Problem 1. Let \(U \) be the group of units in \(\mathbb{Z}_{109} \) together with the usual multiplication.
(a) Show that \(U \) is an abelian group of order 108.
(b) Determine with justification whether the group \(U \) is isomorphic to the group \(\mathbb{Z}_6 \times \mathbb{Z}_{18} \).

Solution. a) In the first homework assignment, we proved that the collection of units in a ring is a group with the multiplication from the ring. As 109 is prime, \(\mathbb{Z}_{109} \setminus \{0\} \) is a field and every non-zero element is a unit. Thus \(U \) is an abelian group of order 108 where the abelian nature of \(U \) follows from multiplication in \(\mathbb{Z}_{109} \) being commutative.

b) Seeking a contradiction, suppose \(U \cong \mathbb{Z}_6 \times \mathbb{Z}_{18} \). Then, a standard result from Math 103A shows they necessarily have the same number of elements of order 2. (The group isomorphism \(\phi : U \rightarrow \mathbb{Z}_6 \times \mathbb{Z}_{18} \) preserves the order of elements.) As such, the groups should have the same number of solutions to \(x^2 = 1 \). In \(\mathbb{Z}_{109} \), it follows that \(\mathbb{Z}_{109} \) is an integral domain and hence there are two solutions in \(U \). In the additive group \(\mathbb{Z}_6 \times \mathbb{Z}_{18} \), \(x^2 = (0,0) \) implies that \(x \in \{(0,0), (3,0), (0,9), (3,9)\} \) and hence they have a different number of elements of order two.

Problem 2 (§18.52). Let \(r, s \) be positive integers so that \((r, s) = 1 \). Use the isomorphism in Example §18.15 to show that for \(m, n \in \mathbb{Z} \), there exists an integer \(x \in \mathbb{Z} \) such that \(x \equiv m \pmod{r} \) and \(x \equiv n \pmod{s} \).

Solution. The isomorphism in Example §18.15 implies that since \(\gcd(r, s) = 1 \), \(\mathbb{Z}_r \times \mathbb{Z}_s \) is isomorphic to \(\mathbb{Z}_{rs} \). Letting the isomorphism be \(\phi : \mathbb{Z}_{rs} \rightarrow \mathbb{Z}_r \times \mathbb{Z}_s \), we have that letting \(m' \equiv m \pmod{r} \), \(n' \equiv n \pmod{s} \) with \(0 \leq m' < r \) and \(0 \leq n' < s \), there exists \(x \in \mathbb{Z}_{rs} \) such that \(\phi(x) = (m', n') \). In particular, we have that since this is a homomorphism, \(x \cdot \phi(1) = x \cdot (1,1) = (m', n') \), so \(x \equiv m' \equiv m \pmod{r} \) and \(x \equiv n' \equiv n \pmod{s} \). Thus, \(x \) is an integer satisfying the above.

Problem 3 (§20.13). Describe all solutions to \(36x = 15 \pmod{24} \).

Solution. Seeking a contradiction, suppose there exists \(x \in \mathbb{Z}_{24} \) which satisfied the above equation. Then \(36x = 24k + 15 \) for some \(k \in \mathbb{Z} \). This is a contradiction as the left hand side is even and the right hand side is odd.

\[^1 \text{technically this counts the number of elements of order at most 2} \]
The general theory here is that since $15 \nmid \gcd(12, 24)$, there are no solutions to the equation $36x = 15 \mod 24$ (cf. Theorem 20.12).

Problem 4 ($§$20.15). Describe all solutions to $39x = 125 \mod 9$.

Solution. We first reduce the equation to $3x = 8 \mod 9$ and again appeal to Theorem 20.12 to get that there are no solutions since $8 \nmid \gcd(3, 9)$.

Problem 5 ($§$20.19). Let p be prime and use exercise 28 below to find the remainder of $(p - 2)!$ modulo p.

Solution. Exercise 28 involves proving Wilson’s theorem which says for a prime p, that $(p - 1)! = -1 \mod p$. We next note that $(p - 1)^{-1} = (p - 1)$ as

$$(p - 1)(p - 1) = (-1)(-1) = 1.$$

Multiplying the result of Wilson’s theorem on both sides by $(p - 1)$, we recover

$$(p - 2)! = (p - 1)(p - 1)(p - 2)! = (p - 1)(p - 1)! = (p - 1)(-1) = 1.$$

Another way to recover this result is by noting in a finite group, if we let $S_{\geq 3} \subset G$ be all the elements of order at least three, then

$$\prod_{a \in S_{\geq 3}} a = e$$

as for each $a \in S_{\geq 3}$, there exists a unique distinct $b \in S_{\geq 3}$ with $ab = e$. We then note that for \mathbb{Z}_p ($p \geq 5$ prime) the element of order at least three are $\{2, 3, \ldots, p - 2\}$ and there are no such elements when $p \in \{2, 3\}$.

Problem 6 ($§$21.1). Describe the field F of quotients of the integral domain

$$D = \{n + mi : n, m \in \mathbb{Z}\}$$

of \mathbb{C}. That is, list the elements.

Solution. Let F be the desired field of quotients. Then we claim

$$F = \mathbb{Q}(i) := \{a + ib : a, b \in \mathbb{Q}\}.$$

First, we note that given any $n + mi, u + vi \in D$ where $u + vi \neq 0$ that

$$\frac{n + mi}{u + vi} = \frac{nu + mv}{u^2 + v^2} + \frac{mu - nv}{u^2 + v^2} \in \mathbb{Q}(i).$$

Next, we observe that given any $\frac{a}{b} + i\frac{c}{d} \in \mathbb{Q}(i)$, that

$$\frac{a}{b} + i\frac{c}{d} = \frac{ad + icb}{bd} \in F$$

as both the numerator and denominator above are elements of the integral domain D.

2
Problem 7 (§21.2). Describe the field of quotients of the integral domain $D = \{ n + m\sqrt{2} : \ n, m \in \mathbb{Z} \}$ of \mathbb{R}.

Solution. Let F be the field of quotients for D. We claim that the field of quotients is $\{ a + b\sqrt{2} : a, b \in \mathbb{Q} \}$. First note that for any $n, m, p, q \in \mathbb{Z}$ with $p + q\sqrt{2} \neq 0$, then,

$$\frac{n + m\sqrt{2}}{p + q\sqrt{2}} = \frac{(n + m\sqrt{2})(p - q\sqrt{2})}{(p + q\sqrt{2})(p - q\sqrt{2})} = \frac{np - 2mq + (mp - nq)\sqrt{2}}{p^2 - 2q^2} = \frac{np - 2mq}{p^2 - 2q^2} + \frac{mp - nq}{p^2 - 2q^2} \sqrt{2}$$

where $\frac{np - 2mq}{p^2 - 2q^2}, \frac{mp - nq}{p^2 - 2q^2} \in \mathbb{Q}$. Thus, $F \subseteq \{ a + b\sqrt{2} : a, b \in \mathbb{Q} \}$. Conversely, for $a, b \in \mathbb{Q}$, we have that $a = \frac{m}{n}, \ b = \frac{p}{q}$ for $m, n, p, q \in \mathbb{Z}$. Then, note that $mq + pn\sqrt{2}, nq \in D$, so noting that $nq \neq 0$, we have that

$$a + b\sqrt{2} = \frac{mq}{nq} + \frac{pn}{nq} \sqrt{2} = \frac{mq + pn\sqrt{2}}{nq} \in F,$$

making this indeed the field of quotients.