now state and prove analogue of Theorem 1.1 in the more general
Σ-arithmetic setting.

8.4. Theorem. Let α > 0. Let {Hi : 1 ≤ i ≤ r} ⊂ H be a finite subset
consisting of proper subgroups, and for each 1 ≤ i ≤ r let Ci ⊂ NG(U,Hi) be
a compact subset. There exists an open neighborhood O = O(α, {Hi}, {Ci})
so that X \ O is compact and disjoint from ∪iCiΓ/Γ so that the following
holds. For every x ∈ G(U) there exists some k0 = k0(α, {Hi}, {Ci}, x) so
that for all k ≥ k0 we have

|{u ∈ BU (e) : λk(u)x ∈ O}| < α

Proof. Let η = (α/E1)D where D and E1 are as in Theorem 3.2.
Let x ∈ G(U) and let g ∈ G be so that x = gΓ. Define

(8.9) ε(s) =
(
ηs−1σ(EA1 η

−AsA)/2E1

)A
where σ(T ) is defined as in (8.1).

Let t ∈ R+ be so that ht(Hi) ≤ et and c(ηHi(h)) < et for all 1 ≤ i ≤ r
and all h ∈ Ci. We will show that the theorem holds with

O = {x ∈ X : x 6∈ Xη or x is not (ε, t)-Diophantine}.
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First note that for any i and any h ∈ Ci we have c(ηHi(h)) < et and
z ∧ ηHi(h) = 0 for all z ∈ BU . Therefore,

∪iCiΓ/Γ ⊂ O.
We claim there exists some k0 so that for all k ≥ k0, Theorem 3.2(1)

holds for g, k, and (ε, t). First note that this claim in view of the assertion
in Theorem 3.2(1) implies that

|{u ∈ B : λk(u)x ∈ O}| ≤ E1η
1/D = α

and the theorem follows.
Let us now prove the claim. Assume contrary to the claim that Theo-

rem 3.2(2) or (3) holds for g, a sequence kn →∞, and (ε, t). We first show
that Theorem 3.2(3) cannot hold. Indeed, if Theorem 3.2(3) holds, then
there is some HCG with ht(H) ≤ E1(etη−1)A so that

max
z∈BU

∥∥z ∧ vH
∥∥ ≤ E1η

−Aε
(
ht(H)1/AηA/E1

)1/A
.

In view of (8.9) we thus get that

max
z∈BU

∥∥z ∧ vH
∥∥ ≤ ε(ht(H)1/A)1/Aσ(ht(H))/2 < σ(ht(H)).

This contradicts the definition of σ in (8.1).
Hence we may reduce to the case that Theorem 3.2(2) holds for g, kn →

∞, and (ε, t). Let L := (E|g|A+E1e
At)η−A. Then in view of Theorem 3.2(2),

for every n there exists a proper subgroup Hn ∈ H with ht(Hn) ≤ L so that
for all u ∈ BU (e) we have

max
z∈BU

∥∥z ∧ ηHn(λkn(u)g)
∥∥ ≤ e−kn/DL.

Since there are only finitely many subgroups H ∈ H with ht(H) ≤ L,
see (4.1), passing to a subsequence we assume Hn = H for all n. Hence

max
z∈BU

∥∥z ∧ ηH(λkn(u)g)
∥∥ ≤ e−kn/DL.

Applying this with u = e and passing to the limit we get that

z ∧ ηH(g) = 0 for all z ∈ BU .
This contradicts the fact that gΓ ∈ G(U) and completes the proof. �

9. Friendly measures

In this section we discuss generalizations of our main theorems to the class
of friendly measures which were studied in [28], see §1.6 for the definition.

Let the notation be as in §1.2; in particular,

U = {u(t) = exp(tz) : t ∈ R}.
for some nilpotent element z ∈ g with ‖z‖ = 1.

In [28], an extension of Theorem 5.2 for Σ = {∞} was presented where the
Haar measure on U is replaced by a (uniformly) friendly measure µ. While
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for simplicity of notation we keep our treatment of friendly measures to this
case, Kleinbock and Tomanov wrote in [30] the Σ-arithmetic nondivergence
results also for the case of friendly measures. The only difference between the
statement of Theorem 5.2 and the analogous statement for uniformly friendly
measures (other than the obvious difference of how the size of subsets of
λk(BU ) are measured) is that the exponent 1/D of the theorem is allowed to
depend on the doubling constant for µ. Theorem 5.3 also holds for uniformly
friendly measures with the same modification. We also note (and use below)
that in view of [28, Prop. 7.33], an analogue of Lemma 5.5 holds true for µ
in place of the Haar measure on U (with a different c and exponent).

Repeating the the proof of Theorem 6.3 but with the (uniformly) friendly
versions of Theorems 5.2 and 5.3, we obtain the following:

9.1. Theorem. Let µ be a uniformly friendly measure on R. There exists
a constant F depending on N and µ so that for any g ∈ G, k ≥ 1, and any
0 < η ≤ 1/2 small enough at least one of the following holds.

(1)

µ
(
{t ∈ [−1, 1] : u(ekt)gΓ 6∈ Xη}

)
� η1/F .

(2) There exists a unipotent Q-subgroup W so that

‖(ηW (u(ekt)g)‖ � η1/F for all t ∈ [−1, 1].

Moreover, if we put M = MW, then M 6= G,

ht(M)� |g|F η1/F ,

and we have:
(a) For all t ∈ [−1, 1] we have

‖ηM (u(ekt)g)‖ � |g|F η1/F .

(b) For all t ∈ [−1, 1] we have

max
z∈BU

‖z ∧ ηM (u(ekt)g)‖ � |g|F η1/F e−k/F .

Similarly, the proof of Theorem 1.4 is easily adapted to the friendly case,
giving:

9.2. Theorem. Let µ be a uniformly friendly measure on R. There are
constants A,D depending only on N and µ, and E1 depending on N , G,
Γ, and µ so that the following holds. Let g ∈ G, k ≥ 1, and 0 < η < 1/2.
Assume ε : R+ → (0, 1) satisfies for any s ∈ R+ that

ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds.

(1)

µ
({
ξ ∈ [−1, 1] :

u(ekξ)gΓ 6∈ Xη or
u(ekξ)gΓ is not (ε, t)-Diophantine

})
< E1η

1/D



48 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI, AND N. SHAH

(2) There exist a nontrivial proper subgroup H ∈ H of

ht(H) ≤ E1(|g|A + eAt)η−A

so that the following hold for all ξ ∈ [−1, 1]:

‖ηH(u(ekξ)g)‖ ≤ E1(|g|A + eAt)η−A∥∥z ∧ ηH(u(ekξ)g)
∥∥ ≤ E1e

−k/D(|g|A + eAt)η−A

where z is as in (1.1).
(3) There exist a nontrivial proper normal subgroup HCG of

ht(H) ≤ E1e
Atη−A

so that ∥∥z ∧ vH
∥∥ ≤ E1η

−Aε(ht(H)1/AηA/E1)1/A.

As a consequence Theorem 1.7 follows, see the proof of Theorem 8.1.
We also get the following analogues of Theorem 1.1 whose proof is mutatis
mutandis the same as the proof of Theorem 8.4.

9.3. Theorem. Let µ be a uniformly friendly measure on R. Let η > 0. Let

{Hi : 1 ≤ i ≤ r} ⊂ H
be a finite subset consisting of proper subgroups, and for each 1 ≤ i ≤ r
let Ci ⊂ NG(U,Hi) be a compact subset. There exists an open neighborhood
O = O(α, {Hi}, {Ci}) so that X \ O is compact and disjoint from ∪iCiΓ/Γ
so that the following holds. For every x ∈ G(U) there exists some k0 =
k0(µ, η, {Hi}, {Ci}, x) so that for all k ≥ k0 we have

µ
(
{t ∈ [−1, 1] : u(ekt)x ∈ O}

)
< η

Appendix A. Proof of Theorem B

In this section we prove Theorem B. In qualitative form, this is proved by
Greenberg in [23] and [24]. We reproduce the argument here to make the
estimates explicit.

Proof of Theorem B. Let Cp denote the completion of the algebraic closure
of Qp for all p ∈ Σf ; as abstract fields C and Cp, for any p ∈ Σf , are
isomorphic. Therefore, Cm in Effective Nullstellensatz theorem of §4.11 may
be replaced by Cmp for any p ∈ Σf .

As in [23, p. 59–60] and [24, Steps 1 and 2] we begin with some reductions.
Let I ⊂ Z[t1, . . . , tm] be the ideal generated by {fi}, and let Y be the

variety defined by I in Cmp .
Put J := IQ[t1, . . . , tm]. The radical and the primary decomposition of

J in Q[t1, . . . , tm] can be computed, see [2, Chap. 8.7]; this computation uses
Gröbner basis and yields the following. There exists a computable constant
s = s(m,n,D0) so that

•
(√
J
)s ⊂ J ,
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•
√
J = ∩b1Pj where Pj is a prime ideal for all 1 ≤ j ≤ b ≤ s, and

• Pj is generated by {fj,` : 1 ≤ ` ≤ s} where the total degree of {fj,`}
is bounded by s and the logarithmic height of the numerators and
denominators of each fj,` is controlled by sh.

Moreover, by [21, Cor. 3.8], we may replace s with s′ ≥ s, which is
again computable and depends only on m, n, and D0, so that the following
holds. For every 1 ≤ j ≤ b the ideal Pj ∩ Z[t1, . . . , tm] is generated by
{gj,k : 1 ≤ k ≤ s′}, furthermore, the total degree of {gj,k} is bounded by s′

and for every j and k the logarithmic height of gj,k is bounded by s′h.
Altogether, we may assume that I is a prime ideal, i.e. Y is Q-irreducible.
We now use induction on u := dim Y to prove the claim, see [23, Case 1,

p. 60] and [24, Step 3].
The base case is when u = −1, that is: when I contains a nonzero

constant. In this case we use the effective nullstellensatz theorem above and
find some a ∈ Z with

log |a| ≤ (8D0)4M−1(h + 8D0 log(8D0))

where M = 2m−1 so that a =
∑

i qifi.
This implies the claim in the theorem when u = −1.
Assume now that Y is nonempty and that the theorem is established in

dimensions less than u. Let Jac be the Jacobian matrix of {fi} and let ∆
be the system of minors of order m− u taken from Jac. Since char(Q) = 0,
the locus of common zeros of {∆, {fi}} is a proper Q-subvariety of Y. By
inductive hypothesis, thus, there exists some d ′ depending on m, n, and D
which satisfies the claim in the theorem for {∆, {fi}}.

For any 1 ≤ α1 < · · · < αm−u ≤ n, put (α) = (α1, . . . , αm−u) and
set f(α) = {fα1 , . . . , fαm−u}. Let Y(α) be the variety defined by f(α). Let
Z(α) = ∪cj=1Z(α),j where for all 1 ≤ j ≤ b, we have Z(α),j ⊂ Y(α), Z(α),j is
Q-irreducible with dim Z(α),j = u, and Z(α),j 6= Y.

Let I(α),j ⊂ Z[t1, . . . , tm] be the ideal corresponding to Z(α),j . Since Y(α)

is defined by f(α), a similar argument as above implies that there exists a
computable constant r = r(m,n,D0) so that

• c ≤ r, and
• for every 1 ≤ j ≤ c, there exists {g(α),j,k : 1 ≤ k ≤ r} so that I(α),j

is generated by {g(α),j,k}, further, the total degree of {g(α),j,k} is
bounded by r and for every j and k the logarithmic height of g(α),j,k

is controlled by rh

Since Z(α),j 6= Y for all j, by inductive hypothesis, there exists d ′(α) de-

pending on m, n, and D0 which satisfies the claim in the theorem for{
{g((α),j,k) : 1 ≤ k ≤ r}, {fi : 1 ≤ i ≤ n}

}
,

for all 1 ≤ j ≤ c.
Given (α) = (α1, . . . , αm−u) and (β) = (β1, . . . , βm−u) let ∆(α),(β) denote

the corresponding minor from Jac. By the implicit function theorem, if
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z ∈ Y(α) is such that ∆(α),(β)(z) 6= 0 for some (β), then z lies on exactly
one component of Y(α), moreover, that component has dimension u.

Let r′ = r′(m,n,D0) be so that the logarithmic height of {∆, {fi}} is
bounded by r′h. Define

d := 2r′d ′ + r
∑
(α)

d ′(α).

We claim that the theorem holds with A11 = d .
Let w = (w1, . . . , wm) be as in the statement of the theorem. If either

(1) vp(∆(α,(β))(w)) > 2r′d ′h for all (α) and (β), or
(2) vp(g(α),j,k(w)) > 2rd ′(α)h for some (α), some j, and all k,

then we get the claim from the inductive hypothesis.
Therefore, we may assume that there are (α) and (β) so that

(A.1) vp(∆(α),(β)(w)) ≤ 2r′d ′h,

and for every (θ) and every j there exists some k so that

(A.2) vp(g(θ),j,k(w)) ≤ 2rd ′(θ)h.

Now a suitable version of Hensel’s Lemma, see [24, Note 1], implies that
there exists some y ∈ Zmp so that f(α)(y) = 0 and

(A.3) vp(y − w) > C2 − 2r′d ′h.

The theorem follows if we show that y ∈ Y.
Let us recall that

(A.4) C2 > 4r′d ′h + 2r
(
max{d ′(θ) : (θ)}

)
h.

Then, (A.2), (A.3), and (A.4), imply that vp(g(θ),j,k(w)) = vp(g(θ),j,k(y)). In
particular, y 6∈ Z(θ),j for all (θ) and all j. Similarly, (A.1), (A.3), and (A.4),
imply that ∆(α),(β)(y) 6= 0.

Thus, the implicit function theorem implies that y belongs to Y. �
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