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Abstract. A quantitative version of the Oppenheim conjecture for inhomo-
geneous quadratic forms is proved. We also give an application to eigenvalue
spacing on flat 2-tori with Aharonov-Bohm flux.

1. Introduction

Let Q be a nondegenerate indefinite quadratic form on Rn. Let ξ ∈ Rn be a vector
and define the (inhomogeneous) quadratic form Qξ by

(1) Qξ(x) = Q(x + ξ) for all x ∈ Rn

We will refer to Q = Q0 as the homogeneous part of Qξ. We say Qξ has signature
(p, q) if Q does. Recall that a quadratic form Qξ is called irrational if it is not
scalar multiple of a form with rational coefficients. In other words Qξ is irrational
if either Q is irrational as a homogeneous form or if Q is a rational form then ξ is
an irrational vector.

Let ν be a continuous function on the sphere {v ∈ Rn : ‖v‖ = 1}. Define Ω =
{v ∈ Rn : ‖v‖ < ν(v/‖v‖)} and let TΩ be the dilate of Ω by T. For an indefinite
quadratic form Q in n variables and a vector ξ ∈ Rn we let

(2) NQ,ξ,Ω(a, b, T ) = # {x ∈ Zn : x ∈ TΩ and a < Qξ(x) < b}
If ξ = 0 we let NQ,0,Ω(a, b, T ) = NQ,Ω(a, b, T ). It is easy to see that there exists a
constant λQ,Ω such that

(3) Vol({x ∈ Rn : x ∈ TΩ and a < Qξ(x) < b}) ∼ λQ,Ω(b− a)Tn−2

A. Eskin, G. A. Margulis and S. Mozes in [EMM98] proved

Theorem 1.1. ([EMM98, Theorem 2.1]) Let Q be a quadratic form of signature
(p, q), with p ≥ 3 and q ≥ 1. Suppose Q is not proportional to a rational form.
Then for any interval (a, b)

(4) NQ,Ω(a, b, T ) ∼ λQ,Ω(b− a)Tn−2 as T →∞
where n = p + q and λQ,Ω is as in (3).

Theorem 1.1 fails if Q has signature (2, 2) or (2, 1). Indeed there are irrational
forms for which along a sequence Tj , NQ,Ω(a, b, Tj) > Tn−2

j (log Tj)1−ε. However
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these irrational forms are very well approximated by split rational forms. Let us
recall the following definition from [EMM05].

Definition 1.2. A quadratic form Q of signature (2, 2) is called extremely well
approximable by split forms (EWAS) if for every N > 0 there exists a split integral
form Q′ and 2 ≤ r ∈ R

(5)
∥∥∥∥Q− 1

r
Q′

∥∥∥∥ ≤
1

rN

where ‖ ‖ is a norm, fixed once and for all, on the space of quadratic forms in four
variables.

Recall from [EMM05] that if Q is irrational of signature (2, 2) then it has at most
4 rational null subspaces. Let

(6) ÑQ,Ω(a, b, T ) = #
{

x ∈ Zn :
x is not in a null subspace of Q

x ∈ TΩ and a < Q(x) < b

}

A. Eskin, G. A. Margulis and S. Mozes in [EMM05] proved

Theorem 1.3. ([EMM05, Theorem 1.3]) Let Ω be as above. Let Q be an irrational
quadratic form of signature (2, 2) which is not EWAS. Then for any interval (a, b)

(7) ÑQ,Ω(a, b, T ) ∼ λQ,Ω (b− a)T 2 as T →∞
where λQ,Ω is as in (3), and ÑQ,Ω is as in (6).

This paper extends theorems 1.1 and 1.3 to the setting of inhomogeneous quadratic
forms. Let us first state the following which provides us with asymptotically exact
lower bound. This indeed is the analogue of the similar result obtained by S. G. Dani
and G. A. Margulis [DM93].

Theorem 1.4. Let Qξ be an indefinite irrational quadratic form in n ≥ 3 variables.
Then for any interval (a, b) we have

(8) lim inf
1

Tn−2
NQ,ξ,Ω(a, b, T ) ≥ λQ,Ω(b− a) as T →∞

where λQ,Ω is as in (3)

Proof. This theorem is obtained from theorems A.3 and A.4 below with arguments
as in [DM93] or [EMM98, 3.4,3.5]. ¤

We have the following

Theorem 1.5. Let Q be an indefinite quadratic form of signature (p, q) where p ≥ 3
and q ≥ 1. Let ξ ∈ Rn where n = p + q. Suppose that Qξ is an irrational form then

(9) NQ,ξ,Ω(a, b, T ) ∼ λQ,Ω(b− a)Tn−2 as T →∞
where λQ,Ω is given in (3).

As in [EMM98] we also have the following uniform version of theorem 1.5. Let
I(p, q) denote the space of inhomogeneous quadratic forms whose homogeneous
parts are quadratic forms of signature (p, q) and discriminant ±1.
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Theorem 1.6. Let D be a compact subset of I(p, q) with p ≥ 3 and q ≥ 1 and let
n = p + q. Then for every interval (a, b) and every θ > 0 there exists a finite subset
P of D such that each Qξ ∈ P is a rational form and for every compact subset
F ⊂ D \ P there exists T0 such that for all Qξ ∈ F and T ≥ T0

(10) (1− θ)λQ,Ω(b− a)Tn−2 ≤ NQ,ξ,Ω(a, b, T ) ≤ (1 + θ)λQ,Ω(b− a)Tn−2

where λQ,Ω is as in (3).

The proofs of the above theorems are straightforward inhomogeneous versions of
the arguments and ideas developed in [DM93] and [EMM98].

As we mentioned before theorem 1.5 fails in signature (2, 2) and (2, 1). In this
paper we prove an inhomogeneous version of theorem 1.3. Indeed as in loc. cit.
one needs to assume certain “Diophantine condition” on the quadratic form. Using
similar ideas we also give a partial result in the (2, 1) case, see theorem 1.10 below.
We start with the following definitions.

Definition 1.7. A vector ξ = (ξ1, · · · , ξn) ∈ Rn is called κ-Diophantine, if there
exist κ > 0 and C = C(ξ) > 0 such that for all 0 < δ < 1 and all rational vectors
(p1

q1
, · · · , pn

qn
) ∈ Qn with maxi |qi| < 1/δ we have

(11) max
i
|ξi − pi

qi
| > C δκ

We say ξ is Diophantine if it is κ-Diophantine for some κ. The following is our
Diophantine condition on Qξ.

Definition 1.8. The irrational inhomogeneous quadratic form Qξ of signature
(2, 2) is called Diophantine if either Q is not EWAS or ξ is Diophantine.

Let Qξ be a quadratic form of signature (2, 2). If L is a rational 2-dimensional null
subspace of Q and ξ ∈ L + vξ for some vξ ∈ Z4 then the affine subspace L − vξ

will be called an exceptional subspace of Qξ. We will see that if either Q or ξ is
irrational then there are at most four subspaces L for which the above can hold.
Let
(12)

ÑQ,ξ,Ω(a, b, T ) = #
{

x ∈ Zn :
x is not in an exceptional subspace of Qξ

x ∈ TΩ and a < Qξ(x) < b

}

The following is analogue of theorem 1.3 in the inhomogeneous setting.

Theorem 1.9. Let Qξ be an inhomogeneous quadratic form of signature (2, 2).
Assume that Qξ is Diophantine. Then for any interval (a, b)

(13) ÑQ,ξ,Ω(a, b, T ) ∼ λQ,Ω(b− a)T 2 as T →∞
where λQ,Ω is as in (3), and ÑQ,ξ,Ω is defined in (12).

We now turn to the (2, 1) case. Our result in this case is more restrictive. As before
we define the notion of exceptional subspaces for forms of signature (2, 1). These
are affine subspaces L − vξ such that L is a rational 1-dimensional null subspace
of Q and ξ ∈ L + vξ for some vξ ∈ Z3. The counting function, ÑQ,ξ,Ω, is defined
correspondingly. We have the following
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Theorem 1.10. Let Qξ be a form of signature (2, 1). If

(i) the homogeneous part Q is a split rational form and
(ii) the vector ξ is Diophantine.

then for any interval (a, b)

(14) ÑQ,ξ,Ω(a, b, T ) ∼ λQ,Ω(b− a)T as T →∞
where λQ,Ω is as in (3), and ÑQ,ξ,Ω is defined in (12).

The proofs of theorems 1.9 and 1.10 require new ingredients combined with ideas
developed in [EMM98] and [EMM05]. Indeed what is new in theorem 1.9 compare
to [EMM05] is the case when the homogeneous part Q is EWAS. An important
especial case is when Q is a split rational form. In this case, and also theorem 1.10
above, we need to study the contribution coming from null subspaces to the counting
function Ñ . This is done in sections 5 and 7.

Eigenvalue spacing on flat 2-tori. It has been conjectured by Berry and Ta-
bor [BT77] that the the eigenvalues of a generic quantized completely integrable
Hamiltonian follow the statistics of a Poisson point-process, i.e their consecu-
tive spacings should be independent and identically distributed exponentially dis-
tributed. Except some numerical experiments results which support the Berry-
Tabor conjecture on a rigorous level have so far only been obtained for a statistic
which is easier to handle. This is the pair correlation density function.

Let the Hamiltonian be the geodesic flow for flat 2-torus. It was proved by P. Sar-
nak [Sar96] that for almost all (with respect to Lebesgue measure on the moduli
space of two dimensional flat tori) two dimensional flat tori the pair correlation
density function converges to the pair correlation density of a Poisson process. He
uses averaging arguments to reduce pair correlation problem to a problem about
spacing between the values at integers of binary quadratic forms. This is related
to the quantitative Oppenheim problem in the case of signature (2, 2). One corol-
lary of theorem 1.3 is that Berry-Tabor conjecture holds for pair correlation of two
dimensional flat tori under certain explicit Diophantine condition.

Similarly theorem 1.9 has a corollary in this direction. Let h be a lattice in R2.
Also let α = (α1, α2) ∈ R2. Now the eigenvalues of the Laplacian

(15) −∆ = − ∂2

∂y2
− ∂2

∂y2

with quasi periodicity conditions

(16) φ(x + v) = e2πi〈α,v〉φ(x) for all x ∈ R2 and all v ∈ h

are of the form 4π2‖w + α‖2 where w ∈ h∗ and h∗ is the dual lattice to h. Let

(17) 0 ≤ λ0 < λ1 ≤ λ2 · · ·
be these eigenvalues counted with multiplicity. By the Weyl’s law we have

(18) #{j : λj ≤ T} ∼ ch T

where ch = covol(h)
4π . Let 0 /∈ (a, b) and define the pair correlation function

(19) Rh,α(a, b, T ) =
#{(j, k) : λj < T, λk < T, a ≤ λj − λk ≤ b}

T
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Let now {w1, w2} be a basis for h∗ and let β = (β1, β2) be so that β1w1 + β2w2 =
α. Consider B(x1, x2) = 4π2‖x1w1 + x2w2 + α‖2. Indeed the above mentioned
eigenvalues are the values at integer points of the form Bβ . Let ξ = (β, β) ∈ R4

and define Q(x1, x2, x3, x4) = B(x1, x2) − B(x3, x4). The pair correlation function
for these eigenvalues, in the case 0 /∈ (a, b), is now asymptotically the counting
function ÑQ,ξ,Ω(a, b, T ), with Ω = {x : max(B(x1, x2)1/2, B(x3, x4)1/2) ≤ 1}. Thus
we obtain the following

Corollary 1.11. Let h be a lattice in R2 and let B be the quadratic form obtained
as above normalized so that one of the coefficients is 1 and let A1 and A2 be other
coefficients. Also let vector α ∈ R2 be given and define β as above. Suppose that at
least one of the following holds

(i) The vector β = (β1, β2) is Diophantine.
(ii) There exists N,C > 0 such that for all triples of integers (p1, p2, q) with

q ≥ 2,

max
i=1,2

∣∣∣∣Ai − pi

q

∣∣∣∣ >
C

qN

Then for any interval (a, b) with 0 /∈ (a, b) we have

(20) lim
T→∞

Rh,α(a, b, T ) = c2
h(b− a)

Hence the spectrum satisfies the Berry-Tabor conjecture for pair correlation func-
tion.

In the case h = Z2 this was proved by J. Marklof [Mark03]. His approach utilizes
results from theory of unipotent flows combined with application of theta sums.
We also use the theory of unipotent flows in our proof however our strategy to
control the integral of unbounded functions over certain orbits is dynamical and
rests heavily on [EMM98] and [EMM05].

Outline of the proof. Let Qξ be a quadratic form of signature (p, q) and let n = p+q.
Fix an interval (a, b) and let U ⊂ Rn be a “suitably chosen” compact set such that
a < Q(u) < b, for all u ∈ U. We want to count the number of vectors v ∈ Zn with
T/2 ≤ ‖v + ξ‖ ≤ T, such that a < Q(v + ξ) < b. Note that SO(Q) acts transitively
on the level sets of Q hence there exists some g ∈ SO(Q) such that g(v+ξ) ∈ U. Now
if we let f̂(g(Zn + ξ)) = #(g(Zn + ξ) ∩ U) then NQ,ξ(a, b, T )−NQ,ξ(a, b, T/2) can
be approximated by the integral Tn−2

∫
H

f̂(g(Zn + ξ))dg. Integrals of this form are
the main object of study in [EMM98] and [EMM05]. The question in hand is that
of equidistribution results for unbounded functions. One obtains the lower bound
by approximating f̂ by compactly supported functions as it was done in [DM93].
However in order to obtain the upper bound one needs to deal with the structure at
infinity of the space of lattices or in our case the space of inhomogeneous lattices.

Acknowledgments. We would like to thank J. Marklof for reading the first draft
and many helpful comments.

2. Passage to space of inhomogeneous lattices

As was outlined above, and is done in [EMM98] and [EMM05], our approach is to
translate the problem into a problem on homogeneous spaces and then borrow from
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the rich structure in there. As we are working with inhomogeneous forms the space
of main interest will be SLn(R) n Rn/SLn(Z) n Zn, which is naturally identified
with the space of inhomogeneous unimodular lattices in Rn.

Quadratic forms. Let n ≥ 3 and let n = p + q where p ≥ 2. Let {e1, · · · , en} be the
standard basis for Rn. If p ≥ 3 let B be the “standard” form

(21) B

(
i∑

i=1

xiei

)
= 2x1xn +

p∑

i=2

x2
i −

n−1∑

i=p+1

x2
i

Let H = SO(B) and {at} be the one-parameter subgroup of H given by ate1 =
e−te1, atei = ei for 2 ≤ i ≤ n− 1 and aten = eten. And let K = H ∩ K̂ where K̂ is
the group of orthogonal matrices with determinant 1. We let dk denote the Haar
measure on K normalized so that K is a probability space.

If (p, q) = (2, 2) we let

(22) B(x1, x2, x3, x4) = x1x4 − x2x3

be the standard form on R4. This is the determinant on M2(R), if we identify R4

with M2(R). Note that this identification shows that SO(2, 2) is locally isomorphic
to SL2(R) × SL2(R) with the action v → g1vg−1

2 , which leaves the determinant
invariant. We let H = SL2(R) × SL2(R), K = SO(2) × SO(2) and at = (bt, bt)
where bt = diag(e−t/2, et/2). We let dk denote the Haar measure on K normalized
so that K is a probability space. We will often work with the standard lattice Z4 and
the form Q in which case we continue to denote by {at} and K the corresponding
one parameter and maximal compact subgroup of SO(Q).

If (p, q) = (2, 1) we let

(23) B(x1, x2, x3) = x1x3 − x2
2

be the standard form on R3. This is the determinant on Sym2(R), the space 2× 2
symmetric matrices, if identify R3 with Sym2(R). This identification shows that
SO(2, 1) is locally isomorphic to SL2(R) with the action v → gvtg, where tg is
the transpose matrix. We let H = SL2(R). We let at = diag(e−t/2, et/2) and let
K = SO(2) be the maximal compact subgroup of H. As before dk denotes the
normalized Haar measure on K.

Let f be a continuous function with compact support on Rn we define the theta
transform of f by

(24) f̂(Λ + ξ) =
∑

v∈Λ+ξ

f(v)

where Λ + ξ is any unimodular inhomogeneous lattice in Rn. Note that f̂ is a
function on the space of inhomogeneous lattices.

We fix some more notations. Let n = p + q and let G = SLn(R) n Rn. Let Γ =
SLn(Z) n Zn which is a lattice in G. We have the following, which is similar to
Siegel’s integral formula.

Lemma 2.1. Let f and f̂ be as above. Let µ be a probability measure on G/Γ
which is invariant under Rn. Then

(25)
∫

G/Γ

f̂(g)dµ(g) =
∫

Rn

f(x)dx
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Proof. Note that Rn is the unipotent radical of G. Now the lemma follows from the
fact that µ is Rn-invariant and Fubini’s theorem. ¤

We end this section by recalling the definition of the α functions defined on the
space of lattices. Let ∆ be a lattice in Rn. A subspace L of Rn is called ∆-rational
if L ∩ ∆ is a lattice in L. For a ∆-rational subspace L let 1

d(L) be the volume of
L/(L ∩∆). For 0 ≤ i ≤ n define

(26) αi(∆) = sup
{

1
d(L)

: L is a ∆-rational subspace of dimension i

}

and let α(∆) = maxi αi(∆). Now if ∆ξ = ∆ + ξ is an inhomogeneous lattice let
α(∆ξ) = α(∆). There is a constant c = c(f) depending on f such that for any
inhomogeneous lattice ∆ξ = ∆ + ξ we have

(27) f̂(∆ξ) < c α(∆ξ) = c α(∆)

This is analogue of [Sch68, Lemma 2] and the proof is similar.

3. The case of where p ≥ 3.

In this section we prove theorem 1.6 modulo results proved in appendix A. As we
mentioned the proof is an easy adaptation of the proof of 1.1. We include it for the
sake of completeness. Hence through out this section we assume p ≥ 3 and q ≥ 1.
Let us recall the following

Theorem 3.1. ([EMM98, Theorem 3.2]) If p ≥ 3 and q ≥ 1 and 0 < s < 2 then
for any lattice ∆ in Rn

(28) sup
t>0

∫

K

αs(atk∆)dk < ∞

The upper bound is uniform as ∆ varies over compact sets in the space of lattices.

Theorem 1.6 is proved using the following which is a result of combining theo-
rems 3.1, A.3 and A.4. We have

Theorem 3.2. (cf. [EMM98, Theorem 3.5]) Suppose p ≥ 3 and q ≥ 1. Let f and f̂
be as above. Let ν be any continuous function on K. Then for every compact subset
D of G/Γ there exists finitely many points x1, · · · , x` ∈ G/Γ such that

(i) the orbit H xi is closed and has finite H-invariant measure, for all i,
(ii) for any compact set F ⊂ D \ ⋃

i H xi there exists t0 > 0 such that for all
x ∈ F and t > t0

(29)

∣∣∣∣∣
∫

K

f̂(atkx)ν(k)dk −
∫

G/Γ

f̂ dµ

∫

K

ν dk

∣∣∣∣∣ ≤ ε

where µ is either the G-invariant measure on G/Γ or H n Rn x is closed and has
H nRn-invariant probability measure and µ is this measure.

Proof. We may as we will assume that φ is non negative. Now define

(30) A(r) = {∆ ∈ G/Γ : α1(Λ) > r}
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Let gr be a continuous function on G/Γ such that gr(∆) = 0 if ∆ /∈ A(r), gr(∆) =
1 for all ∆ ∈ A(r + 1) and 0 ≤ gr(∆) ≤ 1 if r ≤ α1(∆) ≤ r + 1. We have
f̂ = (f̂ − f̂gr) + f̂gr. Note that f̂ − f̂gr is a continuous function with compact
support on G/Γ.

Note that H0 n Rn is a maximal connected subgroup of G. Hence for every δ > 0
there exists r0 such that if H n Rny is a closed orbit of H n Rn in G/Γ with an
HnRn-invariant probability measure σ then σ(A(r)∩HnRny) < δ for any r > r0.
Hence for r sufficiently large we get

(31)

∣∣∣∣∣
∫

G/Γ

f̂ dµ−
∫

G/Γ

(f̂ − f̂gr)dµ

∣∣∣∣∣ < ε/3

where µ is as in the statement of the theorem 3.2.

Recall that gr(y) = 0 if αr ≤ r. Let now β = 2 − s. There exists a constant B1

depending on f such that we have

(32)
∣∣∣∣
∫

K

(f̂gr)(atkx)ν(k)dk

∣∣∣∣ ≤ B1r
− β

2

∫

k

α(atkx)2−
β
2 |ν(k)|dk

Hence if we apply theorem 3.1 then there is a constant B depending on B1

(33)
∫

K

(f̂gr)(atkx)ν(k)dk ≤ B(sup
k∈K

|ν(k)|)r− β
2

for all x ∈ D.

Now choose r > r0 sufficiently large so that B(supk∈K |ν(k)|)r− β
2 < ε/3. First note

that applying theorem A.4 with the bounded continuous function f̂ − f̂gr there are
points y1, · · · , yk such that H nRnyi’s are closed and have finite H nRn-invariant
measure such that (29) holds for any x ∈ D \ ⋃k

i=1 H n Rnyi for f̂ − f̂gr instead
of f̂ and with ε/3 instead of ε. Now if we apply theorem A.3 to H n Rnyi for all
1 ≤ i ≤ k and D ∩ H n Rnyi and f̂ − f̂gr. Then there exist x1 · · · , x` such that
the conclusion of the theorem holds for f̂ − f̂gr and ε/3. Combining this together
with (31) and (33) and the choice of r we get the theorem. ¤

Proof of theorem 1.5 and 1.6. Theorem 1.5 is special case of theorem 1.6. The
proof of theorem 1.6 now goes along the same lines as in [EMM98, Section 3.4, 3.5]
replacing theorem 3.5 in [EMM98] by theorem 3.2 above. The proof is based on
integrating equation (24).

4. The case of signature (2, 2).

We now turn to the more interesting case of signature (2, 2). The proof is based
on the same philosophy however since theorem 3.1 does not hold for α2 in general
the proof is more involved. In fact theorem 3.2 may fail in case of (2, 2) in general.
It holds however under the Diophantine condition assumed above if we replace f̂
by a modified function f̃ . After this slight modification the main difficulty is to
control the contribution coming from α2 to integrals similar to those considered in
theorem 3.2. In this section we make this reduction and the next section is devoted
to the careful study of this contribution. The fact that we consider a slightly
different function f̃ is due to existence of exceptional subspaces which have of order
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of T 2 solutions and is a minor point. They may exists even under Diophantine
assumption, indeed we will show that if Qξ is irrational then there are at most four
exceptional subspaces.

Let Qξ be an inhomogeneous quadratic form of signature (2, 2) with discriminant
1. Recall that the affine subspace L− vξ is called exceptional if L is a rational null
subspace and ξ ∈ L + vξ for some vξ ∈ Z4. Indeed in this case L ⊂ Z4 + ξ and we
will refer to L as an exceptional subspace of Z4 + ξ. Let now q ∈ SL4(R) be such
that Q(v) = B(qv) for all v ∈ R4. Let Λ = qZ4 and let Λqξ = q(Z4 +ξ). Let X(Λqξ)
be the set of vectors in Λqξ not contained in qL where L ⊂ Z4 for Q defined as
above. Define

(34) f̃(g : Λqξ) =
∑

v∈X(Λqξ)

f(gv)

The following is analogue of [EMM05, Theorem 2.3] and will provide us with the
upper bound required for the proof of theorem 1.9. The proof of this theorem is
the main technical part of this paper and will occupy the rest of this paper.

Theorem 4.1. Let G,H, K and {at} be as in the section 2 for the signature (2, 2)
case. Let Qξ be a quadratic form of signature (2, 2) which is Diophantine. Let
q ∈ SL4(R) and Λqξ be as above. Let ν be a continuous function on K. Then we
have

(35) lim sup
t→∞

∫

K

f̃(atk : Λqξ)ν(k)dk ≤
∫

G/Γ

f̂(g)dµ(g)
∫

K

ν(k)dk

where µ is the G-invariant probability measure on G/Γ if the homogenous part,
Q, is irrational and the H n R4-invariant probability measure on the closed orbit
H nR4 · Λqξ if Q is a rational form.

Proof of theorem 1.9. Suppose Qξ is as in the statement of theorem 1.9. An
argument like that of [EMM98, Section 3.4, 3.5] combined with theorem 4.1 gives:
If 0 /∈ (a, b) then

(36) lim sup
T→∞

NQ,ξ,Ω(a, b, T ) = lim sup
T→∞

ÑQ,ξ,Ω(a, b, T ) ≤ λQ,Ω(b− a)T 2

This upper bound combined with the lower bound obtained by theorem 1.4 proves
theorem 1.9.

The proof of theorem 4.1 will extensively utilize results and ideas from in [EMM98]
and [EMM05]. We will try to use terminologies and notations used in loc. cit for
the convenience of the reader. We recall these theorems and terminologies when
we need them. Let us start with the following

Theorem 4.2. Let {at} and K be as in theorem 4.1. Let Λ be any lattice in R4

then for i = 1, 3 and any ε > 0

(37) sup
t>0

∫

K

αi(atkΛ)2−εdk < ∞

Hence there exists a constant c depending on ε and Λ such that for all t > 0 and
0 < δ < 1

(38) |{k ∈ K : αi(atkΛ) >
1
δ
}| < cδ2−ε
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Proof. The first assertion is proved in [EMM98, section 5]. The second assertion is
a consequence of the first assertion and Chebechev’s inequality. ¤

Such statement for α2 however, does not hold in general. Hence in order to control
the integral on the left hand side of (35) we need to study the contribution coming
from α2 to this integral under the imposed Diophantine condition. Let us recall
the following standard

Lemma 4.3. ([EMM05, Lemmas 2.1, 10.2]) Let Q be a homogeneous quadratic form
of signature (2, 2). Then

∧2 R4 decomposes into two SO(Q)-invariant subspaces V1

and V2. Let πi denote the projection
∧2R4 → Vi.

(i) The spaces V1 and V2 are orthogonal with respect to the bilinear form
Q(6)(v, w) = v ∧ w on

∧2 R4. The restriction of Q(6) to Vi has signature
(2, 1).

(ii) The pair (V1, V2) determines Q up to proportionality and the map f which
takes (V1, V2) to Q/proportionality is a rational map defined over Q.

(iii) If V1 is rational and the restriction of Q(6) to V1 splits over Q then f(V1, V
⊥
1 )

is a split form over Q.
(iv) Let L be a two dimensional subspace of R4 and let v1, v2 be a basis for L.

Then the restriction of Q to L is identically zero if and only if π1(v1∧v2) = 0
or π2(v1 ∧ v2) = 0.

Let Λ be a lattice in R4. If L is a 2-dimensional Λ-rational subspace of R4 we let
v1, v2 be an integral basis for L∩Λ. We let vL = v1∧v2. We will refer to Z4-rational
subspaces as rational subspaces.

Definition 4.4. Let Q be a quadratic form of signature (2, 2). Fix 0 < µ1 < 1. A
2-dimensional rational subspace L of R4 is called µ1-quasinull with respect to Q if

(39) ‖π1(vL)‖‖π2(vL)‖ < µ1

where πi’s are the projections corresponding to Q defined in lemma 4.3.

If L is a quasinull subspace and T/2 ≤ ‖vL‖ ≤ T then either ‖π2(vL)‖ < C/T or
‖π1(vL)‖ < C/T, we call L quasinull subspace of the first respectively the second
type. In particular null subspaces are quasinull and similar terminology will be used
for null subspaces. This indeed depends on the ordered pair (V1, V2). We assume
this ordering is fixed once and for all. In the particular case of Q = B we fix the
ordering so that the space spanned by {x11, x12} is of first kind.

The following is a technically involved theorem which is proved in [EMM05]. It
controls the contribution to α2 coming from non-quasinull subspaces.

Theorem 4.5. ([EMM05, Theorem 2.6]) Let µ1 > 0 be fixed and let Lt(δ) be the
set of all non-µ1-quasinull subspaces L such that for some k ∈ K, d(atkL) < δ.
Then there exists δ0 = δ0(µ1, Q) such that for all 0 < δ < δ0 and all t > 0

(40) |
⋃

L∈Lt(δ)

{k ∈ K : d(atkL) < δ}| < δ1.04
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Theorems 4.2 and 4.5 reduce the proof of theorem 4.1 to the study of quasinull
subspaces. We finish this section by making this reduction explicit and also fixing
some notations to be used in the next section.

We first remark that in the proof of theorem 3.2 we need to chose µ1 carefully, see
section 6 for details. However until that section we will let 0 < µ1 < 1 be any
small constant which is fixed through out and hence we will drop that from the
notation. Let Λqξ be as in the statement of theorem 4.1. For Λ any lattice in R4

we let α13(Λ) = max{α1(Λ), α3(Λ)}. There are constants c and r depending on f
and ξ only, such that for all 0 < δ ¿ 1 we have

(41) {k ∈ K : f̃(atkΛqξ) >
c

δ
} ⊂ {k ∈ K : α13(atkΛqξ) >

1
δ
} ∪Bt(δ) ∪ At(δ)

where Bt(δ) =
⋃

L∈Lt(δ)
{k ∈ K : d(atkL) < δ}. The set At(δ) corresponds to

quasinull subspaces and will be described below. Recall first that Qξ is an irrational
form hence it has at most four exceptional subspaces. That is there are at most
four null subspaces Li for 1 ≤ i ≤ 4 such that if ξ ∈ L + v for some v ∈ Q4 then
L = Li for some 1 ≤ i ≤ 4. Let Q = Q(Qξ) be the set of quasinull subspaces L
such that L 6= Li for 1 ≤ i ≤ 4. If B(r) denotes the ball of radius r in R4 let

(42) At(δ) =
⋃

L∈Q
{k ∈ K : d(atkL) < δ & ∃v ∈ Z4 s. t. atk(L+v+ξ)∩B(r) 6= ∅}

Indeed an estimate like (41), actually for f̂ would hold, by the virtue of [Sch68,
Lemma 2] if A was defined by taking union over all quasinull subspaces. But we
have replaced f̂ by f̃ and this implies we can take the union over Q instead. To
see this consider one of these subspaces e.g. L1. Assume ξ ∈ L1 + w1ξ where
w1ξ ∈ Z4. Now if there is k ∈ K such that (42) is satisfied with L = L1 and
v ∈ Z4. Then there is a constant cξ ≥ 1 depending on ξ such hat d(atkH) < cξδ
where H = span〈L1, v + w1ξ〉. Now either L1 = L1 + v + ξ or H is a 3-dimensional
subspace. We have excluded the points in L1 in the definition of f̃ and if the later
occurs then k ∈ {k ∈ K : α3(atkΛqξ) > 1/cξδ}. Hence there is c such that (41)
holds.

Now the proof of theorem 4.1 will be completed if we can show that there is some
η > 0 depending on Qξ such that |AL

t (δ)| < δη, for all small δ. Such bounds in
general do not hold. In the next section we will prove such bound for “most”
quasinull subspaces L under the Diophantine condition.

5. Contribution from quasinull subspaces

The reductions made in the previous section lead us to the study of quasinull
subspaces. We need some further investigations before we can take advantage of
the Diophantine condition.

Until further notice we work with the standard form and the lattice Λ = qZ4. We
will use the projections πi introduced in lemma 4.3. While working with Λ these
are projections from

∧2R4 onto Vi where Vi’s are SO(B) invariant. Similarly by
a quasinull subspace we mean a Λ rational 2-dimensional subspace for which (4.4)
holds with respect to these projections and some µ1 < 1.
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We start by recalling some notations. Let Q = Qξ denote the set of quasinull
subspaces which are not exceptional subspaces. For L ∈ Q we let AL

t (δ) be the
corresponding set defined in (42). Let us recall from [EMM05] that the subset in
the compact group K where the subspace L becomes “thin” can be approximated by
union of at most four rectangles. We recall the precise statement which is tailored
for our purpose in here.

Lemma 5.1. Let L be a µ-quasinull subspace of first type. Let 0 < δ < 1 and
t > 0. Then there exists 0 < c < 1 such that

(43) RL,±,±
t (cδ, cδ) ⊂ {k ∈ K : d(atkL) < δ} ⊂

⋃
±

RL,±,±
t (c−1δ, c−1δ)

where RL
t = I

π1(L)
t (δ)× I

π2(L)
t (δ) are boxes with the following properties

(i) the intervals I
πi(L)
t (δ) have the same center for all t.

(ii) the length |Iπ1(L)
t (δ)| ≈ e−tmt(L)−1/2δ1/2, where mt(L) = mink∈K d(atkL).

(iii) For 0 < η ¿ 1 either |Iπ2(L)
t (δ)| ≤ δη or ‖π2(vL)‖ ≤ δ1−2η

et .

Furthermore if L is a null subspace (of first type) then

(44) {k ∈ K : d(atkL) < δ} ⊂ I
π1(L)
t (δ)× SO(2)

where I
π1(L)
t (δ) is an interval with above properties.

Proof. Parts (i) and (ii) follow from [EMM05, Lemma A.6]. Note that if L is a
null subspace as a consequence of lemma 4.3 above we have π2(vL) = 0 hence L is
invariant by the second factor which implies (44). To see part (iii) note that the
action of SO(2) on V2 is via the adjoint representation and bt expands e2 ∧ e4 by a
factor of et hence (iii) follows. ¤

The above lemma reduces our study to the investigation of the sets RL
t (c−1δ) =

RL,±,±
t (c−1δ, c−1δ). In the rest of this section we will always assume that L is of

first type.

Recall that the set AL
t (δ), which is defined in (42), is a subset of K where the

subspace L has short vectors. Using theorem 4.2 we may reduce to a subset where
the shortest vectors are of approximately the same size, this reduction is done
as follows; Let k ∈ AL

t (δ) and let u1, u2 be two primitive vectors in L such that
atku1, atku2 are successive minima of atkL. Let ε > 0 be small and let
(45)

AL,1
t (δ, ε) =

{
k ∈ K : δ1+ε < d(atkL) < δ & δ

1+ε
2 ≤ ‖atkui(k)‖ < δ

1−ε
2 i = 1, 2

∃ v ∈ Z4 such thatatk(L + v + ξ) ∩B(r) 6= ∅
}

Let AL,2
t (δ, ε) = ∪L∈Q(AL

t (δ)\AL,1
t (δ, ε)), using theorem 4.2 we see that there exits

β > 0 depending on ε such that |AL,2
t (δ, ε)| < δ1+β . Hence we need to study the

sets AL
t (δ, ε) = AL,1

t (δ, ε). Let Qt(δ, ε) be the set of quasinull subspaces which are
not exceptional subspaces and for which AL

t (δ, ε) 6= ∅.
Recall that L is a quasinull subspace of the first type, this means L is “almost” in
V1, see definition 4.4. Then I

π2(L)
t (δ) is essentially the entire SO(2) in the second

factor of K. Indeed if L is a null subspace then L is in V1 and I
π2(L)
t (δ) = SO(2),
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as we remarked in lemma 5.1. Our goal in this section is to show that, under
the Diophantine condition, we can get a better bound for the measure of those
k ∈ SO(2) which effect f̃ i.e. there is a constant η depending on the Diophantine
condition and an appropriate choice of ε such that for all small enough δ we have
|AL

t (δ, ε)| < |Iπ1(L)
t (δ)| δη holds for “most” quasinull subspaces of first type L, see

corollary 5.11 for a precise statement.

For simplicity let ζ = qξ, where q ∈ SL4(R) was chosen such that Q(v) = B(qv) for
all v ∈ R4. Fix t > 0 and 0 < δ < 1. Let L ∈ Qt(δ, ε) with T/2 ≤ ‖vL‖ ≤ T. We
also fix a small 0 < ε ¿ 1 to be determined later in the course of our analysis. Let
kθ ∈ p1(AL

t (δ, ε)) and let

(46) EL
t (δ, kθ, ε) =

{
kφ ∈ SO(2) :

δ1+ε < d(at(kθ, kφ)L) < δ

min
0 6=w∈L∩Λ

‖at(kθ, kφ)w‖ > δ
1+ε
2

}

Note that EL
t (δ, kθ, ε) is an open set in SO(2). Further we have the successive

minima of at(kθ, kφ)L are bounded by δ
1+ε
2 and δ

1−ε
2 .

Remark 5.2. Using reduction theory of orthogonal group we see that the lattice
at(kθ, kφ)Λ is “narrow” along L only. To be more precise we have if there is some
λ ∈ Λ \ L such that at(kθ, kφ)(L + λ) ∩B(1/δ

1−ε
2 ) 6= ∅ then λ ∈ L.

Roughly speaking the general strategy now is to show that the following dichotomy
holds: either there is one translate of L which always stays “close” to the origin, or
different translates approach the origin in certain time intervals and after spending
some time close to the origin move far away, see proposition 5.3 for the precise
statement. If the second possibility holds for a subspace L then we use the special
geometry of the lattice at(kθ, kφ)Λ to guarantee that in the intermediate times there
is no translate of L which intersects a fixed bounded neighborhood of the origin. A
quantitative form of this argument is provided in proposition 5.3 below. Arguments
of this kind are by no means new G. A. Margulis used a qualitative version of this
argument in his proof of nodivergence for unipotent flows and after him these have
been used to provide quantitative versions of nondivergence for polynomial-like
maps by several people. We will then use the Diophantine condition to show that
the first possibility cannot hold for “many” subspaces.

Let us fix some more notations before proceeding. If kφ ∈ EL
t (δ, kθ, ε) is given

then let Lφ = at(kθ, kφ)L, more generally for any x ∈ R4 denote (L + x)φ =
at(kθ, kφ)(L+x). For x ∈ R4 let xLφ

⊥ denote the projection of x onto the orthogonal
complement of Lφ, the orthogonal complement is taken with respect to the usual
inner product on R4.

Proposition 5.3. Let r > 0 be a constant and let B(r) be the ball of radius r in
R4 also keep all the notations from before. Then there exists an absolute constant
c > 0 such that for all 0 < δ ¿ 1 one of the following holds

(i) there exists λL ∈ Λ such that if for some λ ∈ Λ there is kφ ∈ EL
t (δ, kθ, ε)

for which the plane (L + λ + ζ)φ intersects B(r) then L + λ = L + λL.
(ii) for all λ ∈ Λ we have maxkφ

‖(at(kθ, kφ)[λ + ζ])Lφ
⊥‖ > c

δ(1−ε)/2 .
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Furthermore if (ii) holds then there exists a computable constant η1 > 0 such that
for 0 < ε < 1/12 we have

(47) |EL
t (δ, kθ, ε, ξ) = {kφ ∈ EL

t (δ, kθ, ε) : ∃λ s. t. (L+λ+ζ)φ∩B(r) 6= ∅}| < Cδη1

where C > 0 is a computable constant.

Proof. Assume (ii) fails that is, there exists λ0 such that ‖(at(kθ, kφ)[λ0+ζ])Lφ
⊥‖ ≤

c
δ(1−ε)/2 for all kφ and all c > 0. This, for suitable choice of c, implies that (L+λ0+ζ)φ

intersects B( 1
4δ(1−ε)/2 ) for all kφ. Now suppose (L + λ + ζ)φ ∩B(r) 6= ∅ for some kφ

and λ. Now remark 5.2 guarantees that for δ ¿ r we have (L + λ− λ0)φ = Lφ and
hence (i) holds. This establishes the first claim.

Assume now that (ii) holds for some L ∈ Qt(δ, ε) and kθ ∈ p1(AL
t (δ, ε)). Denote

by hλ(φ) = ‖(at(kθ, kφ)(vL ∧ (λ + ζ))‖m, where ‖ ‖m denotes the maximum norm
on

∧3 R4. Note that each function in the definition of hλ is a linear combination
of {sini φ cosj φ : 0 ≤ i, j ≤ 3}. Now using [KM98, Proposition 3.4] we have;
There are constant C1, β1 > 0 such that the function hλ is (C1, β1) good. It
follows from the definition of (C,α)-good functions, see [KM98], that fλ(φ) =
‖(at(kθ, kφ)(vL ∧ (λ + ζ))‖ is (C2, β2)-good for some C2, β2 > 0.

Recall now that
(48)

maxkφ∈E ‖(at(kθ, kφ)[λ + ζ])Lφ
⊥‖ > c

δ(1−ε)/2

δ1+ε < at(kθ, kφ) < δ for all kφ ∈ EL
t (δ, kθ, ε, ξ)

fλ(φ) = ‖(at(kθ, kφ)(vL ∧ (λ + ζ))‖ = ‖(at(kθ, kφ)vL‖‖(at(kθ, kφ)[λ + ζ])Lφ
⊥‖

Hence we have maxφ fλ(φ) ≥ cδ1+ε

δ(1−ε)/2 = c δ
1+3ε

2 for all λ ∈ Λ. For λ ∈ Λ define

(49) Jλ = {kφ ∈ SO(2) : fλ(φ) <
c

3
δ

1+3ε
2 }

The sets Jλ’s are open and an argument like that of the beginning of the proof
using the estimates in (48) shows that Jλ’s are disjoint. Define

(50) Eλ = {kφ ∈ EL
t (δ, kθ, ε) : (L + λ + ζ)φ ∩B(r) 6= ∅}

Note that for φ ∈ Eλ we have fλ(φ) < rδ hence for δ ¿ r we have Eλ ⊂ Jλ. For
each φ ∈ Jλ now let Iφ(λ) be the largest interval containing φ and contained in Jλ.
Since fλ’s are (C2, β2)-good we have

(51) |{γ ∈ Iφ(λ) : fλ(γ) < rδ}| < C(r, c1, c2)δβ2
1−3ε

2 |Iφ(λ)|
Let ε < 1/12 and we let η1 = β2/4. Since Iφ(λ)’s cover Jλ and are disjoint we have

(52) |Eλ| ≤ |{φ ∈ Jλ : fλ(φ) < rδ}| < Cδη1 |Jλ|
Note that EL

t (δ, kθ, ε, ξ) ⊂ ∪λEλ and Eλ ⊂ Jλ’s are disjoint hence we have

(53) |EL
t (δ, kθ, ε, ξ)| ≤

∑

λ

|Eλ| ≤ Cδη1
∑

λ

|Jλ| ≤ Cδη1

This finishes the proof of the second claim. ¤

We now study more extensively the occurrence of case (i) in proposition 5.3. Thus
let L ∈ Qt(δ, ε) be a quasinull subspace with T/2 ≤ ‖vL‖ ≤ T and let kθ ∈
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p1(AL
t (δ, ε)) and suppose λ0 ∈ Λ is such that (i) in proposition 5.3 holds with this

λ0. Let 0 < η2 ¿ 1 be small number to be determined later. Define

(54) EL
t (λ0) = {kφ ∈ EL

t (δ, kθ, ε) : (L + λ0 + ζ)φ ∩B(r) 6= ∅}
There are two cases to be considered either |EL

t (λ0)| ≤ δη2 , or |EL
t (λ0)| > δη2 . The

former implies the desired bound on the measure of AL
t (δ, ε) hence the later is the

case which requires a more careful study. We start with the following

Lemma 5.4. Let 0 < η2 < η1 and the notations and assumptions be as in the above
paragraph. In particular assume that (i) in proposition 5.3 holds for some λ0 ∈ Λ
and further assume that |EL

t (λ0)| > δη2 . Then ‖(λ0 + ζ)L⊥‖ < 2rδ1−η2

T , where r is
as in the statement of of proposition 5.3.

Proof. Note that the representation of SO(2, 2) on
∧3 R4 is the contragredient

representation to the standard representation of SO(2, 2) on R4. More precisely, let
eijk = ei ∧ ej ∧ ek for 1 ≤ i, j, k ≤ 4. Then action of K1 fixes planes spanned by
{e134, e123} and {e341, e342} and similarly K2 fixes the planes spanned by {e123, e124}
and {e341, e342}. Further ate123 = e−te123, ate124 = e124, ate341 = e341 and ate342 =
ete342. Now let w = (kθ, e)(vL∧(λ0+ζ)), a = ‖(λ0+ζ)L⊥‖ and for any kφ ∈ EL

t (λ0)
let aφ = ‖(at(kθ, kφ)[λ0 + ζ])Lφ

⊥‖. Recall that T/2 ≤ ‖vL‖ ≤ T hence aT/2 ≤
‖w‖ ≤ aT. As was mentioned above K2 acts on the plane spanned by {e123, e124}
by rotation on R2 and e123 is the contracting direction of {at}. Also note that we
are assuming that |EL

t (λ0)| > δη2 . Hence there exist kφ ∈ EL
t (λ0) such that

(55)
aTδη2

2
≤ ‖at(kθ, kφ)[vL ∧ (λ0 + ζ)]‖ = aφ‖at(kθ, kφ)vL‖

Note now that we have aφ ≤ r and ‖at(kθ, kφ)vL‖ ≤ δ. So we get a ≤ 2rδ1−η2

T as we
wanted to show. ¤

Before proceeding let us draw the following corollary. This will be used in the proof
of theorem 4.1 to control the contribution of “small” subspaces.

Corollary 5.5. Let η1 be as in proposition 5.3 and let η2 < η1 < 1/4. Then for any
M > 1 there is a δ0 = δ0(M, Λ) such that if δ < δ0 then for any L with ‖vL‖ < M
either EL

t (δ, kθ, ε, ξ) < δη2 or there is some λ ∈ Λ such that λ + ζ ∈ L.

Proof. Suppose for some L we have EL
t (δ, kθ, ε, ξ) > δη2 . Hence the conditions

in lemma 5.4 are satisfied for L and some λ ∈ Λ. This implies ‖(λ + ζ)L⊥‖ <
2rδ1−η2

T ≤ 2rδ1−η2 . Now the assertion follows from discreteness of Λ together with
the assumption that ‖vL‖ < M. ¤

It is now more convenient to work with Q and the standard lattice Z4. Hence from
now until the end of this section by a quasinull subspace we mean a Z4-rational
quasinull subspace.

We are now ready to use the Diophantine condition. Let us start by recalling the
following theorem which is proved in [EMM05, section 10]. This theorem deals
with the Diophantine properties of the homogeneous part. It says “most” quasinull
subspaces are null subspaces of a rational approximation of Q and in particular if Q
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is not EWAS then there are not “many” quasinull subspaces. The precise statement
is as follows

Theorem 5.6. ([EMM05, Proposition 10.11]) There exists an absolute constant
ρ > 0 such that the following holds: Suppose Q is any irrational form of signature
(2, 2). Then for every sufficiently small τ2 > 0 and every T > 2 one of the following
holds:

(i) The number of quasinull subspaces of Q of norm between T/2 and T is
O(T 1−τ2).

(ii) There exists a split integral form Q′ with coefficients bounded by a fixed
power of T τ2 and 1 ≤ λ ∈ R satisfying ‖Q − 1

λQ′‖ ≤ T−ρ such that the
number of quasinull subspaces of Q with norm between T/2 and T which
are not null subspaces of Q′ is O(T 1−τ2).

We refer to section 10 of [EMM05] and also appendix B of this paper for a more
careful analysis of this theorem. The main ingredient in the proof is the system
of inequalities from [EMM98]. The main difference is that these inequalities are
applied to a certain dilated lattice in

∧2 R4 = R6.

Let us now outline the rest of the proof. Let Qξ be the inhomogeneous quadratic
form as in statement of theorem 1.9. We will apply the above theorem with ap-
propriate parameters ρ, τ2 to be determined later. Let T ≥ 2 be given. Now if (i)
above holds, which is always the case if Q is not EWAS, then we already have a
good control on the number of quasinull subspaces in question and we will get the
desired control on the measure of the set ∪LAL

t (δ, ε). Hence we may assume (ii)
above holds. Again if L is not a null subspace of the appropriate approximation of
Q we proceed as in case (i). So we need to consider the contribution from quasinull
subspaces which are null subspaces of some rational approximation. In this case
using lemma 5.3 we will be reduced to the case where only one translate of L has
contribution. We then will use the Diophantine property of ξ and get a control on
the number of such subspaces, this will complete the proof.

We need to fix some more notations before proceeding with the above outline. If
Q is a rational form we may choose µ1 small enough such that all µ1-quasinull
subspaces are null subspaces. Also in this case, replacing Q by a scalar multiple,
we may and will assume that Q is a primitive integral form.

Let T ≥ 2 be a fixed number. Recall from theorem 5.6 that there are two possibil-
ities for quasinull subspaces. The case which requires more study is case (ii) so let
us assume we are in this case. Let QT = Q′ (resp. QT = Q) if Q is irrational form
(resp. if Q is split integral form) where Q′ is given as in (ii) of theorem 5.6. Let
Qt(δ, ε, τ2) be the set of all such quasinull subspaces (resp. null subspaces if Q is
rational) which are not exceptional subspaces and such that A2

δ(•, ε) is nonempty
for them. Let L ∈ Qt(δ, ε, τ2) be such subspace. We will further assume that L is
of first type and that T/2 ≤ ‖vL‖ ≤ T..

Since QT is a split integral form, after possibly multiplying by a scalar bounded
by a fixed power of T τ2 , there exists a non singular integral matrix such that
QT (v) = B(pv). Further theorem 5.6 guarantees that we may choose p such that
its entries are bounded by a fixed power of T τ2 . Recall that the null subspaces of
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B are of two types, based on the fact that the corresponding vector vL is in V1 or
V2. From now on by a null space of first kind for B we mean

Null subspaces of first type: These are subspaces which are orbits of
(

x11 x12

0 0

)

under SL2 × SL2.

Trough out the rest of the section, by a null subspace we mean a rational null
subspace of the first type. Let now M be a rational null subspace of first type for
B. Such subspaces are characterized as annihilator of primitive row vectors. Hence

an integral basis for M is
{(

m 0
n 0

)
,

(
0 m
0 n

)}
, where gcd(m,n) = 1, we will

refer to this basis as standard integral basis for M.

Recall that L ∈ Qt(δ, ε, τ2) with T/2 ≤ ‖vL‖ ≤ T. Since L is a null subspace of
QT the subspace M = pL is a null subspace of B. Now let {v1, v2} be the standard
basis for M and let wi be the unique primitive integral multiple of p−1vi. Then
{w1, w2} is a basis for L. Further since p is an integral matrix whose entries are
bounded by a fixed power of T τ2 we have T 1/2−τ3 ≤ ‖wi‖ ≤ T 1/2+τ3 , where τ3 is a
fixed multiple of τ2. We will refer to the basis constructed in this way as τ3-round
basis for L.

Fix 0 < η2, ε, τ2 ¿ 1 small parameters. These will be determined later. Recall
that q ∈ SL4(R) is chosen such that Q(v) = B(qv). Now let L be as above,
further assume that there is kθ ∈ p1(A

qL
t (δ, ε)) such that |EqL

t (δ, kθ, ε, ξ)| > δη2 , in
particular (i) of proposition 5.3 holds for some λ ∈ Λ. Fix {w1, w2} a τ3-round.
Note that τ3 is fixed when τ2 is chosen.

Let q−1λ = v ∈ Z4. Now, using lemma 5.4, there is a constant c = c(q) such that
‖(v + ξ)L⊥‖ < c(q)δ1−η2

T . This and the fact that L is a null subspace of QT give

(56) |〈wi , v + ξ〉QT | ≤ T 1/2+τ3 · cδ1−η2

T
=

cδ1−η2

T 1/2−τ3

where c is an absolute constant depending on Q. So {〈wi , ξ〉QT
} ≤ cδ1−η2

T 1/2−τ3
, where

{ } denotes the distance to the closest integer. Let us now collect the result of the
above discussion in the following

Lemma 5.7. Let ε and τ2 be small and let L ∈ Qt(δ, ε, τ2). Let kθ ∈ p1(A
qL
t (δ, ε))

and suppose that |EqL
t (δ, kθ, ε, ξ)| > δη2 with η2 as in lemma 5.4. In particular

(i) in proposition 5.3 holds for qL and some λ ∈ Λ. Then {〈wi , ξ〉QT } ≤ cδ1−η2

T 1/2−τ3
,

where τ3 is a fixed multiple of τ2 as above. Further since {w1, w2} is the image of
standard basis {v1, v2} of M = pL then we have {〈vi , pξ〉B} ≤ cδ1−η2

T 1/2−τ3
.

This lemma brings us to the situation where we can now use the Diophantine
property of the vector ξ.

As we mentioned in the brief outline following theorem 5.6, loc. cit. deals with
the Diophantine properties of Q. If Q fails to have desired Diophantine condition ξ
needs to be a Diophantine vector thanks to our assumption on Qξ. In what follows
we will make use of this assumption and control the number of quasinull subspaces
for which lemma 5.7 can hold.
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The following is a simple consequence of the definition 1.7 i.e. the Diophantine
condition. The proof is easy, we include the proof for the sake of completeness also
for later references.

Lemma 5.8. Let x = (x1, · · · , xn) ∈ Rn be a κ-Diophantine vector. Then for any
κ′ > (n +1)κ +1 we have: For all β > 0 and all 0 < γ ¿ 1, if A ∈ GLn(Q) is such
that maxij{|Aij |, |(A−1)ij |} < γ−β , then Ax is (κ′β)-Diophantine.

Proof. Note that the inverse matrix A−1 is a rational matrix whose entries have
denominators bounded by C1γ

−nβ where C1 is an absolute constant depending on
the norm on Rn. Let v = (p1

q1
, · · · , pn

qn
) be any rational vector with maxi |qi| < γ−β

such that maxi |(Ax − v)i| < C ′γκ′β . The vector v′ = A−1v = ( r1
s1

, · · · , rn

sn
) is a

rational vector with maxi |si| < C2γ
−(n+1)β where C2 is an absolute constant. We

have

(57) max
i
|(x− v′)i| ≤ ‖A−1‖‖Ax− v‖ < C3γ

(κ′−1)β and |si| < C2γ
−(n+1)β

Now if one takes κ′ > (n + 1)κ + 1 one gets a contradiction. ¤
Remark 5.9. Arguing as in the proof of lemma 5.8 we can prove the following; For
any τ1 > 0 we can choose 0 < τ = τ(τ1) such that if τ2 in theorem 5.6 is less than
τ then for all T > 2 we have: If maxi |(pξ)i − pi

qi
| < C(ξ)T−2κτ1 then |qi| > T τ1 for

all 1 ≤ i ≤ 4.

As before, let {w1, w2} be a basis for L which is the image of the standard basis
{v1, v2} of M = pL. Replacing τ3 by 2τ3 if necessary, we have T 1−τ3 ≤ ‖vi‖2 =
m2 + n2 ≤ T 1+τ3 . The following is a consequence of lemma 5.7 and remark 5.9.

Proposition 5.10. Let η1 be as in proposition 5.3 and let η2 < η1. Then for any
0 < τ1 ¿ 1 we can choose τ2 small enough such that the number of quasinull
subspaces L in Qt(δ, ε, τ2) with T/2 ≤ ‖vL‖ ≤ T for which there exists some kθ ∈
p1(A

qL
t (δ, ε)) such that |EqL

t (δ, kθ, ε, ξ)| > δη2 is O(T 1−τ1).

Proof. We may as we will assume that L is of first type. We continue to use
the notations as in lemma 5.7 in particular let M = pL and let {v1, v2} be the
standard basis for M. Then loc. cit. implies that {〈vi, pξ〉B} ≤ cδ1−η2

T 1/2−τ3
. Recall that

v1 = (m, 0, n, 0) and v2 = (0,m, 0, n) where gcd(m,n) = 1 and we have

(58) T 1−τ3 ≤ ‖vM‖ = m2 + n2 ≤ T 1+τ3 ,

where τ3 is a fixed multiple of the constant τ2 appearing in theorem 5.6. We also
note that 〈v1 , pξ〉B = m(pξ)4 − n(pξ)2 and 〈v2 , pξ〉B(pξ)1 −m(pξ)3.

Let τ ′1 ¿ 1
32κ be chosen. Then choose τ2 in theorem 5.6 such that τ2 < τ(τ ′1), where

τ(τ ′) is given as in remark 5.9. Hence we have; If maxi |(pξ)i − pi

qi
| < C(ξ)T−2κτ ′1

then |q| > T τ ′1 . Taking τ2 even smaller we may and will assume that τ3 < τ ′1/3.

Now by lemma 5.8 we see that there is at most one primitive vector (a, b) with
‖(a, b)‖ < T τ ′1 such that; There exists (p1

q1
, p2

q2
) ∈ Q2 with |qi| < T τ ′1 and

(59)
|a(pξ)1 − b(pξ)3 − p1

q1
| < C ′T−8κτ ′1

|b(pξ)4 − a(pξ)2 − p1
q1
| < C ′T−8κτ ′1
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Where C ′ = C ′(ξ) is an absolute constant depending on. If we choose δ small
enough our assumption in the proposition and our choices of τ ′1 and τ2 imply that

(60) {〈vi, pξ〉B} ≤ C ′T−8κτ ′1

3
for i = 1, 2

Divide the range T 1−τ3 ≤ ‖(m, n)‖ ≤ T 1+τ3 into boxes of size T τ ′1 ×T τ ′1 . Now (59)
implies that; From each of these boxes there is at most one primitive integral vector
(m,n) which can satisfy (60). Hence the number of (m,n) such that (60) holds is
O(T 1+τ3−τ ′1). The conclusion of the proposition thus holds with τ1 = τ ′1/2. ¤

Let us now summarize, in the following corollary, what we proved in this section.
This is the precise formulation of what we called “our goal ” in the beginning of
this section.

Corollary 5.11. There are positive constants η and τ and also constants C1, C2 >
0 which depend on Qξ such that, if 0 < δ ¿ 1 is small enough then for all T > 2
the number of quasinull subspaces L in Qt(δ, ε) with T/2 ≤ ‖vL‖ ≤ T for which we
have |Iπ2(qL)

t (δ)| > C1δ
η is at most C2T

1−τ .

Proof. Let η1 be as in proposition 5.3 and let η2 < η1. Using proposition 5.10 there
exists τ1, τ2 such that the number of L ∈ Qt(δ, ε, τ2) with T/2 ≤ ‖vL‖ ≤ T for
which we have |EqL

t (δ, kθ, ε, ξ)| > δη2 for some kθ ∈ p1(A
qL
t (δ, ε)), is O(T 1−τ1). On

the other hands using theorem 5.6 we see that the number of quasinull subspaces
with T/2 ≤ ‖vL‖ ≤ T and AL

t (δ, ε) 6= ∅ which are not in Qt(δ, ε, τ2) is O(T 1−τ2).
The corollary follows with η = η1/2 and τ = min{τ1, τ2}. ¤

6. Proof of theorem 4.1.

We will complete the proof of theorem 4.1 in this section. Before proceeding to the
proof we need the following two statements.

Lemma 6.1. If Qξ is an irrational (2, 2) form. Then the number of 2-dimensional
null subspaces, say L, of Q such that ξ ∈ v + L for some v ∈ Z4 is at most four.

Proof. First note that using lemma 10.3 in [EMM05] we may and will assume that
Q is a rational form. In this case we will actually show there are at most two such
subspaces. In order to see this suppose that there are two null rational subspaces
of the same type, say Li for i = 1, 2, such that ξ ∈ vi + Li where vi ∈ Z4. Now
since Li’s are of the same type they are transversal. Let {wi

1, w
i
2} be an integral

basis for Li, then 〈ξ , wi
j〉B ∈ Z for i, j = 1, 2. This thanks to the transversality of

Li’s implies that ξ is a rational vector which is a contradiction. ¤

The following is essential to the proof of theorem 4.1 and proved in appendix B.

Proposition 6.2. The number of quasinull subspaces with norm between T/2 and
T is O(T ).

As we mentioned this will be proved in appendix B. However for the time being
let us remark that in the case where Q is a split integral form this is immediate.
Indeed in that case we are dealing with null subspaces and hence we need to show
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this for Q = B. As we observed however the null subspaces of B are classified by
primitive integral vectors (m,n). Now if L is a null subspace of either type which
corresponds to (m,n) then ‖vL‖ = m2 + n2. Thus the result is obvious.

We now turn into the proof of theorem 4.1.

Proof of theorem 4.1: We may as we will assume that f̃ is non negative. Now define

(61) A(r) = {∆ ∈ X : α1(∆) > r}
Let gr be a continuous function on X such that gr(∆) = 0 if ∆ /∈ A(r), gr(∆) = 1
for all ∆ ∈ A(r + 1) and 0 ≤ gr(∆) ≤ 1 if r ≤ α1(∆) ≤ r + 1. Let the constant c,
depending on f and ξ, be as in (41) and let s ∈ N be a large number. Define

(62) (f̃gr)≤s = (f̃gr)χ{∆ : f̃gr(∆)≤c2s} and (f̃gr)>
s = (f̃gr)χ{∆ : f̃gr(∆)>c2s}

Let now µ be as in the statement of the theorem. Since f̃ − f̃gr is bounded and
continuous, theorems A.3 and A.4 imply that

(63) lim sup
t→∞

∫

K

(f̃ − f̃gr)(atkΛqξ)ν(k)dk ≤
∫

G/Γ

f̂dµ

∫

K

νdk

Hence theorem 4.1 will be proved if we show that: Given ε > 0 we can choose r0

such that if r > r0 then lim supt

∫
K

f̃grdk < ε.

Let now ε > 0 be an arbitrary small number. Let us first control the contribution
of (f̃gr)>

s when s is large enough. Let M > 0 be a number fixed for now and large
enough such that 1

M < ε
6C , where C is a universal constant appearing in (68) and

in particular is independent of µ1 in the definition of quasinull subspaces. Further
assume that M is large enough such that all exceptional subspaces have norm less
than M. Let µ1 in the definition of quasinull subspace be small enough such that
for all L ∈ Qt(δ, ε) with ‖vL‖ < M if L is quasinull then L is null. Let s > 0 be
large enough such that the conclusion of theorems 4.2 and 4.5, for this µ1 which we
chose, as well as corollaries 5.5 and 5.11 hold for δ = 1/2j whenever j > s. Recall
now that we have

(64) {k ∈ K : f̃(atkΛξ) > c2j} ⊂ {k ∈ K : α13(atkΛξ) > 2j} ∪Bt(
1
2j

)∪At(
1
2j

)

where At( 1
2j ) and Bt( 1

2j ) are as in (41). Let Ct( 1
2j ) = {k ∈ K : α13(atkΛξ) > 2j}.

We have

(65)
∫

K

h>
s (atKΛqξ)dk ≤

∑

s<j<t′
2j(|Ct(

1
2j

)|+ |Bt(
1
2j

)|+ |At(
1
2j

)|)

For any small ε > 0 and any quasinull subspace L let AL
t ( 1

2j , ε) be as before.
Theorems 4.2 and 4.5 imply that if s is large enough then for all 0 < ε ¿ 1/20 and
all j > s we have

(66) |Ct(
1
2j

)|+ |Bt(
1
2j

)|+ |At(
1
2j

) \
⋃

L∈Qt(
1
2j ,ε)

AL
t (

1
2j

, ε)| < 1
2(1+ ε

4 )j

Let η1 < 1/4 be as in the proposition 5.3 and let η = η1/2. The conclusions of
corollaries 5.5 and 5.11 hold with this η and the corresponding τ. Let now Q<

t ( 1
2j , ε)
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(resp. Q≥t ( 1
2j , ε)) be the set of quasinull subspaces in Qt( 1

2j , ε) with norm less than
M (resp. greater than or equal to M.) We have
(67)

|⋃L∈Q<
t ( 1

2j ,ε)A
L
t ( 1

2j , ε)| ≤ ∑
i

∑ et

2i+j

et

2i+j+1
|IL

t (δ)| ≤ C1

∑
i

1

2(1+η)j+ i
2

|⋃
L∈Q≥t ( 1

2j ,ε)
AL

t ( 1
2j , ε)| ≤ ∑

i

∑ et

2i+j

et

2i+j+1
|IL

t (δ)| ≤ C2

∑
i(

1

2(1+η)j+ i
2

+ e−τt

2( 1
2−τ)i+(1−τ)j

)

where C1 and C2 are absolute constant independent of µ1. The inequality in the first
line above follows from corollary 5.5 and the fact that the definition of Qt( 1

2j , ε)
excludes exceptional subspaces. The inequalities in the second line follow from
corollary 5.11. We now have

(68)
∑

j>s

2j |
⋃

L∈Qt(
1
2j ,ε)

AL
t (

1
2j

, ε)| ≤ C(
1

2sη
+

1
M

)

here C ′ is an absolute constant which depends on C in (68). This inequality together
with (66) gives

(69)
∫

K

(f̃gr)>
s (atKΛqξ)dk ≤ C ′

2
εs
4

+ C(
1

2ηs
+

1
M

)

Recall that M was chosen such that C
M < ε/6. Now we choose s large enough such

that the right hand side of (69) is less than ε/2. The above estimate holds for all r.

As we mentioned in the proof of theorem 3.2: There exists r0 = r0(s, ε) such that
if r > r0 then µ(A(r)) < ε/2s+1. Let r > r0(s, ε). We have

(70) lim sup
t→∞

∫

K

(f̃gr)≤s (atkΛqξ)ν(k)dk ≤ 2s lim sup
t→∞

∫

K

gr(atkΛqξ)ν(k)dk ≤ ε/2

Thus (70) and (69) give: If r > r0(s, ε) then

(71) lim sup
t→∞

∫

K

f̃gr(atkΛqξ)dk < ε

This finishes the proof of theorem 4.1.

7. Proof of theorem 1.10

The proof of theorem 1.10 is very similar to that of theorem 1.9. Indeed our study
in this case is simpler as we are dealing with the case where the homogeneous part
Q is rational. Hence we only need to consider the contribution of null subspaces to
the counting function.

As before let q ∈ SL3(R) be such that Q(v) = B(qv) for all v ∈ R3. Since Q is
rational we may assume q is in PGL3(Q), let p ∈ GL3(Q) be a representative for
q. Let Λ = qZ3 and define Λqξ = q(Z3 + ξ). As in section 4 let X(Λqξ) be the
set of vectors in Λqξ not contained in qL where L ⊂ Z3 is an exceptional (one
dimensional) subspace for Q. An argument like that in lemma 6.1 shows there are
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at most 3 such subspaces when Q is rational and ξ is an irrational vector. For any
continuous compactly supported function f on R3 define

(72) f̃(g : Λqξ) =
∑

v∈X(Λqξ)

f(gv)

Discussions as before, reduce the proof of theorem 1.10 to the following theorem.

Theorem 7.1. Let G,H,K and {at} be as in section 2 for the signature (2, 1) case.
Let Qξ be a quadratic form of signature (2, 1) as in the statement of theorem 1.10.
Let q ∈ SL3(R) and Λqξ be as above. Let ν be a continuous function on K. Then
we have

(73) lim sup
t→∞

∫

K

f̃(atk : Λqξ)ν(k)dk ≤
∫

G/Γ

f̂(g)dµ(g)
∫

K

ν(k)dk

where µ is the HnR3-invariant probability measure on the closed orbit HnR3 ·Λqξ.

The proof of this theorem is very similar to that of theorem 4.1. We will use
the same notations as the previous sections for the sake of simplicity. The main
notational difference to bare in mind is that in previous sections L would denote a
2-dimensional subspace where in this section L is a one dimensional (null) subspace.

As before we need to study the subsets of K where the function f̃ is “large”. We
start by recalling the following; There is c > 0 such that for all large t and small
0 < δ ¿ 1 we have
(74)

{k ∈ K : f̃(atkΛqξ) >
c

δ
} ⊂ {k ∈ K : α1(atkΛqξ) >

1
δ
}∪{k ∈ K : α2(atkΛqξ) >

1
δ
}

We fix t and δ as above. Let us make two important remarks before we continue.
The second name author would like to thank A. Eskin for conversations regarding
this remark.

Remark 7.2. (i) Using reduction theory of the orthogonal group we see that:
if α2(atkΛqξ) > 1

δ , then actually α1(atkΛqξ) > 1
δ . Hence we only need to

study the contribution coming from α1.
(ii) The fact that Q is a rational form implies that there exists δ0 depending

only on Q such that if 0 < δ < δ0 and α1(atkΛqξ) > 1
δ , then there is

a null subspace L such that α1(atkΛqξ) = 1
d(atkL) . This follows because

Q(Z3) = B(Λ) is a discrete set and atk is in the isometry group of B.

The second remark above is the main reason for our assumption, Q is a rational
form. It is also the main reason we can handle this case in hand despite the more
complicated case where Q is an arbitrary form.

Given these two remarks and arguing as in section 4, we actually need to consider
the set
(75)
At(δ) =

⋃

L∈N
{k ∈ K : d(atkL) < δ & ∃v ∈ Z3 s. t. atk(L + v + qξ) ∩B(r) 6= ∅}

where N is the set of null subspaces of Q which are not exceptional subspaces and
B(r) is the ball of radius r in R3. We will show that; There exists η > 0 depending
on the Diophantine properties of ξ such that: at most δη of null subspaces can have



INHOMOGENEOUS QUADRATIC FORMS 23

nontrivial contribution to (75). This will finish the proof of theorem 7.1 as we will
see.

Let us remark that; The null subspaces coincide with the orbit of
(

x11 0
0 0

)
under

the action of SL2(R) described in section 2. With this identification and using a
theorem of Borel and Harish-Chandra, see the discussion in appendix B below, the

primitive null vectors are identified with the SL2(Z) orbits of vectors
( ±1 0

0 0

)

under the same action. In what follows we will restrict ourselves to the +1 case.
These are described as follows; For any primitive vector (m,n) the corresponding

primitive null vector is given by
(

m2 mn
mn n2

)
. For any such subspace, M say, we

let vM denote this vector which we will refer to as the standard basis for M.

For any null subspace L of Q the subspace pL is a (rational) null subspace of
B, we let vL denote the standard basis for pL. For any such L let AL

t (δ) be the
corresponding set in (75). We have the following

Lemma 7.3. There exists 0 < η1 ¿ η2 < 1 depending on the Diophantine prop-
erties of ξ such that if 0 < δ ¿ 1 is given and T ≥ δ−η2 , then the number of null
subspaces L with T/2 ≤ ‖vL‖ ≤ T such that AL

t (δ) 6= ∅ is O(δη1T ). Furthermore
there are at most two subspace L with ‖vL‖ ≤ δ−η2 for which {〈vL , pξ〉B} ≤ O(δ).
The implied constants in the O-notation depend on Q and ξ.

Proof. First note that with the description of null subspaces of B, which was given
above, we see that the number of primitive vectors w with T/2 ≤ ‖w‖ ≤ T and
B(w) = 0 is O(T ), see appendix B below for a discussion of similar statements.
Let now L be a null subspace with AL

t (δ) 6= ∅ and suppose vL corresponds to the
primitive vector (m,n). We have

(76) {〈vL , pξ〉B} = n2(pξ)1 − 2mn(pξ)2 + m2(pξ)3 ≤ cδ

where c is an absolute constant depending on Q and r. Since ξ is Diophantine
lemma 5.8 implies that pξ is Diophantine as well.

Note that no three vL lie on one plane in R3. Hence using lemma 5.8 we see that
there exists η2 depending on Diophantine properties of pξ such that (76) cannot
holds for more than two L’s with ‖vL‖ ≤ δ−η2 .

By virtue of Weyl’s exponential sum estimates, see theorem 2.9, proposition 4.3
and theorem 8.6 in [GT08], we see that there are absolute constants c0, c1 ≥ 1 such
that for all small enough δ and all 0 < η1 < 1; If (76) holds for more that δη1T
subspaces L with T/2 ≤ ‖vL‖ ≤ T, then there exists k ∈ Z with |k| < δ−c1η1 such
that

(77) max
i
{k(pξ)i} ≤ c0δ

−c1η1/T

Now let η2 be chosen as above and choose η1 such that η2 > (c1 + κ)η1, where κ
is the Diophantine exponent of pξ and c1 is the constant appearing in (77). With
these choices we see that if T > δ−η2 then (77) contradicts Diophantine assumption
on pξ. Hence (76) can hold for at most δη1T subspaces as we wanted to show. ¤
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Before starting the proof of theorem 7.1 we need to recall the following definition

(78) IL
t (δ) = {k ∈ K : d(atkL) < δ}

Some important properties of these intervals were proved in [EMM05] and recalled
in lemma 5.1. What is important for us in this section is the property (ii) in
lemma 5.1. This property, tailored to our current assumptions, gives

(79) |AL
t (δ)| ≤ |IL

t (δ)| ≈
(

e−tδ

T

)1/2

Proof of theorem 7.1. Let M be a large number which is fixed for now. Let t > 0
be a large number. Assume j is a large number also. We assume through out that
η = η1 where η1 is as in lemma 7.3. Let L0, L1 be nonexceptional null subspaces such
that {〈vLk , pξ〉B} < 1/2j for k = 0, 1, and that ‖vL0‖ ≤ ‖vL1‖ are minimal with
these properties, indeed we fix any two such subspaces if there are more than two
subspaces satisfying these conditions. Assume that et/2j+i0+1 ≤ ‖vL‖ < et/2j+i0 .
We need to consider two cases

Case 1. Assume that ‖vL0‖ > 2jη2 , where η2 is as in lemma 7.3.

Now using lemma 7.3 we see that for all i ≤ i0 the number of null subspaces L,
with et/2j+i+1 ≤ ‖vL‖ < et/2j+i such that {〈vL, pξ〉B} < 1/2j , is bounded by
et/2(1+η)j+i. Also by our assumption in case 1 for all i > i0 the subspaces of norm
at most et/2i+j have no contribution to the set At(1/2j) i.e. AL

t (1/2j) = ∅ for all
such subspaces L.

Hence if we use this fact and (79) we have: If j is such that case 1 holds then we
have
(80)

|
⋃

L null
AL

t (
1
2j

)| ≤
∑

i

∑
et

2i+j+1≤‖vL‖< et

2i+j

|AL
t (

1
2j

)| ≤ 1
2j(1+η)

∑

i

2−i/2 ≤ C
1

2j(1+η)

Case 2. Assume ‖vL0‖ ≤ 1
2jη2 , where η2 is as in case 1. Note that there are at most

two subspaces with this property as was shown in lemma 7.3. We need to consider
the following possibilities

(i) M ≤ et/2i0+j ≤ 2jη2 . We then have

(81) |ALk
t (

1
2j

)| ≤ Ce−t(e−t et

2i0+j
)−1/2 1

2j/2
≤ C

e−t/2

√
M2j/2

, k = 0, 1

Now if we argue just as in case 1, we get

(82) |
⋃

L null
AL

t (
1
2j

)| ≤
∑

i

∑
et

2i+j+1≤‖vL‖< et

2i+j

|AL
t (

1
2j

)| ≤ C(
e−t/2

√
M2j/2

+
1

2j(1+η)
)

(ii) et/2i0+j ≤ 2jη2 ≤ M. Note that we have ik = ik(j), where k = 0, 1 and for
each j there are at most two such ik’s. We will denote by L(j, ik) the subspace
corresponding to ik = ik(j), for k = 0, 1. We have

(83) |AL(j,ik)
t (

1
2j

)| ≤ Ce−t2
ik(j)

2 ≤ Ce−t/2, k = 0, 1
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(iii) et/2i0+j ≤ M ≤ 2jη2 . Given M, this can only hold for at most two subspace
L0

M and L1
M furthermore there exists ` = `(M) such that if this holds for j ≥ `

then these are exceptional subspaces which we have excluded already. Hence we
assume this holds only for j < `. We have

(84) |ALk
M

t (
1
2j

)| ≤ |ILM
t (1/2j)| ≤ e−t/22−j/2 for j < ` and k = 0, 1

We collect these estimates in the following

(I)
∑

s<j≤t 2j 1
2j(1+η) ≤ 1

2sη

(II)
∑

s<j≤t 2j( e−t/2√
M2j/2 + 1

2j(1+η) ) ≤ 1√
M

+ 1
2sη

(III)
∑

s<j≤ log M
η

2je−t/2 ≤ M
1
η e−t/2

(IV)
∑

s<j<` 2je−
t
2 2−

j
2 ≤ e−

t
2 2

`
2

Fix ε > 0 arbitrarily small. Let η be as before. Then we may choose M = M(ε)
and t = t(M, ε) > 0 and s = s(η, ε) > 0 large enough such that

(85)
∑

s<j≤t

2j |
⋃

L null
AL

t (
1
2j

)| ≤ C(
1

2sη
+

1√
M

+ M
1
η e−t/2 + e−

t
2 2

`
2 ) < ε/4

The proof of the theorem 7.1 is now completed similar to that of theorems 3.2
and 4.1. Indeed in order to control the unbounded part of the integral one uses
remark 7.2 and reduces to the study of null subspaces. The required estimate for
null subspaces then is provided by (85) above.

Appendix A. Equidistribution of spherical averages

Let G be a connected Lie group and Γ a lattice in G. we let π denote the natural
projection from G onto G/Γ. Let H be a connected semisimple subgroup of G and
let K be the maximal compact subgroup of H. The question which is addressed
in this section is that of equidistribution of sets of the form atKx, where x ∈ G/Γ
and A = {as : s ∈ R} is a suitable one parameter subgroup of H. This is a
well-studied question. The main tools, in the analysis, are indeed Ratner’s theorem
on classification of unipotent flow invariant measures on G/Γ and linearization
techniques for the action of unipotent groups on G/Γ which were developed by
Dani and Margulis..

Let H and W be closed subgroups of G. Following Dani and Margulis [DM93] define
X(H,W ) = {g ∈ G : Wg ⊂ gH}. We recall the following

Theorem A.1. [DM93, Theorem 3] Let G be a connected Lie group and Γ a lat-
tice in G. Let U = {ut} be an Ad-unipotent one parameter subgroup of G. Let φ
be a bounded continuous function on G/Γ. Let D be a compact subset of G/Γ and
let ε > 0 be given. Then there exist finitely many proper closed subgroups H1 =
H1(φ,D, ε), · · · ,Hk = Hk(φ,D, ε) such that Hi ∩ Γ is a lattice in Hi for all i, and
compact subsets C1 = C1(φ,D, ε), · · · , Ck = Ck(φ,D, ε) of X(H1, U), · · · , X(Hk, U)
respectively, for which the following holds: For any compact subset F of D\⋃i CiΓ/Γ
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there exists T0 > 0 such that for all x ∈ F and T > T0 we have

(86)

∣∣∣∣∣
1
T

∫ T

0

φ(utx)dt−
∫

G/Γ

φdg

∣∣∣∣∣ < ε

where dg is the Haar measure on G/Γ.

We will apply the above theorem to a special case which we now describe. Let
us fix a few notations to be used through out this section. Let G = SLn(R) n Rn

where as before we are considering the standard action of SLn(R) on Rn. Let ϑ
denote the natural projection from G onto SLn(R). Let n = p + q where p ≥ 2 and
q ≥ 1. Let H = SO(p, q) and K = SO(p)× SO(q), and let H0 denote the identity
component of H. We let H1 ⊂ H be the subgroup that fixes {e3, · · · , en−1} then
H1

∼= SO(2, 1). Hence there is a homomorphism ρ with finite kernel from SL2(R)
to H1 ⊂ H0 such that A = {as : s ∈ R} = ρ(diag(es/2, e−s/2)) is a self-adjoint

one-parameter subgroup of SO(2, 1) and U = {ut : t ∈ R} = ρ(
1 t
0 1 ) is the

corresponding expanding horospherical subgroup for s > 0.

Note that the standard representation of H0 on Rn is irreducible hence H0 is
a maximal connected subgroup of H n Rn. Note also that as H0 is a maximal
connected subgroup of SLn(R) we have that H0 n Rn is a maximal connected
subgroup of G.

Let now Γ be a lattice in G. Then Γ ∩ Rn is a lattice in Rn. We let ∆ = ϑ(Γ) =
Γ/Γ ∩ Rn, this is a lattice in SLn(R). We will abuse the notation and let ϑ also
denote the projection from G/Γ onto SLn(R)/∆. We have

Lemma A.2. Let x ∈ G/Γ then the orbit Hϑ(x) is closed in SLn(R)/∆ if and only
if H nRn x is closed in G/Γ.

Proof. Note that closed orbits of H nRn (resp. H) have a finite H nRn-invariant
(resp. H-invariant) measure by section 3 in [Mar86]. Let x = (g, v)Γ. Note that
H nRn x = ϑ−1(Hϑ(x)) hence if the Hϑ(x) is closed so is H nRn x. Suppose now
that H nRn x is closed. Then Γ1 = H nRn ∩ (g, v)Γ(g, v)−1 is a lattice in H nRn

and hence Γ1 ∩Rn is a lattice in Rn and Γ1/Γ1 ∩Rn is a lattice in H. Hence Hϑ(x)
is closed, as we wanted. ¤

The following is special case of theorem 4.4 in [EMM98].

Theorem A.3. Let the notation be as above. Further assume Λ is a lattice in
H0nRn. Let φ be a compactly supported continuous function on H0nRn/Λ. Then
for every ε > 0 and any bounded measurable function ν on K and every compact
subset D of H0 n Rn/Λ there exist finitely many points x1, · · · , x` ∈ H0 n Rn/Λ
such that

(i) the orbit H0 xi is closed and has finite H0-invariant measure, for all i,
(ii) for any compact set F ⊂ D \ ⋃

i H xi there exists s0 > 0 such that for all
x ∈ F and s > s0

(87)

∣∣∣∣∣
∫

K

φ(askx)ν(k)dk −
∫

H0nRn/Λ

φdg

∫

K

ν dk

∣∣∣∣∣ ≤ ε
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We will also need a slight variant of theorem 4.4 in [EMM98]. This is the content
of the following

Theorem A.4. Let G, H, K and Γ be as above. Let A = {as : s ∈ R} be as above
also. Let φ be a compactly supported continuous function on G/Γ. Then for every
ε > 0 and any bounded measurable function ν on K and every compact subset D of
G/Γ there exists finitely many points x1, · · · , x` ∈ G/Γ such that

(i) the orbit H nRn xi is closed and has finite H nRn-invariant measure, for
all i,

(ii) for any compact set F ⊂ D \⋃
i H nRnxi there exists s0 > 0 such that for

all x ∈ F and s > s0

(88)

∣∣∣∣∣
∫

K

φ(askx)ν(k)dk −
∫

G/Γ

φdg

∫

K

ν dk

∣∣∣∣∣ ≤ ε

Proof. The proof of this theorem goes along the same lines as in section 4 in [EMM98].
Let U be as defined above. Let Hi = Hi(φ,KD, ε) and Ci = Ci(φ,KD, ε) for
i = 1, · · · , k be given as in theorem A.1 corresponding to U . For 1 ≤ i ≤ k define

(89) Gi = {g ∈ G : Kg ⊂ X(Hi, U)}
Note that the group generated by

⋃
k∈K k−1Uk is H0 as U is not contained in any

proper normal subgroup of H and K is the maximal compact subgroup of H. Let
now g ∈ Gi then k−1Uk ⊂ gHig

−1 for all k ∈ K. Hence H0 ⊂ gH0
i g−1. Now as H0

acts irreducibly on Rn the only possibilities for gH0
i g−1 are H0 and H0nRn. Thus

we have

(90) gH0
i g−1 ⊂ H0 nRn for any g ∈ Gi, 1 ≤ i ≤ k

We also note that if g ∈ G is such that gH0g−1 ⊂ H0nRn then g ∈ NSLn(R)(H0)n
Rn. This fact and (90) say that if g1, g2 ∈ Gi for some i then g−1

1 g2 ∈ NSLn(R)(H0)n
Rn. Since H0nRn is of finite index in NSLn(R)(H)nRn we get Gi can be covered by
finitely many co sets of H0nRn. Hence there are finitely many points x1, · · · , x` ∈
G/Γ such that H n Rnxi’s are closed and have a finite H n Rn-invariant measure
for all 1 ≤ i ≤ ` and that

(91)
⋃

i

GiΓ/Γ ⊂
⋃

1≤i≤`

H nRnxi

Note that since X(Hi, U)’s are analytic submanifolds of G and K is a connected
we have that for any g ∈ G \⋃

i GiΓ/Γ

(92) |{k ∈ K : kg ∈
⋃

i

X(Hi, U)Γ}| = 0

Now (91), (92) and the fact that Ci ⊂ X(Hi, U) give

(93) |{k ∈ K : kx ∈
⋃

i

CiΓ/Γ}| = 0

for any x ∈ F ⊂ D \ ⋃
i H n Rnxi. Now if we apply lemma 4.2 in [EMM98] then

there exists and open subset W ⊂ G/Γ such that
⋃

i CiΓ/Γ ⊂ W and |{k ∈ K :
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kx ∈ W}| < ε. Recall that Ci = Ci(φ,KD, ε), hence there exists T0 > 0 such that

(94)

∣∣∣∣∣
1
T

∫ T

0

φ(uty)−
∫

G/Γ

φdg

∣∣∣∣∣ < ε

for all y ∈ KD \W. So we have

(95)

∣∣∣∣∣
1
T

∫ T

0

∫

K

φ(utkx)−
∫

G/Γ

φdg

∣∣∣∣∣
∫

K

νdk ≤ sup
k∈K

|ν(k)|(1 + 2 sup
y∈G/Γ

|φ(y)|) ε

The rest of the argument is mutatis mutandis of the proof of theorem 4.4 in [EMM98]
replacing theorem 4.3 in loc. cit. by what we proved above. ¤

Appendix B. Number of quasinull subspaces

This section is devoted to the proof of proposition 6.2. We will need results proved
in [EMM05, Section 10]. We will recall the statements in here for the convenience
of the reader.

Consider the bilinear form in 6-variables Q(6)(v, w) = v ∧ w. Then V1 and V2 in
lemma 4.3 are orthogonal with respect to this form and the restriction of Q(6) to Vi

has signature (2, 1). The following is a proved in the course of the proof of theorem
10.4 in [EMM05].

Proposition B.1. (cf. [EMM05, Section 10]) Let τ > 0 be any sufficiently small
number and let T > 2. There exists a rational three dimensional subspace U of∧2 R4. With a reduced integral basis of norm at most T τ whose projections into V2

have norm less than T τ−1 such that one of the following holds

(a) The restriction of Q(6) to U is anisotropic over Q. In which case (i) in
theorem 5.6 holds.

(b) The restriction of Q(6) to U splits over Q. In which case (ii) in theorem 5.6
holds. Furthermore in this case Q′ as in loc. cit. is proportional to f(U,U⊥)
where U⊥ is the orthogonal complement of U with respect to Q(6) and f is
as in lemma 4.3. Moreover the number of quasinull subspaces with norm
between T/2 and T which are not in U or U⊥ is O(T 1−τ ).

Let us denote by Q(3)(v) the restriction of Q(6) to U. As we mentioned before
this is a form with signature (2, 1) and U is a rational subspace. If L is a quasinull
subspace with T/2 ≤ ‖vL‖ ≤ T then we have Q(6)(vL) = 0. Hence if L is a quasinull
subspace in U then Q(3)(vL) = 0. In other words the proposition 6.2 will follow
from the following

Proposition B.2. Let Q0(x, y, z) = 2xz − y2 be the standard quadratic form of
signature (2, 1) on R3. Let ∆ = gZ3 where g ∈ GL3(Q). Let T > 0 a large parameter
and let τ be a sufficiently small parameter. Assume that the entries of g are rational
numbers whose nominator and denominators are bounded by a fixed power of T τ

and also suppose that |detg| ≤ T τ . Further assume that the length of the shortest
vector in ∆ is c = O(1). Then if T is large enough we have

(96) #{w ∈ P(∆) : Q0(w) = 0 and ‖w‖ ≤ T} < O(T )

where P(∆) denote the set of primitive vectors in ∆.
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Proof. Let H ⊂ SL3(R) be the subgroup which preserves the form Q0. Note that
H is a Q-group and that H ∼= SO(2, 1) as Q-groups. Let Γ = SO(Q0)(Z). Let
C = {w ∈ R3 : Q0(w) = 0} be the light cone of Q0 and let CR = {w ∈ C : R/2 ≤
‖w‖ ≤ R}, for any R > 0. Note that C is dilation invariant. Let λ = disc(∆)1/3 and
define ∆1 = 1

λ∆. The lattice ∆1 is unimodular and the length of the shortest vector
in ∆1 is at least c

λ . Let ḡ ∈ PGL3(Q) denote the image of g. Indeed ∆1 = ḡZ3.
The counting problem in (96) will follow if we show that

(97) #{w ∈ P(∆1) : Q0(w) = 0 and ‖w‖ ≤ T

λ
} < O(T )

Let Γg = H ∩ gSL3(Z)g−1. Since g is rational matrix Γg is a lattice in H. Further
we have that the form Qg = gQ0g

t is a split form over Q and hence Γg is a
nonuniform lattice. Let Γm be a maximal lattice such that Γg ⊂ Γm. There are
only finitely many classes of maximal nonuniform arithmetic lattices in H. Hence
we will assume Γm is in the same class as Γ in the rest of the argument. Thus
Γm = hmΓh−1

m where hm ∈ H(Q) and H is the adjoint form of H. Now using
reduction theory of the orthogonal group there is a universal constant C such that
we can find v ∈ P(hmZ3) ∩ C with ‖v‖ < C. We also have the shortest vector in
hmZ3 is at least T−kτ where k is a fixed number.

Since both ḡ and hm are in PGL3(Q) we can find a primitive vector v0 ∈ P(∆1)
which is a scalar multiple of v. Note that ‖v0‖ ≥ c

λ . Let P = Stab(Rv) be a maximal
Q-parabolic subgroup of H. Let P = AN be the Levi decomposition of P. We have
N ·v = v and A acts on v by a character. By a theorem of Borel and Harish-Chandra
there is a finite set Ξ ⊂ H(Q) such that H(Q) = ΓmΞP (Q). Thus the Γm-orbits
are characterized by the values of the character on A(Q). By Witt’s theorem we
have that H(Q) acts transitively on the rational points on the cone C. Hence we
see that C ∩ P(∆1) ⊂ ΓmΞv0. As Ξ is a finite set we only need to consider Γmv0.

Let e1 = (1, 0, 0) and let N0 ⊂ H be the stabilizer of e1. Let BR = {h ∈ H :
h · e1 ∈ CR} and let BR = BR/N0. Let now χR denote the characteristic function
of CR Define the following

(98) FR(h) =
∑

Γm/Γm∩N

χR(hγv) for h ∈ H

This is a function on H/Γ. Now using the well-developed machinery for counting
problems using mixing property, see in particular [BO07] and [MS08], there exists
ε > 0 depending only on the spectral gap of H and τ such that

(99) FR(e) =
|N0/N0 ∩ Γ|
|H/Γ| vol(BR)(1 + O(vol(BR)−ε))

where vol denotes the H invariant Haar measure on H/N. Hence we have

(100) #(Γmv0 ∩ CR) ≤ FR/‖v0‖(e) = O(R/‖v0‖)
Since ‖v0‖ ≥ c

λ , this finishes the proof. ¤
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