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Abstract. In this paper we prove explicit estimates for the size of small lifts of points in
homogeneous spaces. Our estimates are polynomially effective in the volume of the space
and the injectivity radius.

1. Introduction

Let G be a semisimple Lie group and let Γ ⊂ G be an arithmetic lattice, e.g. G = SLd(R)
and Γ = SLd(Z). Reduction theory provides a description of a (weak) fundamental domain
for Γ in G. Among other things, it relates the injectivity radius at a point x ∈ G/Γ to the
size of a small lift for x in G. In general, however, these estimates are only up to a compact
subset of G; in particular, when Γ is a uniform (cocompact) lattice in G one does not obtain
explicit estimates on the diameter of G/Γ.

In this paper we provide an explicit estimate for the size of a small lift in G of a point
x ∈ G/Γ; our estimates are polynomial in the injectivity radius at x and in a certain measure of
the arithmetic complexity of Γ which is closely related to the volume of G/Γ, see Theorem 1.5.

It is plausible that some of the arguments involved in reduction theory can be effectivized;
this paper however takes an alternative route. The proofs here rely on a uniform spectral
gap for arithmetic quotients in the case of semisimple group; see e.g. [14, 5, 20] for a similar
approach. We then prove and utilize an effective Levi decomposition, in §3 and §4, to allow
for groups which may not be semisimple.

It is worth mentioning that when Γ is a cocompact lattice, the dependence of our estimates
on the injectivity radius may be omitted, see §6.12. The reader may compare this to the
analysis in [5], where similar estimates for the isometry groups of rank one symmetric spaces
are proved. However, our multiplication constants are allowed to depend on the number N
which is defined in §1.1 — this number can be thought of as a notion of dimension for the
arithmetic datum that defines Γ.

The main results are first formulated and proved (in §5) in the adelic language. Then we
deduce the results for the S-arithmetic case — in particular for the case of semisimple Lie
groups — from the adelic setting. In addition to providing a uniform treatment, the adelic
language has the advantage that we may bring to bear the seminal works of Prasad [24] and
Borel and Prasad [3], à la [11], to avoid assuming any splitting conditions in Theorem 1.5.
In §6, we discuss some corollaries of this theorem in the S-arithmetic setting; see namely
Theorem 1.7 and the discussion following it.

1.1. The notion of an algebraic datum. In the following, A denotes the ring of adeles
over Q. We let Σ = {∞} ∪ {p : p is a prime} denote the set of places of Q, and let Σf be the
set of finite places. We sometime write Σ∞ for the set containing the infinite place. We will
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denote places in Σ by v, w, ... and places in Σf by p, q, .... In this notation, we often write Qv

to denote R or Qp.
Throughout, we assume fixed the following datum (G, ι):

(1) A connected algebraic Q-group G whose solvable radical is unipotent, i.e. R(G) =
Ru(G).

(2) We will always assume G to be simply connected.
(3) An algebraic homomorphism ι : G→ SLN defined over Q, with a central kernel.

Condition (1) is equivalent to Hom(G,Gm) = {1}. In particular, we get that HomQ(G,Gm) =
{1}, hence G(A)/G(Q) has a G(A)-invariant finite measure.

Set X = SLN (A)/SLN (Q); we let volX denote the SLN (A)-invariant probability measure
on X. Let G = ι(G(A)) and Y = ι(G(A)/G(F )) ⊂ X. Let µY (or simply µ when there is no
confusion) be a G-invariant probability measure on Y . Let m be a Haar measure on G which
projects to µ under the orbit map.

1.2. A height function on X. For any v ∈ Σ, we will abusively let ‖ ‖v denote the maximum
norm (with respect to the standard basis) both on QN

v and on slN (Qv). For any w ∈ AN , we
set

c(w) :=
∏
v∈Σ

‖wv‖v.

Thanks to the product formula, we have c(rw) = c(w) for all r ∈ Q, w ∈ AN . Moreover, for
all w ∈ QN − {0}, c(w) is an integer and c(w) ≥ 1.

We define the height function ht : SLN (A)→ R+ by

(1.1) ht(g) := max{c(gw)−1 : 0 6= w ∈ QN}.

This function is SLN (Q)-invariant, hence induces a function on X which we continue to denote
by ht. That is: for any x ∈ X we put ht(x) = ht(g) where g ∈ SLN (A) is so that x = gSLN (Q).

For every p ∈ Σf we let ‖ ‖op,v (or simply ‖ ‖op when there is no confusion) denote the

operator norm on SLN (Qv), induced using the norm ‖ ‖v on QN
v . For any g ∈ SLN (Qv) define

|g| := max{‖g‖op, ‖g−1‖op}.

1.3. Complexity of homogeneous sets. An intrinsic notion of volume of the datum (G, ι)
was defined and utilized in [11]; we recall the definition here.

Fix an open subset Ω ⊂ SLN (A) that contains the identity and has compact closure (see
§2.2 for our choice for Ω). Set

(1.2) vol(Y ) := m(G ∩ Ω)−1.

Evidently this notion depends on Ω, but the notions arising from two different choices of
Ω are comparable to each other, in the sense that their ratio is bounded above and below.
Consequently, we drop the dependence on Ω in the notation. See [11, §2.3] for a discussion of
basic properties of the above definition.

1.4. Height of rational subspaces. Let W ⊂ slN (Q) be a d-dimensional subspace, so ∧dW
is a rational line in ∧d slN (Q). This line is diagonally embedded in ∧d slN (A), and we do not
distinguish between this diagonal embedding and the line.

We endow ∧d slN (Qv) with the maximum norm with respect to the basis obtained by
collecting the d-fold wedges of (distinct, ordered) elements of the canonical basis of slN (Z).
In this section, we will again use ‖ ‖v to denote this norm.
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Let vW denote a primitive integral vector on ∧dW — this vector is obtained by fixing a
Z-basis for W ∩ slN (Z). Define

(1.3) ht(W) := ‖vW‖∞.
This is independent of the choice of the basis; moreover, because we used the max norm in
the above definition, ht(W) is an integer. Alternatively, ht(W) may be defined as follows.
Let {e1, . . . , ed} be a Q-basis for W. Then

ht(W) =
∏
v

‖e1 ∧ · · · ∧ ed‖v

where the product is taken over all places of Q. In view of the product formula, the above is
independent of our choice of the rational basis for W.

Given a Q-subgroup H of SLN we define

(1.4) ht(H) := ht
(
Lie(H)

)
= ‖vH‖∞,

where vH is a primitive integral vector as above. If H is a Q-subgroup of G instead, we set
ht(H) = ht(ι(H)).

The volume of an adelic orbit defined in §1.3 is closely related to the height function. This
relationship is easy to describe for unipotent groups and was studied in [11, App. B], under
the assumption that G is semisimple.

We now define the height of Y to be

(1.5) ht(Y ) := max{ht(G), vol(Y )}.
The following theorem is the main result of this paper.

1.5. Theorem. There exists some κ1 > 0 depending only on N , and for any datum (G, ι) as
in §1.1 there exists some p ∈ Σf with

p�
(
log ht(Y )

)2
,

so that the following holds. For each g ∈ G(A), there exists some γ ∈ G(Q) such that
ι(gγ)q ∈ SLN (Zq) for all primes q 6= p,

|ι(gγ)∞| �
(
log ht(Y )

)κ1 and |ι(gγ)p| � ht(ι(g))κ1 ht(Y )κ1.

Moreover, the implicit multiplicative constants depend only on N .

The existence of such a prime p relies on Prasad’s volume formula [24], see §5.1 for more
details.

1.6. The S-arithmetic setting. Let S ⊂ Σ be a finite subset which contains the infinite
place. We will write QS for

∏
v∈S Qv, and ZS will denote the ring of S-integers.

Define htS : SLN (QS)→ R+ by

htS(g) := max
{

(
∏
v∈S ‖gw‖v)−1 : 0 6= w ∈ ZNS

}
.

For any S as above, define ∆S (or simply ∆ if there is no confusion) by

∆S := the projection of G(Q) ∩
(
G(QS)×

∏
q 6∈S ι

−1(SLN (Zq)
)

to G(QS);

note that ∆S is a lattice in G(QS).
Let ΩS ⊂ SLN (QS) be an open set which contains the identity and has compact closure.

Put Ŷ = ι(G(QS)/∆) and define

vol(Ŷ ) := mS

(
ι(G(QS)) ∩ ΩS

)−1
,



4 A. MOHAMMADI, A. SALEHI GOLSEFIDY, AND F. THILMANY

where mS is a Haar measure on ι(G(QS)) normalized so that mS(Ŷ ) = 1.

1.7. Theorem. Let (G, ι) be as in §1.1. Let S be a finite set of places of Q which contains
the infinite place. For every v ∈ S, let Gv be a semisimple algebraic Qv-group. Assume

(1) Gv and G are isomorphic over Qv; in particular, G is semisimple and Gv is simply
connected.

(2) The group G(QS) =
∏
v∈S G(Qv) =

∏
v∈S Gv(Qv) is not compact.

There exists a constant κ2 > 0 depending only on N and a constant C ≥ 1 which depends
on G(QS) and N , but not on G, so that the following holds. For every g ∈ G(QS) there
exists some δ ∈ ∆ such that

|ι(gδ)| ≤ C htS(ι(g))κ2 vol(Ŷ )κ2 .

This theorem will be proved in §6; see in particular Theorem 6.6 where Theorem 1.7 is
restated and proved. We will also discuss some other corollaries of Theorem 1.5 in §6.

Let us highlight two features of the above theorem. First, note that once N is fixed the
dependence on the lattice ∆ in the estimates is only through its covolume vol(Ŷ ). Second, the

above estimates use vol(Ŷ ) instead of vol(Y ); the fact that vol(Ŷ ) and vol(Y ) are polynomially
related to each other is a consequence of deep results by Prasad and Borel and Prasad [24, 3],
see §6.3.

Acknowledgements. We would like to thank E. Lindenstrauss for helpful discussions.

2. Notation and preliminaries

2.1. Notation. Throughout the paper, Σ, A, etc. will be as in §1.1. In particular, A =∏′
v∈Σ Qv where

∏′ denotes the restricted direct product with respect to Zp for p ∈ Σf . Given

an element g in SLN (A) (or in slN (A), AN , etc.), we write gv for the v-th component of g.
If S ⊂ Σ is a finite set of places containing the infinite place, ZS will denote the ring of

S-integers, that is ZS = {r ∈ Q | |r|v ≤ 1 for v /∈ S}. On the other hand, QS will denote the
product

∏
v∈S Qv. There are canonical inclusions Q ⊂ A, Q ⊂ QS , QS ⊂ A, etc. which will

often be omitted from the notation.
For any finite place p ∈ Σf , Fp = Zp/pZp is the finite field of order p. Let |x|p denote

the absolute value on Qp normalized so that |p|p = 1/p. Finally, let Q̂p denote the maximal

unramified extension of Qp, Ẑp denote the ring of integers in Q̂p, and F̂p denote the residue

field of Ẑp. Note that F̂p is the algebraic closure of Fp.
Recall that, for any place v ∈ Σ, ‖ ‖v denotes the maximum norm both on QN

v and slN (Qv)
with respect to their standard bases. When there is no ambiguity, we may drop the subscript
v. For this norm, we denote BslN (Qv)(r) the ball in slN (Qv) of radius r centered at 0.

Let (G, ι) be an algebraic datum, as described in 1.1. For any v ∈ Σ, let gv = Lie(G(Qv)).
Using the embedding dι : gv → slN (Qv), we pull back the norm ‖ ‖v to a norm on gv which
we continue to denote by ‖ ‖v (or ‖ ‖∞, ‖ ‖p). For these norms, we define Bgv(r) to be the
ball in gv of radius r centered at 0.

For every v ∈ Σ, we let Gv = ι(G(Qv)); in particular, G∞ = ι(G(R)).

In the sequel, the notation A � B means: there exists a constant c > 0 so that A ≤ cB;
the implicit constant c is permitted to depend on N , but (unless otherwise noted) not on
anything else. We write A � B if A� B � A. If a constant (implicit or explicit) depends on
another parameter or only on N , we will make this clear by writing e.g. �ε, �N , c(G), etc.
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The exponents κ• are allowed only to depend on N . We also adopt the ?-notation from [12].
We write B = A±? if B = cA±κ, where κ > 0 and c depend only on N , unless it is explicitly
mentioned otherwise. Similarly one defines B � A?, B � A?. Finally, we also write A � B?

if A? � B � A? (possibly with different exponents).

2.2. Injectivity radius in X. Given η > 0, put Ξη := exp(BslN (R)(η)). Throughout, we
assume η0 is small enough so that exp : BslN (R)(η0) → Ξη0 is a diffeomorphism. For any
η > 0, let

Ωη := Ξη ×
(∏

Σf

SLN (Zp)
)
.

We fix Ω = Ωη0 ; this set will be the one used to measure the volume of (G, ι), as described in
§1.3.

For x ∈ X, define πx : SLN (A)→ X by πx(g) = gx; when x = e we simply write π for πx.
For every 0 < η < η0, define

(2.1) Xη := {x ∈ X : πx is injective when restricted to Ωη}.
If η ≥ η0, set Xη = ∅. Let Yη := Y ∩Xη.

2.3. Lemma. There exists some constant κ3 > 0 so that the following holds.

(1) For any g ∈ SLN (A) we have g ∈ Xκ3 ht(g)−κ3 .

(2) If gSLN (Q) ∈ Xη, then ht(g)� η−κ3.

Proof. Let g ∈ SLN (A). First note that by strong approximation for SLN , there exists some
γ0 ∈ SLN (Q) so that

gγ0 = (g′∞, (g
′
p)) ∈ SLN (R)×

(∏
p SLN (Zp)

)
.

Further, using the reduction theory of SLN (R), there exists some γ̂1 ∈ SLN (Z) so that g∞γ̂1 =
kau, where k ∈ SON (R), a = diag(ai) is diagonal with positive entries satisfying aia

−1
i+1 ≤

2/
√

3, and u = (uij) is unipotent upper triangular with |uij | ≤ 1/2. Note that

‖aua−1‖op ≤
1

2

(
(2/
√

3)N − 1

(2/
√

3)− 1
+ 1

)
� 1

for any a and u as above.
Let γ = γ0γ1, where γ1 denotes the diagonal embedding on γ̂1 in SLN (Q) ⊂ SLN (A). Then,

since γ1,p ∈ SLN (Zp) for all p, we have

(2.2) gγ = (kau, (ĝp)) ∈ SLN (R)×
(∏

p SLN (Zp)
)
.

For w ∈ QN , we have

c(gγw) = ‖(kau)w‖∞ ·
(∏

p ‖ĝpw‖p
)

= ‖(kaua−1)aw‖∞ ·
(∏

p ‖w‖p
)

since ĝp ∈ SLN (Zp)

� ‖aw‖∞ ·
(∏

p ‖w‖p
)

since k ∈ SON (R), ‖aua−1‖op � 1.(2.3)

Moreover, we have ‖aw‖∞ ≤ (maxi ai)‖w‖∞ = |a|·‖w‖∞, and thus also |a|−1‖w‖∞ ≤ ‖aw‖∞.
Therefore, (2.3) implies that

(2.4) |a|−1c(w)−1 � c((gγ)w)−1 � |a|c(w)−1.

Now for w an appropriate basis vector, we have

‖aw‖−1
∞ = (min

i
ai)
−1 = max

i
a−1
i = ‖a−1‖op,
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and since det a = 1, we have ‖a−1‖op ≥ ‖a‖1/(N−1)
op . For such w, it thus follows from (2.3)

that c((gγ)w)−1 � |a|1/(N−1). Together with (2.4), this shows

(2.5) |a|1/(N−1) � ht(g) = max{c(Ad(gγ)w)−1 : 0 6= w ∈ slN (Q)} � |a|.
Now if instead w ∈ slN (Q), we have

‖Ad(a)w‖∞ ≤ (max
i,j

aia
−1
j )‖w‖∞ ≤ |a|2‖w‖∞.

In the same way as above, since k ∈ SON (R) and ‖aua−1‖op � 1, there is some c � 1 such
that for any η > 0,

Ad(k(aua−1)a)−1BslN (R)(η) ⊂ Ad(a)−1BslN (R)(cη) ⊂ BslN (R)(c|a|2η).

Applying the exponential map yields

(k(aua−1)a)−1Ξη(k(aua−1)a) ⊂ Ξc|a|2η.

Therefore, we have

γ−1g−1Ωηgγ ∩ SLN (Q) ⊂
(
(kau)−1Ξηkau ∩ SLN (Z)

)
×
(∏

p SLN (Zp)
)

⊂
(
Ξc|a|2η ∩ SLN (Z)

)
×
(∏

p SLN (Zp)
)
.

In particular, if η � |a|−2, then γ−1g−1Ωηgγ ∩ SLN (Q) = {1}. That is: g ∈ Xc′|a|−2 for

perhaps another constant c′ > 0. This implies the claim in (1) in view of (2.5).
To see (2) in the lemma, let η > 0 and suppose gSLN (Q) ∈ Xη. Let γ ∈ SLN (Q) be so that

gγ is as in (2.2). For any w ∈ slN (R) in the appropriate root space, we have

‖Ad(a)w‖−1
∞ = (min

i,j
aia
−1
j )−1‖w‖∞ = (max

i,j
aia
−1
j )‖w‖∞

≥ N−2
(∑

i

ai

)(∑
j

a−1
j

)
‖w‖∞ ≥ N−2|a| · ‖w‖∞.(2.6)

Because k ∈ SON (R), ‖aua−1‖op � 1, we may scale w so that

w ∈ Ad(kaua−1)−1BslN (R)(η)

while keeping ‖w‖∞ � η. With this choice for w, we have

Ad(a)−1w ∈ Ad(kau)−1BslN (R)(η),

that is, exp(Ad(a)−1w) ∈ (kau)−1Ξηkau. In consequence,

(2.7) ‖Ad(a)−1w‖∞ < 1.

Indeed, otherwise, we would be able to pick Ad(a)−1w to be an elementary matrix, for which
we would have

exp(Ad(a)−1w) ∈
(
(kau)−1Ξηkau×

∏
p SLN (Zp)

)
∩ SLN (Q)

= γ−1g−1Ωηgγ ∩ SLN (Q).

This contradicts the fact g−1Ωηg ∩ SLN (Q) = {1}. In virtue of our choice for w, (2.6), and
(2.7) , we have

|a|η � |a| · ‖w‖∞ � ‖Ad(a)−1w‖∞ < 1.

Finally, in view of (2.5), this immediately implies

ht(g)� |a| � η−1

and concludes the proof of the lemma. �
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2.4. Remark. In the definition (1.1) of the height, instead of using the action of SLN (A) on
AN , one could have acted on slN (A) via the adjoint action. More precisely, one could have

defined h̃t : SLN (A)→ R+ by

h̃t(g) := max{c(Ad(g)w)−1 : 0 6= w ∈ slN (Q)},
where the function c is given by the same expression c(w) :=

∏
v∈Σ ‖wv‖v. The proof of lemma

2.3 can be used to show that |a| � h̃t(g)� |a|2 (with a as in (2.2)), and in consequence that

ht(g)� h̃t(g)� ht(g)2(N−1).

The two heights are thus polynomially related, and for the purpose of Theorem 1.5, they can
be used interchangeably.

2.5. Elements from Bruhat-Tits theory. We recall a few facts from Bruhat-Tits theory,
see [28] and references there for the proofs. Let G be a connected semisimple group defined
over Q. Let p be a finite place, then

(1) For any point o in the Bruhat-Tits building of G(Qp), there exists a smooth affine

group scheme G
(o)
p over Zp, unique up to isomorphism, such that: its generic fiber

is G(Qp), and the compact open subgroup G
(o)
p (Zp) is the stabilizer of o in G(Qp),

see [28, 3.4.1].

(2) If G splits over Qp and o is a special point, then the group scheme G
(o)
p is a Chevalley

group scheme with generic fiber G, see [28, 3.4.2].

(3) redp : G
(o)
p (Zp)→ Gp

(o)(Fp), the reduction mod p map, is surjective, see [28, 3.4.4].

(4) Gp
(o) is connected and semisimple if and only if o is a hyperspecial point. Stabilizers

of hyperspecial points in G(Qp) will be called hyperspecial subgroups, see [28, 3.8.1]
and [24, 2.5].

If G is quasi-split over Qp, and splits over Q̂p, then hyperspecial vertices exists, and they
are compact open subgroups of maximal volume. Moreover a theorem of Steinberg implies

that G is quasi-split over Q̂p for all p, see [28, 1.10.4].
It is known that for almost all p the group G is quasi-split over Qp, see [23, Theorem 6.7].

Moreover, for almost all p the groups Kp are hyperspecial, see [28, 3.9.1].

3. Small Levi decomposition in Lie algebras

Recall from §2.1 that ‖ ‖ denotes the (archimedean) max norm both on QN and on slN (Q)
with respect to the standard basis. Note that if u, v ∈ slN (Q), we have ‖[u, v]‖ � ‖u‖‖v‖.

If g is a subalgebra of slN (Q), and B = {u1, . . . , uM} is a Z-basis of g∩ slN (Z), we can also
endow g with the max norm ‖ ‖B in the basis B. For any u ∈ g we have

(max
i
‖ui‖)−1‖u‖ � ‖u‖B � (max

i
‖ui‖)‖u‖.

In this section we prove the following.

3.1. Proposition. There exists some κ4 > 0 with the following property. Let g ⊂ slN (Q) be
a Lie subalgebra and let r = R(g) be its radical. Further, let l ⊂ g be a reductive subalgebra
with l ∩ r = {0} (it may be that l = {0}). Assume that ht(g) ≤ T and ht(l) ≤ T . There exists
a Levi decomposition g = h⊕ r with l ⊂ h, so that

ht(h)� T κ4 and ht(r)� T κ4 ,

where the implied constants depend only on N .
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Roughly speaking, the proof of the proposition is based of the following phenomenon: a
consistent system of linear equations with integral coefficients which are bounded by T has a
solution of norm � T ?.

Let us also note that if R(G) = Ru(G) and g = Lie(G), the condition l ∩ r = {0} holds
true for any reductive subalgebra.

3.2. Systems of integral linear equations. For the convenience of the reader, in this
section we record some lemmas which provide estimates on the size of solutions of systems of
linear equations with integral coefficients.

We note that the following lemmas aim for good polynomial bounds. If one is content with
a rough polynomial bound, one could easily prove

|xlj | ≤
√

(N − 1)! · (max
ij
|aij |)N−1

in the first lemma and the bound ‖vi‖ ≤ N maxj ‖uj‖ in the third lemma — these rough
bounds suffice for our applications as well.

Lemma (Siegel’s lemma). Let A = (aij) be a M × N -matrix (N > M) of full rank, with
integer coefficients aij, and {∑N

j=1 aijxj = 0 i = 1, . . . ,M

the associated linear system. There exists a basis {(xl1, . . . , xlN ) | l = 1, . . . , N −M} of the

space of solutions of the system satisfying xlj ∈ Z and |xlj | ≤
√
|detAAT | for l = 1, . . . N−M .

Proof. See [2, Thm. 2]. �

Lemma (Siegel’s lemma for inhomogeneous equations). Let{∑N
j=1 aijxj = bi i = 1, . . . ,M

be a consistent system of M linear equations in N > M variables, with integer coefficients
aij. Then the system has a solution (y1d , . . . ,

yN
d ) with yi, d ∈ Z and

max
i
{|yi|, |d|} � (max

ij
|aij |)?.

Proof. The lemma is deduced from [19, Thm. 2 and 3]. First, by assumption, the system has
a solution (y1z1 , . . . ,

yN
zN

) in QN . Set P = {p ∈ Σf : p|zi for some 1 ≤ i ≤ N} ∪ {∞}. Then [19,

Thm. 2 and 3] apply to our system and the set P of places, and yield a solution of the system
with bounded height.

The bound on the height is independent of P , and in our setting, it readily translates to a
polynomial bound on maxi{|yi|, |zi|}. �

Lemma (extracting small Z-bases). Let V be a vector space over Q endowed with a norm ‖·‖
and let VZ be a free Z-submodule of V which spans V over Q. Given a basis {u1, . . . , uN} of V
over Q lying in VZ, there exists a subset {v1, . . . , vN} of VZ with the property that {v1, . . . , vi}
is a Z-basis of (Qu1 + · · ·+ Qui) ∩ VZ and ‖vi‖ ≤

∑i
j=1 ‖uj‖ for i = 1, . . . , N .

Proof. Let {v1, . . . , vN} be a Z-basis of VZ and A = (aij) be the integer matrix such that
(u1, . . . , uN ) = (v1, . . . , vN )A. Up to a change of the basis {v1, . . . , vN}, we may assume that
A is in Hermite normal form, i.e., A is upper triangular, all its entries are non-negative, and
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in a given column, the entry on the diagonal is strictly bigger than the other ones. We then
have 

u1 = a11v1

u2 = a12v1 + a22v2

...

um = a1mv1 + · · ·+ aNNvN .

If w ∈ (Qu1 + · · ·+ Qui) ∩ VZ, we may write w =
∑N

j=1 λjvj with λj ∈ Z. Now

w −
i∑

j=1

λjvj =
N∑

j=i+1

λjvj ∈ (Qv1 + · · ·+ Qvi) ∩ (Qvi+1 + · · ·+ QvN ) = {0},

and it follows that w =
∑i

j=1 λjvj , i.e. {v1, . . . , vi} is a Z-basis of (Qu1 + · · ·+ Qui) ∩ VZ.
Lastly, regrouping terms and taking norms in the system above yields

‖v1‖ = ‖u1‖
a11
≤ ‖u1‖

‖v2‖ = ‖u2−a12v1‖
a22

< ‖u2‖+ ‖v1‖
...

‖vm‖ =
‖um−a1Nv1−···−a(N−1)NvN−1‖

aNN
< ‖u2‖+ ‖v1‖+ . . . ‖vN−1‖.

The lemma follows by combining all the inequalities. �

3.3. Proof of Proposition 3.1. We need to find a Levi decomposition g = h⊕ r, where r is
the radical of g, and Z-bases {w1, . . . , wn} of h∩ slN (Z), and {v1, . . . , vm} of r∩ slN (Z) which
satisfy that

‖vi‖ ≤ T ? and ‖wj‖ ≤ T ? for all i, j.

If l 6= 0, let {ũ1, . . . , ũl} be a Z-basis for l ∩ slN (Z) with ‖ũi‖ � T ?. Extend this to a

Q-basis B̃ = {ũ1, . . . , ũM} ⊂ g ∩ slN (Z) for g with ‖ũi‖ � T ? for all i. By the extracting

small Z-bases lemma in §3.2, there exists a Z-basis B̂ = {û1 . . . , ûM} for g ∩ slN (Z) so that
‖ûi‖ ≤ T ? for all i and {û1, . . . , ûi} is a Z-basis for (Qũ1 + · · ·+Qũi)∩ slN (Z). In particular,
{û1, . . . , ûl} is a Z-basis for l ∩ slN (Z) if l 6= 0.

Note that the structure constants {αkij} of g in the basis {ui} are bounded:

(3.1) max
k
|αkij | = ‖[ûi, ûj ]‖B̂ � (max

j
‖ûj‖) · ‖[ûi, ûj ]‖ � T ?.

As B̂ is a Z-basis for g ∩ slN (Z), the {αkij} are integers.

Step 1. Bounding ht(r).
Let k denote the killing form of g. Recall that the radical r = R(g) is the orthogonal

complement of the derived algebra [g, g] for k. Thus r is given in the basis B̂ by the solutions
(yi) of the system

k

( M∑
i=1

yiûi, [ûj , ûk]

)
= 0, j, k = 1, . . . ,M.

The coefficients of this system are � T ?. Thus, after removing redundant equations from the
system, we may apply Siegel’s lemma combined with extracting small Z-bases lemma from
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§3.2 and obtain the following. There exists a Z-basis {v1, . . . , vm} of r ∩ slN (Z), so that
‖vi‖B̂ � T ?. In consequence, we get that

(3.2) ‖vi‖ � (max
j
‖ûj‖) · ‖vi‖B̂ � T ?.

Step 2. A basis for g adapted to l, r, and [r, r].
Let {v1, . . . , vm} be a Z-basis of r ∩ slN (Z) as constructed above. We first gather a basis

of [r, r] among {[vi, vj ] | i, j = 1, . . . ,m}, then extend this to a Q-basis, C, of r by adding an
appropriate subset of {v1, . . . , vm} to it. Finally, we extend C to a Q-basis, B′, of g by adding
an appropriate subset of {û1, . . . , ûM} to C. Note that if l 6= 0, we may obtain {û1, . . . , ûl} ⊂ B′
because l ∩ r = {0}.

Now applying the extracting small Z-bases lemma from §3.2 yields a Z-basis B = {u1, . . . , uM},
of g ∩ slN (Z) so that

(1) ‖ui‖ � T ?.
(2) {u1, . . . , um′} is a Z-basis for [r, r] ∩ slN (Z).
(3) {u1, . . . , um} is a Z-basis for r ∩ slN (Z).
(4) {u1, . . . , um+l} is a Z-basis for (l⊕ r) ∩ slN (Z).

In particular, {um′+1, . . . , um} projects to a basis of r/[r, r]. Let us write D := {um′+1 +
[r, r], . . . , um + [r, r]}.

Also note that for 1 ≤ i ≤ l and 1 ≤ j ≤ m + l, there are cij ∈ Z with |cij | � T ? so that
for each 1 ≤ i ≤ k we have

(3.3) ûi =

m+l∑
j=1

ci,juj .

Step 3. Finding a Levi subalgebra h with small height.
We argue by induction on `d(r), the derived length of the radical r. When `d(r) = 0, g is

semisimple, and it suffices to set h = g.
Therefore, let us assume that `d(r) ≥ 1. Define

E = {f ∈ End(g, r/[r, r]) : f satisfies (a), (b), and (c)},

where End(g, r/[r, r]) denotes the set of Q-linear maps from g to r/[r, r], and

(a) l ⊂ ker f ,
(b) f restricts to the canonical projection r→ r/[r, r],
(c) f([u, v]) = [u+ [r, r], f(v)] + [f(u), v + [r, r]] for all u, v ∈ g.

If h is a Levi subalgebra of g which contains l, then the canonical projection g = r ⊕ h →
r/[r, r] (whose kernel is precisely [r, r]⊕h) belongs to E. Now, since l is reductive, there exists
a Levi subalgebra h so that l ⊂ h, see [21]. Therefore, E 6= ∅.

Claim. If f ∈ E, then ker f is a Lie subalgebra of g whose radical is [r, r].

Proof of the claim. First note that in view of (c) above, ker f is a subalgebra. Also, it is clear
from (b) that [r, r] ⊂ R(ker f).

To see the converse, note that r + ker f = g, hence r + R(ker f) is an ideal of g. Moreover,
r+ R(ker f) is solvable. Therefore, R(ker f) ⊂ r∩ker f = [r, r], where the last equality follows
from (b). �

In view of the claim, if h is a Levi subalgebra of ker f with l ⊂ h, then

(3.4) g = r + ker f = r + ([r, r]⊕ h) = r⊕ h.
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That is: h is a Levi subalgebra of g and l ⊂ h.
The strategy now is to find some f ∈ E with ht(ker(f))� T ?. Then the above observation

and inductive hypothesis will yield the desired Levi subalgebra.
We now turn to the details. First note that in view of (a), (b) and (c), we have that E is

the set of solutions f ∈ End(g, r/[r, r]) of the inhomogeneous system
f(ui) = 0 i = 1, . . . ,m′

f(ui) = ui + [r, r] i = m′ + 1, . . . ,m

f(ûi) = 0 i = 1, . . . , l

f([ui, uj ]) = [ui + [r, r], f(uj)] + [f(ui), uj + [r, r]] i, j = 1, . . . ,M.

In view of (3.1) and (3.3) we have the following. When f is written in the basis of End(g, r/[r, r])
associated to B and D, the above system becomes a linear system whose coefficients are inte-
gers bounded in absolute value by � T ?.

Since E is not empty, after perhaps removing redundant equations, we may apply Siegel’s
lemma for inhomogeneous equations in §3.2 and get the following. There is a solution f whose
matrix in the bases B and D has rational entries, with numerator and common denominator
c � T ?. Put f ′ = cf , so that the matrix of f ′ in the bases B and D has integer coefficients
of size � T ?.

At last, another application of Siegel’s lemma and extracting small Z-bases lemma in §3.2
to f ′ yields that ker f ∩ slN (Z) has a Z-basis {w1, . . . , wn′} satisfying

‖wi‖ � T ? 1 ≤ i ≤ n′

Recall from the claim that l ⊂ ker f , R(ker(f)) = [r, r], and `d([r, r]) < `d(r). Hence by the
inductive hypothesis, ker f has a Levi subalgebra, h, with ht(h)� T ?.

In view of (3.4), this finishes the proof of Step 3 and the proposition. �

4. Consequences of effective Levi decomposition

Recall from §1.1 that we fixed the following.

(1) A connected, simply connected, algebraic Q-group G whose solvable radical is unipo-
tent, i.e., R(G) = Ru(G) =: R.

(2) An algebraic homomorphism ι : G→ SLN defined over Q with a finite central kernel.

Also recall that µY (or simply µ) denotes the G = ι(G(A))-invariant probability measure
on Y = ι(G(A)/G(F )). Let mG (or simply m) be a Haar measure on G which projects to µ
under the orbit map.

In this section, we will use the results from §3 to find a good Levi decomposition for ι(G).
Then we will relate the notion of height of Y (see §1.3, §1.4) to the heights of orbits similarly
defined using the radical and our fixed Levi subgroup.

4.1. Finding a good Levi subgroup. Let g′ ⊂ slN (Q) (resp. r′) denote the Lie algebra of
ι(G) (resp. of ι(R)). Set T := ht(g′).

Let h′ be a Levi subalgebra of g′ given by proposition 3.1 applied to g′, so that ht(h′)� T ?.
Let H′ be the subgroup of ι(G) with Lie(H′) = h′. Then H′ is a Levi subgroup of ι(G),

and we have ι(G) = H′ι(R).
We now discuss similar decompositions over Q and also A. First note that, since R =

Ru(G), H′ is semisimple (not just reductive), and we have H′(A) ∩ ι(R)(A) = {1}.
Set H = ι−1(H′). Since ι has finite central kernel, H is a semisimple Q-subgroup of G

isogenous to H′; thus H is a Levi Q-subgroup of G. Moreover, G(Q) = H(Q)R(Q). Indeed,
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in the exact sequence

1→ R(Q)→ G(Q)→ H(Q)→ H1(Q,R)

associated to the quotient G/R ∼= H, the term H1(Q,R) vanishes because R is unipotent.
Hence G(Q)→ H(Q) is onto.

The same argument applied to the group ι(G) shows that ι(G)(Q) = ι(H)(Q)ι(R)(Q).
The above also implies that

G(A) = H(A)R(A).

Indeed, since G(Q) = H(Q)R(Q), the embedding H → G is a section defined over Q of
the quotient map G → H. Hence G(A) → H(A) is surjective, see [29, §1.2], and we get
G(A) = H(A)R(A) as was claimed.

Applying ι, this yields ι(G(A)) = ι(H(A))ι(R(A)).

4.2. Product structure of Y, µY , and mG. Let p̂rH : G→ H be the map which is induced
from the natural projection G → G/R. More explicitly, given g ∈ G, we have the unique
decomposition

g = gHgR where gH ∈ H and gR ∈ R;

then p̂rH(g) = gH.
Let prH : G → H := ι(H(A)) be the induced map, given by prH(g) = gH , where g =

gHgR ∈ ι(H(A))ι(R(A)).
Put YH := ι(H(A)/H(Q)). The map prH induces a map Y → YH given by ι(g)SLN (Q) 7→

ι(gH)SLN (Q) for g ∈ G(A). To see this, suppose ι(g−1
1 g2) ∈ SLN (Q) for some g1, g2 ∈ G(A).

Then ι(g−1
1 g2) ∈ ι(G)(Q) = ι(H)(Q)ι(R)(Q), hence

ι((g1)H
−1(g2)H) = ι((g−1

1 g2)H) ∈ ι(H)(Q) ⊂ SLN (Q).

We continue to denote the map so induced from Y to YH by prH .
Put R := ι(R(A)) and YR := ι(R(A)/R(Q)); we have a fibration

YR Y

YH

prH

The fiber over ι(h)SLN (Q) ∈ YH is pr−1
H (ι(h)) = ι(h)ι(R(A))SLN (Q), the translate of YR by

ι(h).
Let µR (resp. µH) be aR-invariant (resp.H-invariant) probability measure on YR (resp. YH).

Let µ̂ be the measure on Y defined by∫
Y
f dµ̂ =

∫
YH

(∫
YR

f(hrSLN (Q)) dµR(r)

)
dµH(h).

Since H is semisimple, the modulus of the action of H on µR is trivial. Thus µ̂ is a
G-invariant probability measure on YG; that is: µ̂ = µY .

Let mH and mR be Haar measures on ι(H(A)) and ι(R(A)) which project to µH and µR,
respectively. The measure m̂ on G given by the product of mH and mR is a Haar measure.
Moreover, m̂ projects to the invariant probability measure µ̂ = µY on Y via the orbit map.
Therefore, mG = m̂ is the product of mH and mR.

4.3. Lemma. There exists some κ5 so that

vol(YR)κ5 � ht(R)� vol(YR).
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Proof. Recall that ι is an isomorphism on R. For every prime p, put

Cp = ι−1(R′(Qp) ∩ SLN (Zp));

Cp is a compact open subgroup of R(Qp). By the strong approximation theorem for unipotent
groups, we have

R(A) =
(
R(R)×

∏
pCp

)
R(Q).

In other words, for every g ∈ R(A) there exists some γ0 ∈ R(Q) so that

gγ0 = (ĝ∞, (ĝp)) ∈ R(R)×
∏
pCp.

Recall now that log(ι(R(R)) ∩ SLN (Z)) ⊂ (r′ ∩ 1
D slN (Z)) for some integer D depending

only on N . Let {v1, . . . , vn} be a Z-basis for r′ ∩ 1
D slN (Z). For every δ > 0, put

Fδ := {h∞ ∈ ι(R(R)) : h∞ = exp(
∑

civi), |ci| < δ}} ×
∏
p

ι(Cp).

Note that,

Fδ ∩ SLN (Q) ⊂ SLN (Z);

therefore, in view of the choice of D, for small enough δ � 1 we have Fδ ∩ SLN (Q) = {e}.
Also, note that Fδ = F−1

δ ; and if δ � 1 is small enough, hh′ ∈ F?δ for any h, h′ ∈ Fδ.
Altogether, we get that Fδ injects into YR for all small enough δ � 1.

Recall that mR is a Haar measure on ι(R(A)) normalized so that µR(YR) = 1; also recall
that Ω = exp(BslN (R)(η0))×

∏
p SLN (Zp). Therefore,

mR(ι(R(A)) ∩ Ω)� ‖v1 ∧ · · · ∧ vn‖−1.

Since ‖v1 ∧ · · · ∧ vn‖ � ht(R), we get from the above that

ht(R)� vol(YR) = mR(ι(R(A)) ∩ Ω)−1.

To see the other inequality, let g ∈ R(A). Let γ0 ∈ R(Q) be so that

gγ0 = (ĝ∞, (ĝp)) ∈ R(R)×
∏
pCp.

There exists some γ̂1 ∈ ι−1(exp(r′ ∩N ! slN (Z))) so that

|ι(ĝ∞γ̂1)| � ht(R)κ

for some κ independent of g. Note that ι(γ̂1) ∈ ι(R(R)) ∩ SLN (Z), hence γ̂1 ∈ R(Q).
Let γ1 be the diagonal embedding of γ̂1 in R(A). Then since ι(γ̂1) ∈ SLN (Z), we get that

gγ0γ1 = (ĝ∞, (ĝp))γ1 = (ĝ∞γ̂1, (g̃p)) ∈ R(R)×
∏
pCp.

Since we can cover {g ∈ R(R) : |ι(g)| � ht(R)κ} with � ht(R)? translates of ι(R(R)) ∩
exp(BslN (R)(η0)), we get that

mR(ι(R(A)) ∩ Ω)� ht(R)−?.

Therefore, vol(YR)? � ht(R); the proof is complete. �

4.4. Lemma. There exist κ6 so that the following holds. For any g ∈ G we have

ht(G)−κ6 ht(g)κ6 � ht(prH(g))� ht(G)κ6 ht(g)κ6 .
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Proof. Recall our notation G′ = ι(G) and the Levi subgroup H′ of G′ from §4.1. Put
R′ := ι(R) = Ru(G′). If R′ = {1}, then R = {1} and there is nothing to prove. Therefore,
let us assume that R′ is a nontrivial unipotent Q-subgroup of SLN .

Let P ⊂ SLN be the parabolic subgroup associated to R′ as in [4]. That is: U0 = R′ and
Ui is defined inductively by Ru(NSLN (Ui−1)). Then Ui ⊂ NSLN (Ui−1) and Ui−1 ⊂ Ui. This
process terminates after d ≤ N2 steps and gives rise to a parabolic subgroup, P, with the
following properties.

(1) ht(P)� ht(R)?.
(2) R′ ⊂ Ru(P) =: W.
(3) NSLN (R′) ⊂ P.

In view of (1) and Proposition 3.1, we have ht(W)� ht(P)? � ht(R)?. Moreover, by (3) we
have G′ ⊂ P.

Let FP denote the flag defined by W as follows. Let V0 = QN , and for any m > 0, let

Vm = Q-span{w1 . . . wmv : v ∈ QN , wi ∈ Lie(W)}.
Then {Vm} forms a descending chain of subspaces of QN ; let M ≤ N be so that VM 6= 0 but
VM+1 = 0. Further, note that ht(Vm)� ht(R)? for each 0 ≤ m ≤M .

There exists some δ = (
aij
bij

) ∈ SLN (Q) with |aij |, |bij | � ht(R)? so that δFP = F0 where

F0 is a standard flag, i.e., F0 is a flag corresponding to a block upper triangular parabolic
subgroup P0. One could construct one such δ as follows: for each i ≥ 0 let V ′i be a complement
of VM+1−i in VM−i (in particular, V ′0 = VM ), chosen so that ht(V ′i)� ht(R)? for all i.

Let us put Q0 = [P0,P0]Ru(P0). The group Ru(P0) is unipotent upper triangular and
since δWδ−1 ⊂ Ru(P0), we have δR′δ−1 ⊂ Ru(P0). Further, δH′δ−1 ⊂ Q0 since H′ is perfect
and normalizes R′.

Let g ∈ G ⊂ G′(A); write g = gHgR where gH ∈ ι(H(A)) and gR ∈ ι(R(A)) — recall that
prH(g) = gH . We will use the reduction theory of SLd to compute an Iwasawa decomposition
for representatives of ĝH := δgHδ

−1 and ĝ := δgδ−1 in a Siegel fundamental domain.
Decompose ĝH as a product of a block-diagonal matrix in Q0 and an element in Ru(P0).

Then using the reduction theory of SLd for each block matrix and the fact that Ru(P0) is
normal subgroup of Q0, we have the following. There exists some γ0 ∈ Q0(Q) so that

(4.1) ĝHγ0 = (kau, (g′H,p)) ∈ SLN (R)×
(∏

p SLN (Zp)
)

where k ∈ SON (R), a = diag(ai) is diagonal with aia
−1
i+1 ≤ 2/

√
3, and u = (uij) is unipotent

upper triangular with |uij | ≤ 1/2 (see also the proof of Lemma 2.3).
Let us write ĝR = δgRδ

−1 ∈ Ru(P0)(A). Let γ1 ∈ SLN (Q) be unipotent upper triangular,
such that

(u, (e))γ−1
0 ĝRγ0γ1 = (u′, (u′p))

with u′ = (u′ij) and |u′ij | ≤ 1/2, and u′p ∈ SLN (Zp). This, in view of (4.1), gives

ĝγ = ĝH ĝRγ = ĝHγ0(γ−1
0 ĝRγ0γ1) = (ka, (g′H,p))(u, (e))γ

−1
0 ĝRγ0γ1

= (kau′, (g′H,pu
′
p)) ∈ SLN (R)×

(∏
p SLN (Zp)

)
(4.2)

where γ = γ0γ1.
As was discussed in the proof of Lemma 2.3, the decompositions in (4.1) and (4.2) imply

that
|a|? � ht(ĝH)� |a|? and |a|? � ht(ĝ)� |a|?.

Recall now that g = δ−1ĝδ and gH = δ−1ĝHδ where δ = (
aij
bij

) ∈ SLN (Q) with |aij |, |bij | �
ht(R)? � ht(G)?. The claim thus follows. �
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4.5. Proposition. There exist κ7 and κ8 with the following property.

(1)
(
vol(YH) vol(YR)

)κ7 � ht(Y )�
(
vol(YH) vol(YR)

)κ8 .
(2)

(
ht(YH) ht(YR)

)κ7 � ht(Y )�
(
ht(YH) ht(YR)

)κ8 .
Proof. Recall definitions of vol(·) and ht(·) of an algebraic data from (1.2) and (1.5), respec-
tively.

We first show that part (2) follows from part (1). Indeed by Lemma 4.3, we have ht(R)�
vol(YR); hence, ht(YR) � vol(YR). Moreover, by [11, App. B] we have ht(H)? � vol(YH);
hence, vol(YH)? � ht(YH)� vol(YH)?.

We now turn to the proof of part (1) in the proposition.

The upper bound. Because multiplication is Lipschitz (or alternatively, by the Baker-
Campbell-Hausdorff formula), perhaps after changing η0, we have Ωη·Ωη ⊂ Ξcη×

∏
v∈Σf

SLN (ov) =

Ωcη for some c depending only on N , hence

(ι(H(A)) ∩ Ωη) · (ι(R(A)) ∩ Ωη) ⊂ ι(G(A)) ∩ Ωcη.

In view of our discussion in §4.2, the measure of the left hand side is

mG

(
(ι(H(A)) ∩ Ωη) · (ι(R(A)) ∩ Ωη)

)
= mH

(
ι(H(A)) ∩ Ωη

)
· mR

(
ι(R(A)) ∩ Ωη

)
.

On the other hand, by [11, §2.3], we have

mG (ι(G(A)) ∩ Ωcη)�η mG (ι(G(A)) ∩ Ωη) .

Altogether, it follows that

vol(Y )� mG

(
ι(G(A)) ∩ Ωcη0

)−1

� mH

(
ι(H(A)) ∩ Ωη0

)−1 ·mR

(
ι(R(A)) ∩ Ωη0

)−1

= vol(YH) vol(YR).

To conclude the upper bound estimate, it thus suffices to show that

ht(G)� (vol(YH) vol(YR))?.

To see this first note that since g = h ⊕ r, we have ht(G) � (ht(H) ht(R))?. Now by
Lemma 4.3, we have ht(R)� vol(YR). Moreover, by [11, App. B] we have ht(H)? � vol(YH).
The claim follows.

The lower bound. For the lower bound estimate, we will use notation from the proof of
Lemma 4.4; in particular, G′ = ι(G), H′ is a Levi subgroup of G′ and R′ = Ru(G′). Recall
from the proof of Lemma 4.4 that there exists some δ = (

aij
bij

) ∈ SLN (Q) with |aij |, |bij | �
ht(R)? and a block upper triangular parabolic subgroup P0 ⊂ SLN so that

δG′δ−1 ⊂ P0 and δR′δ−1 ⊂ Ru(P0).

Recall also that h′ = Lie(H′), and that Q0 = [P0,P0]Ru(P0). We define M to be the block
diagonal Levi subgroup of Q0.

Apply Proposition 3.1 with Ad(δ)h′ ⊂ Lie(Q0). Therefore, there exists some Levi subgroup
M′ ⊂ Q0 so that

δH′δ−1 ⊂M′ and ht(M′)� ht(G)?.

Let B = {v1, . . . , vd} be a Z-basis for Lie(Ru(P0)) ∩ slN (Z) with ‖vi‖ � 1. Similarly,
let C = {w1, . . . , wm} (resp. C′ = {w′1, . . . , w′m}) be Z-bases for Lie(M) ∩ slN (Z), (resp.
Lie(M′) ∩ slN (Z)) with ‖wi‖ � 1 and ‖w′i‖ � ht(G)?.
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Recall that any two Levi subgroups of Q0 are conjugate to each other by an element in
Ru(P0). Writing these equations (in the Lie algebra) in the bases C and C′ in terms of
B we get the following. There exists some u = (uij) ∈ Ru(P0)(Q) with uij = (

cij
dij

) and

|cij |, |dij | � ht(G)? so that uM′u−1 = M.

Altogether, there exist some δ̂ = (âij/b̂ij) ∈ SLN (Q) with |âij |, |b̂ij | � ht(G)? so that

(4.3) δ̂H′δ̂−1 ⊂M and δ̂R′δ̂−1 ⊂ Ru(P0).

Put Ĝ = δ̂ι(G(A))δ̂−1, and define Ĥ, R̂ similarly. Having in mind our notations Gp =

ι(G(Qp)), etc., we write similarly Ĝp = δ̂ι(G(Qp))δ̂
−1, etc.

Let h ∈ SLN (Zp) ∩ Q0. We can write h = h0h1 where h0 ∈ SLN (Zp) ∩M and h1 ∈
SLN (Zp) ∩ Ru(P0). In consequence, we have

(4.4) Ĝp ∩ SLn(Zp) = (Ĥp ∩ SLN (Zp))(R̂p ∩ SLN (Zp))

for all primes p. Conjugating (4.4) by δ̂−1, we get

Gp ∩ δ̂−1
p SLN (Zp)δ̂p = (Hp ∩ δ̂−1

p SLN (Zp)δ̂p)(Rp ∩ δ̂−1
p SLN (Zp)δ̂p).

In particular, the image, Ip, of the product map from (Hp ∩ SLN (Zp))× (Rp ∩ SLN (Zp)) into

Gp contains Gp ∩ SLN (Zp) ∩ δ̂−1
p SLN (Zp)δ̂p for all primes p. Therefore,

(4.5) mGp(Ip) ≥ mGp(Gp ∩ SLn(Zp))/Jp

where Jp = [SLN (Zp) : SLN (Zp) ∩ δ̂−1
p SLN (Zp)δ̂p] for all primes p.

Since δ̂ = (âij/b̂ij) ∈ SLN (Q) with |âij |, |b̂ij | � ht(G)?, we have

(4.6)
∏
p Jp � ht(G)?

We also need an estimate for the real place. Let 0 < η ≤ η0 be a constant which will
be determined in the following. Suppose g ∈ ι(G(A)) ∩ Ωη and write g = (g∞, (gp)). By
definition, g∞ = expw for some w ∈ g′ ⊗R with ‖w‖ ≤ η. By Proposition 3.1 and our choice
of h′, we can write w = wh′ +wr′ with wh′ ∈ h′⊗R, wr′ ∈ r′⊗R and ‖wh′‖, ‖wr′‖ � ht(G)?η?.
We pick η in such a way η � ht(G)−?, so that the above implies

‖wh′‖, ‖wr′‖ ≤ εη0

for some ε which will be specified momentarily.
Using the Baker-Campbell-Hausdorff formula and the fact that r′ is an ideal of g′, we see

that the Levi component (g∞)ι(H(R)) of g∞ is just exp(wh′). Therefore, if ε � 1 is chosen
small enough, we get that (g∞)ι(H(R)) ∈ Ξη0 and (g∞)ι(R(R)) ∈ Ξη0 . In consequence, we we
have

(4.7) mG∞(G∞ ∩ Ξη0)� ht(G)?mH∞(H∞ ∩ Ξη0)mR∞(R∞ ∩ Ξη0).

Altogether, we have

vol(YH) vol(YR) = mH(ι(H(A)) ∩ Ω)−1mH(ι(R(A)) ∩ Ω)−1

(4.7) � ht(G)?mG∞(G∞ ∩ Ξη0)−1∏
p

(
mGp(Ip)

)−1

(4.5) � ht(G)? vol(Y )
∏
p Jp

(4.6) � ht(G)? vol(Y )

(1.5) � ht(Y )?.

This implies the lower bound estimate and finishes the proof. �
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5. Proof of Theorem 1.5

We now combine the results from previous sections to complete the proof of Theorem 1.5
— the idea is to use the effective Levi decomposition of §4 to reduce the problem to the case
of semisimple and unipotent groups.

5.1. Semisimple case. In the next paragraphs, we prove (a slightly finer version of) The-
orem 1.5 under the assumption that G is semisimple. Therefore, until the end of §5.5, G is
assumed to be a connected, simply connected, semisimple group. Under these assumptions
the following was proved in [11].

5.2. Proposition. There exists a prime p and a parahoric subgroup Kp of G(Qp) so that the
following hold.

(1) p�
(
log(vol(Y ))

)2
.

(2) G is quasi-split over Qp and split over Q̂p, the maximal unramified extension of Qp;
further, Kp is a hyperspecial subgroup of G(Qp).

(3) Let Gp be the smooth Zp-group scheme associated to Kp by Bruhat-Tits theory (see 2.5).
The map ι extends to a closed immersion from Gp to SLN .

(4) There exists a homomorphism θp : SL2 → Gp so that the projection of θp(SL2(Qp))
into each Qp-almost simple factor of G(Qp) is nontrivial.

Proof. Parts (1) and (2) are proved in [11, §5.11]; part (3) is proved in [11, §6.1]; part (4) is
proved in [11, §6.7]. �

Let p be as in Proposition 5.2 and let θp be as in Proposition 5.2(4). We define the one-
parameter unipotent subgroup

u : Qp → θp(SL2(Qp)) by u(t) = θp

((
1 t
0 1

))
.

Note that in view of Proposition 5.2(2) and (3) we have

(5.1) |ι(u(t))| � (1 + |t|p)?.

5.3. Property τ . Recall that G is quasi-split over Qp; in particular, all of the almost simple
factors of G are Qp-isotropic. Our proof relies on the uniform spectral gap; this deep input
has been obtained in a series of papers [16, 22, 26, 15, 6, 7, 13]. In particular,

• using [22, Thm. 1.1–1.2] when G(Fw) has property (T ), and
• applying property (τ) in the strong form, see [7], [13], and also [11, §4], in the general

case,

we have the following.

5.4. Theorem (Property (τ)). Let σ be the probability G(A)-invariant measure on G(A)/G(Q).
The representation of SL2(Qp) via θp on

L2
0(σ) :=

{
f ∈ L2(G(A)/G(Q), σ) :

∫
f dσ = 0

}
is 1/M -tempered. That is: the matrix coefficients of the M -fold tensor product are in L2+ε(SL2(Qp))
for all ε > 0.

It follows from the above theorem that for any f1, f2 ∈ C∞c (G(A)/G(Q)) we have

(5.2)
∣∣∣〈u(t)f1, f2〉σ −

∫
f1 dσ

∫
f̄2 dσ

∣∣∣� (1 + |t|p)−1/2MS(f1)S(f2),
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where S is a certain Sobolev norm. We refer to [11, App. A] for the definition and the
discussion of the Sobolev norm S.

Let η > 0 and put ΞG,η := exp(Bg∞(η)) ⊂ G(R). For every prime q, letKq := ι−1(SLN (Zq)) ⊂
G(Qq). Put ΩG,η := ΞG,η ×

∏
Σf
Kq ⊂ G(A). We set ΩG = ΩG,η0 , see §2.2.

5.5. Theorem (Semisimple version of Theorem 1.5). There exists some κ9 depending only on
N , and for any datum (G, ι) with G semisimple, there exists some p ∈ Σf with

p�
(
log(vol(Y ))

)2
,

so that the following holds. For any g ∈ G(A), there exists some γ ∈ G(Q) such that
gγ = h1hh2, where h1, h2 ∈ ΩG,η and h ∈ G(Qp) with

|ι(h)| � ht(ι(g))−κ9 vol(Y )κ9 .

Moreover, the implicit multiplicative constants depend only on N .

Proof. Recall that m is the Haar measure on G which projects to µY . Let λ be the Haar
measure on G(A) so that ι∗λ = m. By [11, §5.9] there exists some M ≥ 1 depending only on
dimG so that

(5.3) 1/M ≤ λ(G(A)/G(Q)) ≤M.

In view of the definition of vol(Y ), this implies that vol(Y ) � λ(ΩG)−1.
Let η be a positive constant. For any g ∈ G(A) put [g] = gG(Q); assume ι([g]) ∈ Xη.

We claim that if h, h′ ∈ ΩG,η are so that h[g] = h′[g], then h−1h′ ∈ Z(Q), where Z := Z(G)
denotes the center of G. To see this, apply ι to the equation h[g] = h′[g]. Using the definition
of Xη and the fact ι(ΩG,η) ⊂ Ωη, we get that ι(h) = ι(h′). Hence, h−1h′ ∈ Z(A); moreover
h−1h′ = g−1h−1h′g ∈ G(Q). Thus h−1h′ ∈ Z(Q) as claimed. This claim in particular implies
that π[g] : ΩG,η → G(A)/G(Q) defined by π[g](h) := h[g] is at most #Z(Q)-to-one on ΩG,η.

By [11, App. A], there exists a function f ∈ C∞c (G(A)) with the following properties:

• 0 ≤ f ≤ 1,
• for all h 6∈ ΩG,η we have f(h) = 0 and for all h ∈ ΩG,η/2 we have f(h) = 1,

• S(f)� η−?.

For every g ∈ G(A) with ι([g]) ∈ Xη, define f[g] ∈ C∞c (G(A)/G(Q)) as follows. If [g′] ∈
π[g](ΩG,η), put f[g]([g

′]) =
∑

π[g](h)=[g′] f(h); if [g′] 6∈ π[g](Gη), define f([g′]) = 0. Then

(1) 0 ≤ f[g] ≤ #Z(Q)� 1,
(2) f([g′]) = 0 for all [g′] 6∈ π[g](ΩG,η) and f[g]([g

′]) ≥ 1 for all [g′] ∈ π[g](ΩG,η/2),

(3) S(f[g])� η−?.

Recall the measure σ from Theorem 5.4. By (5.3), we have that
∫
f[g] dσ �

∫
f[g] dλ.

The set ΩG can be covered by � η−? translates among {hΩG,η/2 : h ∈ G(A)}. Since λ is

G(A)-invariant, this implies that λ(ΩG)� η−?λ(ΩG,η/2). Thus,

(5.4)

∫
f[g] dσ �

∫
f[g] dλ ≥ λ(ΩG,η/2)� η? vol(Y )−1;

here, we used properties (1) and (2) of f[g], and the fact vol(Y ) � λ(ΩG)−1.
Apply (5.2) with f1 = f[e] and f2 = f[g]. Using property (3) of f1 and f2, we get that

(5.5)
∣∣∣〈u(t)f1, f2〉σ −

∫
f1 dσ

∫
f2 dσ

∣∣∣� (1 + |t|p)−1/2Mη−?.
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We get from (5.5) and (5.4) (which also holds for f1) that if |t|p � vol(Y )?η−?, then

(5.6) 〈u(t)f1, f2〉σ 6= 0.

This implies in particular that if |t|p � vol(Y )?η−?, then the following holds. There exist

h1, h2 ∈ G(A) so that f1([h1]) 6= 0, f2([h−1
2 g]) 6= 0, and

(5.7) u(t)h1G(Q) = h−1
2 gG(Q).

In view of the fact that ΩG,η = Ω−1
G,η, it follows from the above and property (2) that hi ∈ ΩG,η.

Finally, we choose t so that (5.6) holds while |t|p � vol(Y )?η−?. In this way, by (5.1) we
have |ι(u(t))| � (1 + |t|p)? � vol(Y )?η−?. In view of (5.7), by taking h1 and h2 as above and
h = u(t), the proof of Theorem 5.5 is complete. �

Before proceeding to the proof of general case, we need the following

5.6. Lemma. There exists some κ10 so that the following holds. Let R be a unipotent Q-
group, given with an embedding ι : R → SLN . Let S ⊂ Σ be a finite set of places containing
the infinite place; put pS := max{p ∈ S ∩ Σf}. Let v ∈ S. For any g ∈ R(A), there exists
some γ ∈ R(Q) so that

ι(gγ) = (hS , (hq)q 6∈S) ∈ SLN (QS)×
∏
q 6∈S

SLN (Zq),

|hv| � pκ10S ht(R)κ10, and for every w ∈ S − {v}, we have |hw| � pκ10S .

Proof. The proof is, mutatis mutandis, part of the proof of Lemma 4.3. We briefly recall the
argument for the convenience of the reader. For every prime q, put

Cq = ι−1(ι(R(Qq)) ∩ SLN (Zq)).

By the strong approximation theorem for unipotent groups, we have

R(A) =
(
R(QS)×

∏
q 6∈S Cq

)
R(Q).

Hence, there exists some γ0 ∈ R(Q) so that

gγ0 = (ĝS , (ĝq)q 6∈S) ∈ R(QS)×
∏
q 6∈S Cq.

Fixing a ZS-basis for r(QS) ∩ slN (ZS), we have the following. There exists some γ̂1 ∈
ι−1(exp(r(QS) ∩N ! slN (ZS))) so that hS = ι(ĝS γ̂1) satisfies

|hv| � p?S ht(R)? and |hw| � p?S for w ∈ S − {v}.
Note that ι(γ̂1) ∈ ι(R(QS)) ∩ SLN (ZS), hence γ̂1 ∈ R(Q).

Let γ1 be the diagonal embedding of γ̂1 in R(A). Then since ι(γ̂1) ∈ SLN (ZS), we get that

gγ0γ1 = (ĝS , (ĝq)q 6∈S)γ1 = (ĝS γ̂1, (g̃q)q 6∈S) ∈ R(QS)×
∏
q 6∈S Cq.

The claim thus follows with γ = γ0γ1. �

5.7. Proof of Theorem 1.5. Let g ∈ G(A) and write g = gHgR where gH ∈ H(A) and
gR ∈ R(A); recall that prH(g) = gH .

First, we apply Theorem 5.5, i.e. the semisimple case, to the pair (H, ι|H ). In view of

Lemma 2.3, we have ι(gHG(Q)) ∈ Xη for η := κ3 ht(ι(gH))−κ3 . Thus, there exist some

γ0 ∈ H(Q) and some p �
(
log vol(YH)

)2
so that the following holds. There are h ∈ H(Qp)

and h1, h2 ∈ ΩH ⊂ ΩG such that gHγ0 = h1hh2 and

|ι(h)| � η−κ9 vol(YH)κ9 .



20 A. MOHAMMADI, A. SALEHI GOLSEFIDY, AND F. THILMANY

This estimate implies that

|ι(h)| � ht(ι(gH))? vol(YH)? since η = κ3 ht(ι(gH))−κ3

� ht(G)? ht(ι(g))? vol(YH)? by Lemma 4.4

� ht(G)? ht(ι(g))? ht(Y )? by Prop. 4.5

� ht(ι(g))? ht(Y )? by (1.5).(5.8)

Also note that by Proposition 4.5 we have

(5.9) p�
(
log vol(YH)

)2 � (
log ht(Y )

)?
.

Apply Lemma 5.6 with S = {∞, p} and v = p to the element γ−1
0 gRγ0 ∈ R(A); we get the

following. There exists some γ1 ∈ R(Q) for which

(a) ι(γ−1
0 gRγ0γ1) ∈ SLN (Zq) for all primes q 6= p,

(b) |ι(γ−1
0 gRγ0γ1)∞| � p?, and

(c) |ι(γ−1
0 gRγ0γ1)p| � p? ht(R)? � p? ht(G)?.

Set γ = γ0γ1 ∈ G(Q). Let us write

(5.10) (ĝ∞, ĝp, (ĝq)q 6∈S) := ι(gγ) = ι(gHγ0)ι(γ−1
0 gRγ0γ1).

The above estimates then imply that

(1) By (a) and hi ∈ ΩG, i = 1, 2, we have ĝq ∈ SLN (Zq) for all primes q 6= p.
(2) By (b) and hi ∈ ΩG, i = 1, 2, we have

|ĝ∞| � |ι(h1hh2)∞| · |ι(γ−1
0 gRγ0γ1)∞| � p?

� (log ht(Y ))? by (5.9)

(3) For the prime p, we have

|ĝp| � |ι(h1hh2)p||ι(γ−1
0 gRγ0γ1)p|

� ht(ι(g))? ht(Y )?p? ht(G)? by (5.8) and (c)

� ht(ι(g))? ht(Y )? ht(G)? by (5.9)

� ht(ι(g))? ht(Y )? by (1.5).

The proof is complete. �

6. S-Arithmetic Quotients

In this section, we discuss some implications of the statement and the proof of Theorem 1.5
in the local setting. The main results are stated in Theorem 6.6 which deals with the case of
semisimple groups and Theorems 6.5 and 6.9 which can be thought of as effective versions of
the strong approximation theorem.

6.1. The setup. Let L ⊂ SLd be a Q-group so that R(L) = Ru(L). Let S ⊂ Σ be a finite
set of places containing the infinite place. Define

L :=
∏
v∈S

L(Qv) and l := ⊕v∈S lv,

where lv := Lie(L)(Qv).
Let R = Ru(L). Fix a Levi subgroup H of L so that ht(H)� ht(L)?, see Proposition 3.1.

We let H̃ denote the simply connected covering of H. Put L̃ = H̃ nR, where the action of
H̃ on R factors through the action of H via the natural covering map π′ : H̃ → H. By the
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construction of L̃, π′ extends to an epimorphism π : L̃ → L with finite central kernel, given
by π(g) = π(gH̃gR) = π′(gH̃)gR, where gH̃ ∈ H̃ and gR ∈ R.

Let L̃ := π(L̃(QS)); then L̃ is a normal subgroup of L and L/L̃ is a finite abelian
group — it is worth mentioning that this finite group can be identified with a subgroup
of
∏
S H1(Qv, Z(H̃)).

6.2. Two notions of complexity. For every q ∈ Σf put Kq = π−1(SLd(Zq)). Define the

subgroups ∆ and Γ of L̃(QS) as follows:

(6.1) ∆ := the projection of L̃(Q) ∩ (L̃(QS)×
∏
q 6∈SKq) to L̃(QS),

and Γ := π−1(SLd(ZS)). Note that ∆ is a normal subgroup of Γ; moreover, both ∆ and Γ are

lattices in L̃(QS).

Put Z := π
(
L̃(A)/L̃(Q)

)
. Similarly define

Ẑ := π(L̃(QS)/∆) = L̃/L̃ ∩ SLd(ZS) = L̃/π(Γ).

As was done in §1.6, we define vol(Ẑ) = mS(L̃∩ΩS)−1 where ΩS = Ξη0×
∏
q∈S−{∞} SLd(Zq)

and mS is a Haar measure on L̃(QS) normalized so that mS(Ẑ) = 1. Here and in what follows,
we abuse the notation and denote π∗ν simply by ν, for any measure ν.

We also put ht(Ẑ) = max{ht(L), vol(Ẑ)}.

6.3. Proposition. There exist κ11, κ12, and κ13 so that for all L as in 6.1 with vol(Z)� 1,
we have the following.

(1) κ13
−1 ht(Z)κ11 ≤ ht(Ẑ) ≤ κ13 ht(Z)κ12;

(2) If L̃ is semisimple or unipotent, then

κ13
−1 vol(Z)κ11 ≤ vol(Ẑ) ≤ κ13 vol(Z)κ12

Proof. We first prove part (2) above.

First note that if L̃ is unipotent, then L̃ = L and the same argument as in Lemma 4.3 implies
that ht(L̃)? � vol(Ẑ)� ht(L̃). The claim in this case follows from this and Lemma 4.3.

We now assume that L̃ is semisimple. In this case we will actually prove

(6.2) κ13
−1 vol(Z)κ11 ≤ vol(Ẑ) ≤ κ13 vol(Z)

when vol(Z) is large enough.

Let λ denote the Haar measure on L̃(A) normalized so that λ(Z) = 1. By [11, §5.9] there

exists1 some M ≥ 1 depending only on dim L̃ so that

(6.3) 1/M ≤ λ(L̃(A)/L̃(Q)) ≤M.

Since L̃ is simply connected and L̃(QS) is not compact, we have

L̃(A) =
(
L̃(QS)×

∏
q 6∈SKq

)
L̃(Q).

Write λ =
∏

Σ λv and set λS :=
∏
S λv. In view of the above and the definition of ∆, see (6.1),

we get the following.

(6.4) λ(L̃(A)/L̃(Q)) = λS(L̃(QS)/∆) ·
∏
q 6∈S λq(Kq)

1The discussion in [11, §5.9] assumes that L̃ is Q-almost simple; since L̃ is simply connected and semisimple,

we can decompose L̃ = L̃1 · · · L̃r as a direct product of Q-almost simple factors and apply the argument to
each factor separately.
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Recall furthermore that

(6.5) vol(Z) = λ(π(L̃(A)) ∩ Ω)−1 = λS(L̃ ∩ ΩS)−1 ·
∏
q 6∈S λq(π(Kq))

−1.

From (6.3), (6.4), and (6.5) we get that

(6.6) λS(L̃(QS)/∆) = M ′λS(L̃ ∩ ΩS) · vol(Z)

where M ′ ∈ [1/M,M ].
We can now make the following computation.

λS(L̃(QS)/Γ) = λS(L̃(QS)/∆) · [Γ : ∆]−1(6.7)

= M ′λS(L̃ ∩ ΩS) · vol(Z) · [Γ : ∆]−1 by (6.6)

Perhaps by enlarging M to account for the effect of the central kernel of π, we have
λS(L̃/π(Γ)) = M ′′λS(L̃(QS)/Γ) for some M ′′ ∈ [1/M,M ]. Therefore, writing the definition

of vol(Ẑ) in terms of the measure λS , we have

vol(Ẑ) = λS(L̃/π(Γ)) · λS(L̃ ∩ ΩS)
−1

(6.8)

= M ′′λS(L̃(QS)/Γ) · λS(L̃ ∩ ΩS)
−1

= M̂ vol(Z) · [Γ : ∆]−1 by (6.7)

where M̂ ∈ [1/M2,M2].
We now apply the discussion in [11, §5.12], see also [3] and [1, Cor. 6.1], with Λ = ∆ and

Λ̃ = Γ — note that the only role S plays in the argument in [11, §5.12] is for the use of
the strong approximation theorem. It is proved in the proposition in [11, §5.12], see also the
intermediate steps (5.10) and (5.13) in loc. cit., that there exists some 0 < κ14 < 1 such that

(6.9) [Γ : ∆] ≤ vol(Z)κ14 ,

provided that vol(Z)� 1.
In consequence, (6.8) and (6.9) imply (6.2) with κ11 = 1− κ14 and κ13 = M2; this finishes

the proof of (2).

We now use the estimate in (2) to prove (1). First recall our Levi decomposition L̃ = H̃R;

recall also that L̃(Q) = H̃(Q)R(Q) and L̃(Qv) = H̃(Qv)R(Qv) for all v ∈ Σ.
Define ΓH = (π|H̃)−1(SLd(ZS)), and define ΓR similarly. Following the above notation, put

ẐH = π(H̃(QS)/ΓH) and ẐR = π(R(QS)/ΓR); also put Λ = ΓHΓR ⊂ Γ.

Let ν be the Haar measure on L̃(QS) normalized so that ν(L̃(QS)/Λ) = 1; similarly, let νH
and νR be Haar measures on H̃(QS) and R(QS) normalized so that νH(H̃(QS)/ΓH) = 1 and

νR(R(QS)/ΓR) = 1, respectively. In view of the product structure of Λ and L̃(QS), we may
argue as in §4.2 and get that ν is given as the product of νH and νR.

The above normalizations of νH and νR and the definitions of ẐH and ẐR imply that

vol(ẐH) = νH
(
π(H̃(QS)) ∩ ΩS

)−1
and vol(ẐR) = νR

(
π(R̃(QS)) ∩ ΩS

)−1
. Let us put

volν(Ẑ) := ν
(
π(L̃(QS)) ∩ ΩS

)−1
.

Using the product structure of ν again, we may now argue as in the proof of Proposition 4.5
and get that

(6.10)
(
vol(ẐH) vol(ẐR)

)? � htν(Ẑ)�
(
vol(ẐH) vol(ẐR)

)?
,

where htν(Ẑ) = max{ht(L), volν(Ẑ)}.
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We now compare volν(Ẑ) and vol(Ẑ). Using the notation in the proof of Proposition 4.5,
see in particular (4.5), we have the following.

(6.11) [Γ : Λ] ≤
∏
q 6∈S

Jq ≤
∏
Σ

Jq � ht(L)?;

the first inequality follows from the definition of Λ, Γ, and Jp, the second inequality follows
since Jq ≥ 1 for all q, and the third inequality is (4.6).

Recall that mS denotes the Haar measure on L̃(QS) normalized so that mS(L̃(QS)/Γ) = 1.
We have

vol(Ẑ) = mS

(
π(L̃(QS)) ∩ ΩS

)−1
= ν

(
π(L̃(QS)) ∩ ΩS

)−1
[Γ : Λ]−1.

This, together with (6.11), implies that

volν(Ẑ) ht(L)−? � vol(Ẑ) ≤ volν(Ẑ),

which in turn gives

(6.12) htν(Ẑ)? � ht(Ẑ)� htν(Ẑ).

Now in view of part (2), the upper and lower bound in (6.10) are �
(
vol(ZH) vol(ZR)

)?
.

Moreover, Proposition 4.5(1) gives

(6.13)
(
vol(ZH) vol(ZR)

)? � ht(Z)�
(
vol(ZH) vol(ZR)

)?
.

The claim in part (1) follows from (6.10), (6.12), and (6.13). �

We now turn to the consequences of Theorem 1.5 in the S-arithmetic setting when applied
to the datum (L̃, π). Recall that we defined

htS(g) := max
{

(
∏
S ‖gw‖)−1 : 0 6= w ∈ ZdS

}
for any g ∈ SLd(QS).

For any set S of places and any g ∈ SLd(QS) (resp. g ∈ L̃(QS)), we write g̃ := (g, (e)q 6∈S) ∈
SLd(A) (resp. ∈ L̃(A)).

6.4. Lemma. For any g ∈ SLd(QS) we have

ht(g̃) = htS(g).

Proof. This is a consequence of the product formula as we now explicate. For every w ∈ Qd,
let w̄ be a primitive integral vector on Q · w. First observe that

c(g̃w) =
∏
Σ

‖g̃vw‖v =
∏
Σ

‖g̃vw̄‖v by the product formula

=
∏
S

‖gvw̄‖v
∏
q 6∈S
‖w̄‖q g̃q = e, q 6∈ S

=
∏
S

‖gvw̄‖v w̄ is primitive integral.

This shows that ht(g̃) ≤ htS(g).
To see the reverse inequality, notice that if w ∈ ZdS , then ‖w‖q ≤ 1 for any q /∈ S. This

implies that ∏
S

‖gvw‖v ≥
∏
S

‖gvw‖v
∏
q /∈S

‖w‖ =
∏
Σ

‖g̃vw‖v = c(g̃w)

and in turn that htS(g) ≤ ht(g̃). �
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In the following, we use the same notation for the diagonal embedding of elements of SLd(Q)
in SLd(A) and in SLd(QS); which embedding is relevant will be indicated by the context.

6.5. Theorem. There exists κ15 so that the following holds. Let the notation be as in §6.2.
There exists some

p�
(
log vol(Ẑ)

)2
with the following property. For any g ∈ L̃(QS), there exists some γ ∈ L̃(Q) so that π(γ)q ∈
SLd(Zq) for all q 6∈ S ∪ {p} and

|π(gγ)v| � htS(π(g))κ15 ht(Ẑ)κ15

for all v ∈ S. Moreover, if p 6∈ S, then

|π(γ)p| � htS(π(g))κ15 ht(Ẑ)κ15 .

Proof. In view of part (1) of Proposition 6.3, it suffices to prove the above estimates with

ht(Ẑ) replaced by ht(Z).

In view of Lemma 6.4 and of Theorem 1.5 applied to (L̃, π) and g̃ ∈ L̃(A), there exists

some γ ∈ L̃(Q) so that π(g̃γ)v satisfies the estimate stated in the theorem for all v ∈ S, and
π(g̃γ)q ∈ SLd(Zq) for all q /∈ {∞, p}. Therefore, π(γ)q ∈ SLd(Zq).

Now if p 6∈ S, then π(g̃γ)p = π(γ)p, and the desired estimate follows from Theorem 1.5. �

We now state and prove a reformulation of Theorem 1.7 using the above notation.

6.6. Theorem. Let the notation be as in §6.2; further, assume that

(1) L is semisimple, and
(2) L = L(QS) is not compact.

There exist κ16 and some C = C(L) so that the following holds. For any g ∈ L̃(QS) there
exists some δ ∈ ∆, see (6.1), so that

|π(gδ)v| ≤ C htS(π(g))κ16 vol(Ẑ)κ16

for all v ∈ S.

Proof. In view of part (2) of Proposition 6.3, it suffices to prove the above estimates with

ht(Ẑ) replaced by ht(Z).
As in the proof of Theorem 6.5, we will deduce this theorem from an adelic statement. Let

w ∈ S be a place so that L(Qw) is not compact. The required adelic statement here is an

analogue of Theorem 5.5 where G in the notation is replaced by L̃ and the place p is replaced
by w.

Fix a Qw-representation (with finite kernel) θw : SL2(Qw) → L̃(Qw). We define the one-
parameter unipotent subgroup

u : Qw → θw(SL2(Qw)) by u(t) = θw

((
1 t
0 1

))
.

Note that

(6.14) |u(t)| � C1(1 + |t|w)?

for some C1 depending on θw and hence on L.
Moreover, it follows from [13, Thm. 1.11] that for all f1, f2 ∈ C∞c (L̃(A)/L̃(Q)) we have

(6.15)
∣∣∣〈u(t)f1, f2〉σ −

∫
f1 dσ

∫
f̄2 dσ

∣∣∣� (1 + |t|p)−1/2MS(f1)S(f2),



DIAMETER OF HOMOGENEOUS SPACES 25

where S is a certain Sobolev norm and σ is the probability L̃(A)-invariant measure on

L̃(A)/L̃(Q).
One now repeats the proof of Theorem 5.5 replacing (5.1) with (6.14) and (5.2) with (6.15)

to get the following. For any g ∈ L̃(A), there exist h1, h2 ∈ ΩL̃,η and h ∈ L̃(Qw) with

|π(h)| ≤ C ht(π(g))−κ9 vol(Z)κ9

such that gL̃(Q) = h1h̃h2L̃(Q); the constant C depends on L and d.

Let g ∈ L̃(QS) and apply the above discussion to g̃. Then using the above and Lemma 6.4,

there exists some h ∈ L̃(Qw) with

|π(h)| ≤ C htS(π(g))−κ9 vol(Z)κ9 ,

two elements h1, h2 ∈ ΩL̃,η, and some γ ∈ L̃(Q) so that g̃γ = h1h̃h2. If q 6∈ S, then (π(g̃γ))q =

π(γ)q ∈ SLd(Zq). The claim thus follows with δ = γ (thought of as an element in ∆). �

6.7. The adjoint action. We now turn to a version of Theorem 6.5 where htS(g) is replaced
by a height function defined using the adjoint representation of L on l.

First, we need some more notation. For all v ∈ Σ, let ‖ ‖v denote the maximum norm
on sld(Qv) with respect to the standard basis. Using this family of norms, we define ht(L)
analogously to what was done in §1.4.

Fix a Z-basis B = {v1, . . . , vN} for Lie(L) ∩ sld(Z) with ‖vi‖∞ � ht(L)?. Using this basis,
we identify Lie(L)∩ sld(Z) with ZN and Lie(L) with QN ; in this way, SL(Lie(L)) is identified
with SLN . We also let ‖ ‖B,v denote the maximum norm with respect to B on Lie(L)(Qv).
To avoid confusion, we will keep the index B for functions defined using these norms, e.g. we
write cB and htB (although after the above identifications, they correspond precisely to the
notions introduced in §1.2).

Let AdL : L→ SLN denote the adjoint representation. We sometimes write AdL or simply
Ad for AdL if there is no confusion. Put cS(w) :=

∏
S ‖wv‖v for all w = (wv) ∈ l.

Let l(ZS) := l∩sld(ZS); note that l(ZS) is invariant under the adjoint action of L∩SLd(ZS).
For every g ∈ L, we define

htL(g) := max{cS(Ad(g)w)−1 : 0 6= w ∈ l(ZS)}.

The function htL is L ∩ SLd(ZS)-invariant, so it defines a function on L/L ∩ SLd(ZS) which
we continue to denote by htL.

As before, we put |g| = max{‖g‖, ‖g−1‖} for all g ∈ SLN (Qv), where ‖ ‖ is the operator
norm on SLN (Qv) with respect to some fixed norm on QN

v , say the max norm with respect
to the standard basis.

Let R′ = AdL(R). Put G = H̃ n R′, where the action of H̃ on R′ factors through the

action of AdL(H) via AdL ◦ π′, where π′ : H̃→ H is the natural covering map.
The adjoint action on L induces a homomorphism ι : G→ SLN with finite central kernel,

given by

ι(gH̃g
′
R) = AdL(π′(gH̃))g′R.

In accordance to §1.1, we set Y := ι(G(A)/G(Q)) ⊂ SLN (A)/SLN (Q). Define Ŷ as in

§6.2 by replacing the pair (L̃, π) with (G, ι) and SLd by SLN ; similarly fix an open subset

ΩS ⊂ SLN (QS), and define vol(Ŷ ) using ΩS ⊂ SLN (QS). We put

htB(Y ) = max{ht(L), vol(Y )} and htB(Ŷ ) = max{ht(L), vol(Ŷ )}.
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Additionally, there is an epimorphism ϕ : L̃ → G given by gH̃gR 7→ gH̃AdL(gR), whose

kernel is contained in Z(R), hence is unipotent. As was argued in §4.1, this implies that L̃(Q)

surjects onto G(Q), and L̃(Qv) surjects onto G(Qv) for all v ∈ Σ.

L̃ L

G SLN

π

ϕ AdL

ι

As before, for every g ∈ L̃(QS) we write g̃ = (g, (e)q 6∈S) ∈ L̃(A) and we write

(6.16) ĝ = ι(ϕ(g̃)) = (AdL(π(g)), (e)p 6∈S) ∈ ι(G(A)).

In what follows, the notation will confound the implicit diagonal embeddings of L̃(Q) in L̃(QS)

and in L̃(A). Which embedding is relevant will be indicated by the context.

6.8. Lemma. There exists some κ17 so that the following holds. For any g ∈ L we have

ht(L)−κ17 htL(g)� htB((AdL(g), (e)p/∈S))� ht(L)κ17 htL(g).

Proof. For g ∈ L, set ĝ := (AdL(g), (e)p/∈S) ∈ SLN (A). For any w ∈ QN , let w̄ be a primitive
integral vector on Q · w. First, observe that

cB(ĝw) =
∏
Σ

‖ĝvw‖B,v =
∏
Σ

‖ĝvw̄‖B,v by the product formula

=
∏
S

‖Ad(g)vw̄‖B,v ·
∏
p 6∈S
‖w̄‖B,p

=
∏
S

‖Ad(g)vw̄‖B,v since w̄ is primitive integral

�
∏
S

‖Ad(g)vw̄‖v ·
∏
S

(max
i
‖vi‖v)−1 ‖ ‖v � (max

i
‖vi‖v) · ‖ ‖B,v

≥
∏
S

‖Ad(g)vw̄‖v · (max
i
‖vi‖∞)−1 since vi ∈ sld(Z)

� ht(L)−?cS(Ad(g)w̄) because ‖vi‖∞ � ht(L)?.(6.17)

From this, it follows that

htB(ĝ) = max{cB(ĝw)−1 : 0 6= w ∈ QN} see (1.1)

� ht(L)? max{cS(Ad(g)w̄)−1 : 0 6= w ∈ QN} by (6.17)

≤ ht(L)? max{cS(Ad(g)w)−1 : 0 6= w ∈ ZNS }
= ht(L)? htL(g).

Similarly, since for every w ∈ ZNS and all q /∈ S we have ‖w‖B,q ≤ 1, we get

cS(Ad(g)w) =
∏
S

‖Ad(g)vw‖v

� ht(L)−?
∏
S

‖Ad(g)vw‖B,v

≥ ht(L)−?
∏
S

‖Ad(g)vw‖B,v
∏
q /∈S

‖w‖q

= ht(L)−?cB(ĝw).
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This implies the lower bound htL(g)� ht(L)? htB(ĝ). �

6.9. Theorem. There exists some κ18 so that the following holds. Let L be any Q-subgroup
of SLd with R(L) = Ru(L) and let L̃, (G, ι), etc. be as in §6.7. There exists some prime

p�
(
log htB(Ŷ )

)2
with the following property. For any g ∈ L̃(QS), there exists some γ ∈ L̃(Q)

so that ι(ϕ(γ))q ∈ SLN (Zq) for all q 6∈ S ∪ {p} and

|ι(ϕ(gγ))v| � htL(π(g))κ18 htB(Ŷ )κ18

for all v ∈ S. Moreover, if p 6∈ S, then

|ι(ϕ(γ))p| � htL(π(g))κ18 htB(Ŷ )κ18 .

Proof. In view of part (1) of proposition in §6.3, it suffices to prove the above estimates with

htB(Ŷ ) replaced by htB(Y ).

Let g ∈ L̃(QS) and write g = gHgR where gH ∈ H̃(QS) and gR ∈ R(QS).
In virtue of (3.1), we have that htB(ad (Lie(L)))� ht(L)?. Since Lie(ι(G)) = Lie(Ad(L)) =

ad (Lie(L)), this means that htB(G)� ht(L)?. Lemma 4.4 thus yields

(6.18) htB(L)−? htB(ĝ)? � htB(ĝH)� ht(L)? htB(ĝ)?.

As before, we write YH = ι(H̃(A)/H̃(Q)). Let p �
(
log volB(YH)

)2
be as in Theorem 5.5

applied to (H̃, ι|H̃), so that (combined with Lemma 2.3) we have the following. There exists

some γ0 ∈ H̃(Q) so that if we put h′ = (h′S , h
′
p, (h

′
q)q /∈S∪{p}) := g̃Hγ0, then ι(ϕ(h′))q ∈ SLN (Zq)

for all q 6∈ {∞, p}, |ι(ϕ(h′))∞| �B 1� ht(L)?, and

|ι(ϕ(h′))p| �B htB(ĝH)? volB(YH)?

� ht(L)? htB(ĝ)? volB(YH)? by (6.18)

� ht(L)? htL(π(g))? volB(YH)? by Lemma 6.8

� htL(π(g))? htB(Y )? by Proposition 4.5.(6.19)

Also by Proposition 4.5, we have

(6.20) p�
(
log vol(YH)

)2 � (
log htB(Y )

)?
.

Apply Lemma 5.6 with the set of places {∞} and v =∞ to the element γ−1
0 g̃Rγ0 to obtain

some γ1 ∈ R(Q) such that

(a) π(γ−1
0 g̃Rγ0γ1) ∈ SLd(Zq) for all primes q, and

(b) |π((γ−1
0 g̃Rγ0γ1)∞)| � ht(R)? � ht(L)?.

Since π(γ−1
0 g̃Rγ0)q = e for all q 6∈ S, item (a) above implies that π(γ1)q ∈ SLd(Zq) for all

q 6∈ S.

Put γ = γ0γ1 ∈ L̃(Q) and write

(6.21) h = (hS , hp, (hq)) := g̃γ = g̃Hγ0(γ−1
0 g̃Rγ0γ1) = h′(γ−1

0 g̃Rγ0γ1).

The above estimates then imply that

(1) By (a) and ι(ϕ(h′q)) ∈ SLN (Zq) we have ι(ϕ(hq)) ∈ SLN (Zq) for all q /∈ {∞, p}.
(2) By (b) and |ι(ϕ(h′∞))| � ht(L)? we have

|ι(ϕ(h∞))| � ht(L)?|ι(ϕ((γ−1
0 g̃Rγ0γ1)∞))| = ht(L)?|Ad(π((γ−1

0 g̃Rγ0γ1)∞))|
�B ht(L)?|π((γ−1

0 g̃Rγ0γ1)∞)| � ht(L)?.
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(3) For the prime p we have

|ι(ϕ(hp))| ≤ |ι(ϕ(h′p))| · |Ad(π(γ−1
0 g̃Rγ0γ1))p)|

�B |ι(ϕ(h′p))| · |π((γ−1
0 g̃Rγ0γ1)p)|

� ht(L)?|ι(ϕ(h′p))| by (a)

� htL(π(g))? htB(Y )? by (6.19).

Let now q 6∈ S ∪ {p}. Then ĝq = ι(ϕ(g̃q)) = e and hence we have ι(ϕ(γq)) = ι(ϕ(hq)) ∈
SLN (Zq) by (1). This means ι(ϕ(γ)) ∈ SLN (ZS∪{p}).

Lastly, if p 6∈ S, we have again ĝp = e, therefore ι(ϕ(γp)) = ι(ϕ(hp)) and (3) above gives
the desired bound on ι(ϕ(γp)). �

The above proof actually gives the following stronger statement.

6.10. Theorem. There exists some κ18 so that the following holds. Let L be any Q-subgroup
of SLd with R(L) = Ru(L) and let L̃, (G, ι), etc. be as in §6.7. There exists some prime

p �
(
log htB(Ŷ )

)2
with the following property. Let g ∈ L̃(QS) and write g = gHgR where

gH ∈ H̃(QS) and gR ∈ R(QS). There exists some γ0 ∈ H̃(Q) and some γ1 ∈ R(Q) with

• ι(ϕ(γ0))q ∈ SLN (Zq) for all q 6∈ S ∪ {p}
• π(γ1)q ∈ SLd(Zq) for all q 6∈ S
• if p 6∈ S, then |ι(ϕ(γ0γ1))p| � htL(g)κ18 htB(Ŷ )κ18,

so that if we write (g, (e)6∈S)γ0γ1 = hHhR, where hH ∈ H̃(A) and hR ∈ R(A), then we have
the following estimates.

(1) π(hR)q ∈ SLd(Zq) for all primes q,
(2) |π(hR)∞| � ht(L)κ18,
(3) ι(ϕ(hH))q ∈ SLN (Zq) for all q 6∈ {∞, p},
(4) |ι(ϕ(hH))∞| � ht(L)κ18, and

(5) |ι(ϕ(hH))p| � htL(g)κ18 htB(Ŷ )κ18.

For any g ∈ H̃(QS), we define

htH(π(g)) := max{cS(AdH(π(g))w)−1 : 0 6= w ∈ h(ZS)},
where h = Lie(H) ∩ sld(ZS).

It follows from the definition that htH(π(g)) ≤ htL(π(g)) for any g ∈ H̃(QS). Moreover, in

view of Lemma 6.8 and Lemma 4.4 we have the following. Let g ∈ L̃(QS) and write g = gHgR,
then

(6.22) htH(π(gH)) ≤ htL(π(gH))� ht(L)? htL(π(g))?.

We also record the following lemma.

6.11. Lemma. Let g ∈ L̃(QS) and write g = gHgR, then

htH(π(gH))� htB(Ŷ )−? htL(π(gH))? � htB(Ŷ )−? htL(π(g))?.

Proof. The second estimate follows from Lemma 6.8, Lemma 4.4, and the fact that htB(Ŷ ) ≥
ht(L). Thus we only need to show

htH(π(gH))� htB(Ŷ )−? htL(π(gH))?.

The proof uses arguments similar to the ones used in the proof of Theorem 6.9; apply

Theorem 6.10 with L = H to gH . There exist some p�
(
log htB(Ŷ )

)2
and γ0 ∈ H̃(Q) so that
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(i) AdH(γ0)q ∈ SLN (Zq) for all q 6∈ S ∪ {p},
(ii) if p 6∈ S, then |AdH(γ0)p| � htH(π(gH))κ18 htB(Ŷ )κ18 ,

and if we put hH = (gH , (e)q 6∈S)γ0, we have the following estimates.

(1) Ad(hH)q ∈ SLN (Zq) for all q 6∈ {∞, p},
(2) |Ad(hH)∞| � ht(L)κ18 , and

(3) |Ad(hH)p| � htH(π(gH))κ18 htB(Ŷ )κ18 .

Apply Lemma 5.6 with the set of places {∞} and v =∞ to the element γ−1
0 g̃Rγ0 to obtain

some γ1 ∈ R(Q) such that

(a) π(γ−1
0 g̃Rγ0γ1) ∈ SLd(Zq) for all primes q, and

(b) |π((γ−1
0 g̃Rγ0γ1)∞)| � ht(R)? � ht(L)?.

Since π(γ−1
0 g̃Rγ0)q = e for all q 6∈ S, item (a) above implies that π(γ1)q ∈ SLd(Zq) for all

q 6∈ S.
Let us put hR = γ−1

0 g̃Rγ0γ1, so that we have

(g, (e))γ0γ1 = (gHgR, (e))γ0γ1 = ((hH)S , (hH)q 6∈S)((hR)S , (hR)q 6∈S).

By abuse, we denote the projection of γ0, γ1 onto the S-coordinates again by γ0, γ1 ∈ L̃(QS).
We have

htL(g) = max{cS(AdL(π(g))w)−1 : 0 6= w ∈ l(ZS)}
= max{cS(AdL(π((hH)S(hR)S)γ−1

1 γ−1
0 )w)−1 : 0 6= w ∈ l(ZS)}.(6.23)

First, we note that using (1)–(3), (a) and (b) we have

(6.24) cS(AdL(π((hH)S(hR)S)γ−1
1 γ−1

0 )w)−1 � htH(π(gH))? htB(Ŷ )?cS(AdL(γ−1
1 γ−1

0 )w)−1.

Furthermore, using (i), (ii), and the fact that π(γ1)q ∈ SLd(Zq) for all q 6∈ S, we have

cS(AdL(γ−1
1 γ−1

0 )w)−1 � htH(π(gH))? htB(Ŷ )?.

This, in view of (6.24) and (6.23), implies that

htL(g)� htH(π(gH))? htB(Ŷ )?;

the proof is complete. �

6.12. Uniform lattices. In this section, we discuss the dependence of the above estimates
on htL(g) under the assumption that the Levi component, H, of L is Q-anisotropic. We
begin with the following lemma which is of independent interest — one could obtain similar
estimates using known results towards the Lehmer conjecture, but we provide a homemade
argument.

Lemma. There exists some 0 < β < 1 depending on dimL with the following property. Let
w ∈ l(ZS) and assume that there exists some g ∈ L so that cS(AdL(g)w) ≤ β. Then w is a
nilpotent element.

Proof. Let σ̄(w) be the product of all the nonzero eigenvalues of w; if this product is empty,
i.e. if w is nilpotent, put σ̄(w) = 0. Note that σ̄(w) ∈ Q because σ̄(w) is invariant under
the Galois group of the splitting field of w. Further, since w ∈ l(ZS), the product formula
implies that either cS(σ̄(w)) ≥ 1 or σ̄(w) = 0. (Here, we also use cS to denote the function
QS → R+ : r 7→

∏
v∈S |r|v.)
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Let β > 0 and assume that cS(AdL(g)w) ≤ β for some g ∈ L. There exist some r ∈ Z×S so
that ‖rAdL(g)w‖v � cS(AdL(g)w)? for all v ∈ S, see for example [17, Lemma 8.6]. Therefore,
all the eigenvalues of rAdL(g)w have v-norm � β? for all v ∈ S.

Since cS(r) = 1 and AdL(g)w has the same eigenvalues as w, we deduce that cS(σ̄(w)) ≥ 1
cannot hold when β is small enough; thus, w is nilpotent. �

Proposition. Let the notation be as above; in particular, recall the Levi decomposition L̃ =
H̃R fixed in §6.1. Assume that H̃ is Q-anisotropic. Let g ∈ L̃(QS), then

htL(π(g))� htB(Ŷ )?.

Moreover, if L̃ is semisimple, i.e. L̃ = H̃, and we assume that L̃ is Q-anisotropic, then
htL(π(g))� 1.

Proof. Let us write g = gHgR where gH ∈ H̃(QS) and gR ∈ R(QS). Let β be as in
the previous lemma applied with H instead of L. We claim that htH(π(gH)) ≤ β−1. In-
deed, if htH(π(gH)) > β−1, then by definition there exists a nonzero w ∈ h(ZS), such that
cS(AdH(π(gH))w) < β. The lemma then implies that w is a nilpotent element. Exponenti-

ating w, we get that H (and hence H̃) is Q-isotropic, which is a contradiction. This implies

the proposition when L̃ = H̃.
Now, for the general case, we apply Lemma 6.11 and the bound we obtained above to

obtain

htL(π(g))� htH(π(gH))? htB(Ŷ )? � htB(Ŷ )?,

as was claimed. �

It is worth mentioning that the proof of the previous proposition when L̃ is semisimple is
independent of Lemma 6.11 and relies only on the lemma proved in this section.
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