ON PRESENTATIONS OF INTEGER POLYNOMIAL POINTS OF SIMPLE GROUPS OVER NUMBER FIELDS

AMIR MOHAMMADI & KEVIN WORTMAN

In this paper we prove the following

Theorem 1. Let K be a number field and let \mathcal{O}_K be its ring of integers. Let G be a connected, noncommutative, absolutely almost simple algebraic K-group. If the K-rank of G equals 2, then $G(\mathcal{O}_K[t])$ is not finitely presented.

Actually, we will prove a slightly stronger version of Theorem 1 by showing that if $\mathbf{G}(\mathcal{O}_K[t])$ is as in Theorem 1, then $\mathbf{G}(\mathcal{O}_K[t])$ is not of type FP_2 .

(After this paper was submitted for publication, Conjecture 1—which is located at the end of this paper and implies Theorem 1—was proved by Gandini [Ga] using work of Kropholler-Mislin [Kro-Mi].)

0.1. **Related results.** Krstić-McCool proved that $GL_3(A)$ is not finitely presented if there is an epimorphism from A to F[t] for some field F [Krs-Mc].

Suslin proved that $\operatorname{SL}_n(A[t_1,\ldots,t_k])$ is generated by elemetary matrices if $n \geq 3$, A is a regular ring, and $K_1(A) \cong A^{\times}$ [Su]. Grunewald-Mennicke-Vaserstein proved that $\operatorname{Sp}_{2n}(A[t_1,\ldots,t_k])$ is generated by elementary matrices if $n \geq 2$ and A is a Euclidean ring or a local principal ideal ring [G-M-V].

In Bux-Mohammadi-Wortman, it's shown that $SL_n(\mathbb{Z}[t])$ is not of type FP_{n-1} [B-M-W]. The case when n=3 is a special case of Theorem 1.

While most of the results listed above allow for more general rings than $\mathcal{O}_K[t]$, the result of this paper, and the techniques used to prove it, are distinguished by their applicability to a class of semisimple groups that extends beyond special linear and symplectic groups.

1. Preliminary and notation

The writing of this paper was supported in part by NSF Grant No. DMS-0905891.

Throughout the remainder, we let **G** be as in Theorem 1 and we let $\Gamma = \mathbf{G}(\mathcal{O}_K[t])$.

Let L be an algebraically closed field containing $K((t^{-1}))$ fixed once and for all. In the the sequel the Zarsiki topology is defined with this fixed algebraically closed field in mind.

Let **S** be a maximal K-split torus of **G**. Let $\{\alpha, \beta\}$ be a set of simple K-roots for (\mathbf{G}, \mathbf{S}) , and define $\mathbf{T} = (\ker(\alpha))^{\circ}$, the connected component containing the identity.

Let **P** be a maximal K-parabolic subgroup of **G** that has $Z_{\mathbf{G}}(\mathbf{T})$ as a Levi subgroup where $Z_{\mathbf{G}}(\mathbf{T})$ denotes the centralizer of **T** in **G**. Let **U** be unipotent radical of **P**. We have $\mathbf{P} = \mathbf{U}Z_{\mathbf{G}}(\mathbf{T})$. We can further write

P = UHMT

where $\mathbf{H} \leq Z_{\mathbf{G}}(\mathbf{T})$ is a simple K-group of K-rank 1 and \mathbf{M} is a K-anisotropic torus contained in the center of $Z_{\mathbf{G}}(\mathbf{T})$.

If $x \in K((t^{-1}))$ is algebraic over K then $x \in K$, hence \mathbf{G} has $K((t^{-1}))$ -rank 2 as well and \mathbf{P} is a $K((t^{-1}))$ -maximal parabolic of \mathbf{G} . It also follows that \mathbf{H} has $K((t^{-1}))$ -rank 1 and that \mathbf{M} is $K((t^{-1}))$ -anisotropic.

We let G, S, P, U, M, H and T denote the $K((t^{-1}))$ -points of G, S, P, U, M, H, and T, respectively.

Let X denote the Bruhat-Tits building associated to G. This is a 2-dimensional simplicial complex, and the apartments (maximal flats) correspond to maximal $K((t^{-1}))$ -split tori.

We fix once and for all a K-embedding of \mathbf{G} in some \mathbf{SL}_n . Using this embedding we realize $\mathbf{G}(K[t])$ and Γ as subgroups of $\mathbf{SL}(K[t])$ and $\mathbf{SL}(\mathcal{O}_K[t])$ respectively. This embedding also gives an isometric embedding of X into \tilde{A}_{n-1} , the building of $\mathbf{SL}_n(K((t^{-1})))$; see [La].

2. Stabilizers of the Γ -action on its Euclidean building

Lemma 2. If X is the Euclidean building for G, then the Γ stabilizers of cells in X are FP_m for all m.

Proof. We first recall the proof of [B-M-W, Lemma 2]. Let $x_0 \in \tilde{A}_{n-1}$ be the vertex stabilized by $\mathbf{SL}_n(K[[t^{-1}]])$. We denote a diagonal matrix in $\mathbf{GL}_n(K((t^{-1})))$ with entries $s_1, s_2, ..., s_n \in K((t^{-1}))^{\times}$ by $D(s_1, s_2, ..., s_n)$, and we let $\mathfrak{S} \subseteq \tilde{A}_{n-1}$ be the sector based at x_0 and containing vertices of the form $D(t^{m_1}, t^{m_2}, ..., t^{m_n})x_0$ where each $m_i \in \mathbb{Z}$ and $m_1 \geq m_2 \geq ... \geq m_n$.

The sector \mathfrak{S} is a fundamental domain for the action of $\mathbf{SL}_{\mathbf{n}}(K[t])$ on \tilde{A}_{n-1} (see [So]). In particular, for any vertex $z \in \tilde{A}_{n-1}$, there is

some $h'_z \in \mathbf{SL_n}(K[t])$ and some integers $m_1 \geq m_2 \geq ... \geq m_n$ with $z = h'_z D_z(t^{m_1}, t^{m_2}, ..., t^{m_n}) x_0$. We let $h_z = h'_z D_z(t^{m_1}, t^{m_2}, ..., t^{m_n})$. For any $N \in \mathbb{N}$, let W_N be the (N+1)-dimensional vector space

$$W_N = \{ p(t) \in \mathbb{C}[t] \mid \deg(p(t)) < N \}$$

which is endowed with the obvious K-structure. If N_1, \dots, N_{n^2} in \mathbb{N} are arbitrary then let

$$\mathbf{G}_{\{N_1,\dots,N_{n^2}\}} = \{\mathbf{x} \in \prod_{i=1}^{n^2} W_{N_i} | \det(\mathbf{x}) = 1\}$$

where $\det(\mathbf{x})$ is a polynomial in the coordinates of \mathbf{x} . To be more precise this is obtained from the usual determinant function when one considers the usual $n \times n$ matrix presentation of \mathbf{x} , and calculates the determinant in $\mathbf{Mat}_n(\mathbb{C}[t])$.

For our choice of vertex $z \in \tilde{A}_{n-1}$ above, the stabilizer of z in $\mathbf{SL}_n(K((t^{-1})))$ equals $h_z\mathbf{SL}_n(K[[t^{-1}]])h_z^{-1}$. And with our fixed choice of h_z , there clearly exist some $N_i^z \in \mathbb{N}$ such that the stabilizer of the vertex z in $\mathbf{SL}_n(K[t])$ is $\mathbf{G}_{\{N_1^z,\dots,N_{n^2}^z\}}(K)$. Furthermore, conditions on N_i^z force a group structure on $\mathbf{G}_z = \mathbf{G}_{\{N_1^z,\dots,N_{n^2}^z\}}$. Therefore, the stabilizer of z in $\mathbf{SL}_n(K[t])$ is the K-points of the affine K-group \mathbf{G}_z , and the stabilizer of z in $\mathbf{SL}_n(\mathcal{O}_K[t])$ is $\mathbf{G}_z(\mathcal{O}_K)$.

Let σ be a cell in \tilde{A}_{n-1} . The action of $\mathbf{SL}_n(K[t])$ on \tilde{A}_{n-1} is type preserving, so if $\sigma \subset \mathfrak{S}$ is a simplex with vertices $z_1, z_2, ..., z_m$, then the stabilizer of σ in $\mathbf{SL}_n(\mathcal{O}_K[t])$ is

$$(\mathbf{G}_{z_1}\cap\cdots\cap\mathbf{G}_{z_m})(\mathcal{O}_K)$$

Which implies that the stabilizer of σ in Γ is $\mathbf{G}_{\sigma}(\mathcal{O}_K)$ where $\mathbf{G}_{\sigma} = \mathbf{G} \cap \mathbf{G}_{z_1} \cap \cdots \cap \mathbf{G}_{z_m}$.

If $\psi \subset X$ is a cell, then we let $\sigma_1, \ldots, \sigma_k$ be simplices of \tilde{A}_{n-1} such that their union contains ψ , and such that their union is contained in the union of any other set of simplices of \tilde{A}_{n-1} that contains ψ .

The group Γ may not act on X type-preservingly, but the stabilizer of ψ in Γ will contain a finite index subgroup that fixes ψ pointwise. Because Γ does act type-preservingly on \tilde{A}_{n-1} , we have that the stabilizer of ψ in Γ contains

$$(\mathbf{G}_{\sigma_1}\cap\cdots\cap\mathbf{G}_{\sigma_k})(\mathcal{O}_K)$$

as a finite index subgroup. This is an arithmetic group, and Borel-Serre [B-S] proved that any such group is FP_m for all m.

3. An unbounded ray in $\Gamma \setminus X$

The group Γ does not act cocompactly on X. Our next lemma is a generalization of Mahler's compactness criterion, and it will help us identify a ray in X whose projection to $\Gamma \setminus X$ is proper. Our proof is similar to [B-M-W, Lemma 11].

Lemma 3. If $e \in X$, $a \in G$, $u \in \Gamma$ is nontrivial, and $a^{-n}ua^n \to 1$ as $n \to \infty$, then $\{\Gamma a^n e : n \ge 0\} \subset \Gamma \setminus X$ is unbounded.

Proof. Since G acts on X with bounded point stabilizers, it suffices to show that $\{\Gamma a^n : n \geq 0\} \subset \Gamma \setminus G$ is unbounded.

If $\{\Gamma a^n : n \geq 0\}$ is bounded, then it is contained in a set ΓB where $B \subset G$ is a bounded set. Thus, for any a^n , we have $a^n = \gamma b$ for some $\gamma \in \Gamma$ and $b \in B$. Hence $a^{-n}ua^n = b^{-1}\gamma^{-1}u\gamma b$.

Because u is nontrivial, $\gamma^{-1}u\gamma \in \Gamma - 1$ is bounded away from 1, and thus $b^{-1}\gamma^{-1}u\gamma b$ is bounded away from 1. That's a contradiction. \square

4. An unbounded semisimple element in $\mathbf{H}(\mathcal{O}_K[t])$

Recall that \mathbf{H} has $K((t^{-1}))$ -rank 1 (and K-rank 1), hence the Bruhat-Tits building of H, which will be denoted by X_H , is a tree. Let \mathbf{S}' be a maximal K-split, thus $K((t^{-1}))$ -split, torus of \mathbf{H} and let \mathbf{Q}^+ and \mathbf{Q}^- be opposite K-parabolic subgroups of \mathbf{H} with Levi subgroup $Z_{\mathbf{H}}(\mathbf{S}')$.

We denote the unpotent radical of \mathbf{Q}^{\pm} as $R_u(\mathbf{Q}^{\pm})$, and we let $Q^{\pm} = \mathbf{Q}^{\pm}(K((t^{-1})))$, $R_u(Q^{\pm}) = R_u(\mathbf{Q}^{\pm})(K((t^{-1})))$, and $S' = \mathbf{S}'(K((t^{-1})))$. See [Se, Proposition 25] for the next lemma.

Lemma 4. Let $u^+ \in R_u(Q^+)$ and $u^- \in R_u(Q^-)$ and let $F^{\pm} = \operatorname{Fix}_{X_H}(u^{\pm})$. Assume that $F^+ \cap F^- = \emptyset$. Then u^+u^- is a hyperbolic isometry of X_H .

Proof. Let x be the midpoint between F^+ and F^- . Let p_1 be the path between x and F^+ and let p_2 be the path between x and F^- , and let ψ be an edge containing x, contained in $p_1 \cup p_2$, not contained in p_2 , and oriented towards F^+ .

Notice that $u^-p_2 \cup p_2$ is an embedded path between x and u^-x and that $p_1 \cup u^+p_1 \cup u^+p_2 \cup u^+u^-p_2$ is an embedded path between x and u^+u^-x . The edge $u^+u^-\psi$ is a continuation of the latter path that is oriented away from from both u^+u^-x and x.

If u^+u^- is elliptic, then it fixes the midpoint of the path between x and u^+u^-x and maps ψ to an oriented edge pointed towards x. Therefore, u^+u^- is hyperbolic.

Lemma 5. There exists elements $u^{\pm} \in R_u(\mathbf{Q}^{\pm})(\mathcal{O}_K[t])$ of arbitrarily large norm.

Proof. After perhaps replacing α with 2α , there is a root group $\mathbf{U}_{\alpha} \leq R_u(\mathbf{Q}^{\pm})$ and a K-isomorphism of algebraic groups $f: \mathbb{A}^k \to \mathbf{U}_{\alpha}$ for some affine space \mathbb{A}^k .

The regular function f is defined by polynomials $f_i \in K[x_1, \ldots, x_k]$. Because f maps the identity element to the identity element, each f_i has a constant term of 0.

The field of fractions of \mathcal{O}_K is K. We let N be the product of the denominators of the coefficients of the f_i . Then the image under f of the points (Nt^j, \ldots, Nt^j) forms an unbounded sequence in j of points in $U_{\alpha}(\mathcal{O}_K[t])$.

Lemma 6. There exists a hyberbolic isometry $b \in \mathbf{H}(\mathcal{O}_K[t])$ of the tree X_H .

Proof. Let $\ell' \subseteq X_H$ be the geodesic corresponding to S', and choose $u^{\pm} \in R_u(\mathbf{Q}^{\pm})(\mathcal{O}_K[t])$ of sufficient norm such that $\ell' \cap F^+$ is disjoint from $\ell' \cap F^-$. Since F^+ and F^- are convex, and $\ell' - (F^+ \cup F^-)$ is the geodesic between them, it follows that $F^+ \cap F^- = \emptyset$. Now apply Lemma 4.

5. Construction of cycles in X near Γ

Let $b \in \mathbf{H}(\mathcal{O}_K[t])$ be as in Lemma 6, and let \mathbf{S}'' be the $K((t^{-1}))$ -split one dimensional torus corresponding to the axis of b in X_H . Define the $K((t^{-1}))$ -split torus $\mathbf{A} = \langle \mathbf{S}'', \mathbf{T} \rangle \leq \mathbf{P}$ and let $A = \mathbf{A}(K((t^{-1})))$. Let \mathcal{A} denote the apartment in X corresponding to A.

Recall that any unbounded element $a \in T$ translates \mathcal{A} , and that the axis for the translation is any geodesic in \mathcal{A} that joins P with its opposite parabolic P^{op} , as usual $P^{op} = \mathbf{P}^{op}(K((t^{-1})))$ where \mathbf{P}^{op} is the oppositie parabolic containing $Z_{\mathbf{G}}(\mathbf{T})$.

Note that b acts by translation on \mathcal{A} . In fact, b translates orthogonal to any geodesic in \mathcal{A} that joins P with P^{op} . Indeed, choose an element w of the Weyl group with respect to \mathbf{A} that reflects through a geodesic joining \mathbf{P} and \mathbf{P}^{op} . Thus w fixes both parabolic groups, and their common Levi subgroup, and hence \mathbf{H} . Since $\mathbf{S}' = \mathbf{A} \cap \mathbf{H}$, w fixes \mathbf{S}' and thus fixes any axis for b in \mathcal{A} . Therefore, either b translates orthogonal to any geodesic in \mathcal{A} that joins P with P^{op} , or else b translates along a geodesic in \mathcal{A} that joins P with P^{op} . The latter option would contradict Lemma 3 since for any $e \in \mathcal{A}$, we have $\Gamma b^n e = \Gamma e \in \Gamma \setminus X$ and yet there is an unbounded $a \in T$ such that the ray determined by $a^n e$ is parallel to the ray determined by $b^n e$ and yet $a^{-n}ua^n \to 1$ either for any $u \in \mathbf{U}(\mathcal{O}_K[t])$ or for any u in the $\mathcal{O}_K[t]$ -points of the unipotent radical of \mathbf{P}^{op} .

П

The spherical Tits building for G and X is a graph, and the apartment \mathcal{A} corresponds to a circle in the spherical Tits building. Suppose this circle has vertices P_1, \ldots, P_n and edges Q_1, \ldots, Q_n where each \mathbf{P}_i is a maximal proper $K((t^{-1}))$ -parabolic subgroup of \mathbf{G} containing \mathbf{A} , each \mathbf{Q}_i is a minimal $K((t^{-1}))$ -parabolic subgroup of \mathbf{G} containing \mathbf{A} , and $\mathbf{P}_1 = \mathbf{P}$. We further assume that mod n, the edge Q_i has vertices P_i and P_{i+1} .

Notice that $\mathbf{U} \leq \mathbf{Q}_1 \cap \mathbf{Q}_n$ since $\mathbf{P} = \mathbf{P}_1$ contains both \mathbf{Q}_1 and \mathbf{Q}_n . That is, any element of $\mathbf{U}(\mathcal{O}_K)$ fixes the edges Q_1 and Q_n .

Let \mathbf{U}_1 be the root group corresponding to the half circle that contains Q_1 but not Q_2 , so that $\mathbf{U}_1 \leq \mathbf{U}$ but $\mathbf{U}_1 \cap \mathbf{Q}_2 = 1$. Let \mathbf{U}_n be the root group corresponding to the half circle that contains Q_n but not Q_{n-1} , so that $\mathbf{U}_n \leq \mathbf{U}$ but $\mathbf{U}_n \cap \mathbf{Q}_{n-1} = 1$.

It follows that $\mathbf{U} - \mathbf{Q}_i$ has codimension in \mathbf{U} at least 1 for i = 2, n-1. Since $\mathbf{U}(\mathcal{O}_K)$ is Zariski dense in \mathbf{U} , there is some $u \in \mathbf{U}(\mathcal{O}_K) - (\mathbf{Q}_2 \cup \mathbf{Q}_{n-1})$. It follows that u fixes the edges Q_n and Q_1 , but no other edges in the circle corresponding to \mathcal{A} .

Since u is a bounded element of G, it fixes a point in X. Therefore, u fixes a geodesic ray in X that limits to an interior point of the edge corresponding to Q_1 in the spherical building. Any such geodesic ray must contain a point in A, which is to say that u fixes a point in A.

Define a height function $q: \mathcal{A} \to \mathbb{R}$ such that the pre-image of any point is an axis of translation for b, such that $s \leq t$ if and only if any geodesic ray in \mathcal{A} that eminates from $q^{-1}(s)$ and limits to P contains a point from $q^{-1}(t)$.

Let $F = \{x \in \mathcal{A} \mid ux = x\}$, let $I = \inf_{f \in F} \{q(f)\}$, and let $E = \{f \in F \mid q(f) = I\}$. Since the fixed set of u in the circle at infinity of \mathcal{A} equals the union of the two edges Q_1 and Q_n , and since F is convex, I exists and E is either a point of, a subray of, a line segment of, or an entire axis of translation for b.

Notice that E is bounded, otherwise u would fix the point at infinity that a subray of E limited to. This point at infinity would have distance $\pi/2$ from the vertex P in the spherical metric, but this is not possible as the previously identified fixed set of u in the boundary circle is centered at P and has radius at most $\pi/3$. (The bound $\pi/3$ is realized exactly when the root system for G is of type A_2 .) Thus E is either a point or a compact interval.

Since the fix set of u in the boundary circle is exactly the union of Q_1 and Q_n , and since F is convex, F is precisely the union of all geodesic rays eminating from points in E and limiting to points in the

arc $Q_1 \cup Q_n$. That is F is a polyhedral region in \mathcal{A} that is symmetric with respect to a reflection of \mathcal{A} through a geodesic that limits to P and the opposite point of P. If E is a point, then F has two geodesic rays as its boundary: one ray that limits to P_2 , and the other that limits to P_n . If E is a nontrivial interval, then the boundary of F is the union of E, a ray from an endpoint of E that limits to P_2 , and a ray from the other endpoint of E that limits to P_n .

If E is an interval, we label its endpoints e^+ and e^- such that E is both oriented in the direction of translation of b, and in the direction towards e^+ , and away from e^- . Let e_0 be the midpoint of E. If E is a point, then $e_0 = e^+ = e^-$ is that point.

For n_0 sufficiently large and for any $n \ge n_0$, we define $\sigma_n \subseteq \mathcal{A}$ as the geodesic segment between $b^{-n}e^+$ and b^ne^- . Notice that $b^{-n}e^+$ is the only point in σ_n that is fixed by $g_n = b^{-n}ub^n$, and that b^ne^- is the only point in σ_n that is fixed by $h_n = b^nub^{-n}$.

Recall that \mathcal{A} is the apartment corresponding to A and $\mathbf{T} \subset \mathbf{A}$ is a K-split one dimensional torus of \mathbf{G} . Recall also that $\mathbf{P} = \mathbf{U}Z_{\mathbf{G}}(\mathbf{T})$. Let $a \in T$ be such that $a^{-n}ua^n \to 1$ as $n \to \infty$ so that a^ne_0 converges to the cell at infinity corresponding to P as $n \to \infty$.

Let Δ_n be the triangle with one face equal to σ_n , a second face contained in the boundary of $b^{-n} \operatorname{Fix}_{\mathcal{A}}(u) = \operatorname{Fix}_{\mathcal{A}}(g_n)$, a third face contained in the boundary of $b^n \operatorname{Fix}_{\mathcal{A}}(u) = \operatorname{Fix}_{\mathcal{A}}(h_n)$, and vertices $b^n e^-$, $b^{-n} e^+$, and a uniquely determined point $y_n \in \partial \operatorname{Fix}_{\mathcal{A}}(g_n) \cap \partial \operatorname{Fix}_{\mathcal{A}}(h_n)$. Thus y_n converges to the cell at infinity corresponding to P as $n \to \infty$. Note that

- (1) **U** is a unipotent group so $[[[g_n, h_n], \cdots], h_n], h_n] = 1$ for some fixed number of nested commutators that's independent of n.
- (2) If w is a word in $\{g_n, h_n, g_n^{-1}, h_n^{-1}\}$ and $d \in \{g_n, h_n, g_n^{-1}, h_n^{-1}\}$, then $w\sigma_n$ and $wd\sigma_n$ are incident.
- (1) and (2) imply that the word $[[[[g_n, h_n], \cdots], h_n], h_n]$ (or possibly a subword) describes a 1-cycle that is the union of translates of σ_n by subwords of $[[[[g_n, h_n], \cdots], h_n], h_n]$. We name this 1-cycle c_n .

The cone of c_n at the point y_n is the topological image of a 2-disk $\phi_n: D^2 \to X$ such that $\phi_n(\partial D^2) = c_n$.

If we let

$$X_0 = \Gamma \sigma_{n_0}$$

then clearly $c_n \in X_0$ for all n since $b, g_n, h_n \in \Gamma$ and $\sigma_n \subseteq \langle b \rangle \sigma_{n_0}$.

6. Proof of Theorem 1

We choose a Γ -invariant and cocompact space $X_i \subseteq X$ to satisfy the inclusions

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots \subseteq \bigcup_{i=1}^{\infty} X_i = X$$

In our present context, Brown's criterion takes on the following form $[\mathrm{Br}]$

Brown's Filtration Criterion 7. By Lemma 2, the group Γ is not of type FP_2 (and hence not finitely presented) if for any $i \in \mathbb{N}$, there exists some class in the homology group $\widetilde{H}_1(X_0, \mathbb{Z})$ which is nonzero in $\widetilde{H}_1(X_i, \mathbb{Z})$.

Since $\Gamma \backslash X_i$ is compact it follows from Lemma 3 that for any i there there exists some j_i such that $a^{j_i}e_0 \notin X_i$. Choose n sufficiently large so that $a^{j_i}e_0 \in \Delta_n \subseteq \phi_n$. Recall that $c_n \subseteq X_0$. Since X is contractible and 2-dimensional, any filling disk for c_n must contain $a^{j_i}e_0$. That is, c_n represents a nontrivial class in the homology of $X - \{a^{j_i}e_0\}$, and hence is nontrivial in the homology of X_i .

7. Other ranks

The proof of Proposition 4.1 in [B-W] gives a short proof that $\mathbf{SL_2}(\mathbb{Z}[t])$ is not finitely generated by examining the action of $\mathbf{SL_2}(\mathbb{Z}[t])$ on the tree for $\mathbf{SL_2}(\mathbb{Q}((t^{-1})))$. Replacing some of the remarks for $\mathbf{SL_2}(\mathbb{Z}[t])$ in that paper with straightforward analogues from lemmas in this paper, it is easy to see that the proof in [B-W] applies to show that if \mathbf{H} is a connected, noncommutative, absolutely almost simple algebraic K-group of K-rank 1, then $\mathbf{H}(\mathcal{O}_K[t])$ is not finitely generated.

It seems natural to state the following

Conjecture 1. Suppose **H** is a connected, noncommutative, absolutely almost simple algebraic K-group whose K-rank equals k. Then $\mathbf{H}(\mathcal{O}_K[t])$ is not of type F_k or FP_k .

The conjecture has been verified when $K = \mathbb{Q}$ and $\mathbf{H} = \mathbf{SL_n}$ [B-M-W].

References

- [B-S] A. Borel, J-P. Serre, Corners and arithmetic groups. Comm. Math. Helv. 48 (1973) p. 436 491.
- [Br] Brown, K., Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987), 45-75.
- [B-M-W] Bux, K.-U., Mohammadi, A., Wortman, K. $\mathbf{SL_n}(\mathbb{Z}[t])$ is not FP_{n-1} . Comm. Math. Helv. **85** (2010), 151-164.

- [B-W] Bux, K.-U., and Wortman, K., Geometric proof that $\mathbf{SL}_2(\mathbb{Z}[t, t^{-1}])$ is not finitely presented. Algebr. Geom. Topol. 6 (2006), 839-852.
- [Ga] Gandini, G., Bounding the homological finiteness length. Preprint.
- [G-M-V] Grunewald, F., Mennicke, J., and Vaserstein, L., On symplectic groups over polynomial rings. Math. Z. 206 (1991), 35-56.
- [Kro-Mi] Kropholler, P., and Mislin, G., Groups acting on finite-dimensional spaces with finite stabilizers. Comment. Math. Helv. **73** (1998), 122-136.
- [Krs-Mc] Krstić, S., and McCool, J., Presenting $GL_n(k\langle T\rangle)$. J. Pure Appl. Algebra 141 (1999), 175-183.
- [La] Landvogt, E., Some functorial properties of the Bruhat-Tits building. J. Reine Angew. Math. **518** (2000) p.213-241.
- [Se] Serre, J.-P., Trees. Translated from the French original by John Stillwell. Corrected 2nd printing of the 1980 English translation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- [So] Soulé, C., Chevalley groups over polynomial rings. Homological Group Theory, LMS **36** (1977), 359-367.
- [Su] Suslin, A. A., The structure of the special linear group over rings of polynomials. Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 235-252.