Homework due Thursday, April 9, 9:00 pm, on Gradescope.

(1) Let \(A \) be a ring and \(x \) and indeterminate. Prove that
(a) \(\text{Nil}(A[x]) = \text{Nil}(A)[x] \).
(b) \(A[x]^\times = \{ \sum a_i x^i \in A[x] : a_0 \in A^\times, a_i \in \text{Nil}(A), i > 0 \} \)
(c) \(J(A[x]) = \text{Nil}(A[x]) = \text{Nil}(A)[x] \).
(This is parts of Exercise 2 of chapter 1 in the book.)
Hint: part (1): one inclusion is clear, for the other inclusion use the fact that \(p[x] \) is a prime ideal in \(A[x] \) for any prime ideal \(p \triangleleft A \).
Part (2): For one inclusion show and use the fact that if \(B \) is a ring, \(u \in B^\times \) and \(n \in \text{Nil}(B) \), then \(n + u \in B^\times \). For the other inclusion prove and use the fact that if \(B \) is an integral domain \(B[x]^\times = B^\times \) —apply this to \(A/p \) for prime ideals \(p \).
Part (3): One inclusion is clear, for the other use part (2).

(2) Complete the proof of McCoy’s Theorem: Let \(a, b_1, \ldots, b_n \triangleleft A \). Suppose
\[
\mathfrak{a} \subset \bigcup_{i=1}^{n} \mathfrak{b}_i \quad \text{and} \quad \mathfrak{a} \not\subset \bigcup_{i \neq j} \mathfrak{b}_i \quad \text{for every} \quad j.
\]
Then there exists some \(k \in \mathbb{N} \) so that \(\mathfrak{a}^k \subset \bigcap_i \mathfrak{b}_i \).

(3) Prove the following statements:
(a) \((\mathfrak{a} : \mathfrak{b} : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b}) \).
(b) \(\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt[\mathfrak{a} + \sqrt{\mathfrak{b}}] \).
(c) If \(\mathfrak{p} \) is a prime ideal, \(\sqrt[\mathfrak{p}] = \mathfrak{p} \).
(d) \(\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{a} \).

(4) Prove the following statements:
(a) Any non-empty closed subset of \(\text{Spec}(A) \) intersects \(\text{Max}(A) \) non-trivially.
(b) \(\{ \mathfrak{p} \in \text{Spec}(A) : \{ \mathfrak{p} \} \text{ is closed} \} = \text{Max}(A) \).
(c) If \(A \) is an integral domain, \(\{0\} \) is dense in \(\text{Spec}(A) \).

(5) Let \(\mathfrak{a} \triangleleft A \) and let \(\pi : A \to A/\mathfrak{a} \) be the natural map. Then \(\pi^* \) induces a bijection from \(\text{Spec}(A/\mathfrak{a}) \) to \(V(\mathfrak{a}) \).

(6) Let \(A \) be a local ring, \(M \) and \(N \) finitely generated \(A \)-modules. Prove that if \(M \otimes N = 0 \), then either \(M = 0 \) or \(N = 0 \). (Exercise 3, chapter 2 in the book.)