Section A: Homework due Thursday, April 23, 9:00 pm, on Gradescope.

(1) Let \(R \) be a ring with 1, and let \(u \in R \) be a unit. Let \(n \) be a positive integer so that \(nu = 0 \). Show that
\[
na = 0 \quad \text{for all } a \in R.
\]

(2) Exercise 20 page 189: 2, 4, 6, 8, 14

Section B: Extra practice problems: Problems in section B are for your practice; please do not hand them in. However, it is extremely important that you feel comfortable with these problems as some of them may appear on the exam(s).

(1) Let \(R \) be a ring without a zero divisor, i.e., if \(ab = 0 \) for some \(a, b \in R \), then either \(a = 0 \) or \(b = 0 \). Assume there exists some nonzero element \(x \in R \) so that \(x^2 = x \). Show that \(x \) is the multiplicative identity. That is:
\[
xy = yx = y \quad \text{for every } y \in R.
\]

[Note that since \(R \) is not assumed to have 1, we cannot simply factor \(x^2 - x = x(x - 1) \).]

(Hint: Use \(x^2 = x \) to show that \(x(xy - y) = 0 \) and \((yx - y)x = 0 \) for every \(y \), conclude the assertion from this.)

(2) Exercise 20 page 189: 18, 22, 23,