CLASSIFICATION OF JOININGS FOR KLEINIAN GROUPS

AMIR MOHAMMADI AND HEE OH

ABSTRACT. We classify all locally finite joinings of a horospherical sub-
group action on I'\G when T is a Zariski dense geometrically finite sub-
group of G = PSL2(R) or PSLy(C). This generalizes Ratner’s 1983
joining theorem for the case when I is a lattice in G.

One of the main ingredients is equidistribution of non-closed horo-
spherical orbits with respect to the Burger-Roblin measure which we
prove in a greater generality where I' is any Zariski dense geometrically
finite subgroup of G = SO(n,1)°, n > 2.
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1. INTRODUCTION

M. Ratner obtained in 1983 the classification of joinings for horocycle
flows on a finite volume quotient of PSLy(R) [31]; this precedes her general
measure classification theorem for unipotent flows on any finite volume ho-
mogeneous space of a connected Lie group [32]. The problem of classifying
all locally finite invariant measures for unipotent flows on an infinite volume
homogeneous space I'\G is quite mysterious and even a conjectural picture
is not clear at present. However if GG is a simple group of rank one, there
are classification results for locally finite measures on I'\G invariant under a
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horospherical subgroup of G, when I is either geometrically finite ([4, [33],42])
or a special kind of geometrically infinite subgroups ([2} 19, 20} 36, 37]). In
this article, our goal is to extend Ratner’s joining theorem to an infinite
volume homogeneous space I'\G where G = PSLy(F) for F = R,C and I is
a geometrically finite and Zariski dense subgroup of G. This seems to be the
first measure classification result in homogeneous spaces of infinite volume
for unipotent subgroups which are not horospherical.

Letting n = 2, 3, respectively, for F = R, C, the group G consists of all
orientation preserving isometries of the real hyperbolic space H". Let U be
a horospherical subgroup of G, i.e., for some one-parameter diagonalizable
subgroup A = {as} of G,

U={g€G:asga_s —eass— +oo}

and set A(U) := {(u,u) : u € U}. Let I'1 and I'y be discrete subgroups of
G, and set

7 = Fl\G X FQ\G

Definition 1.1. Let u; be a locally finite U-invariant Borel measure on
I'\G for i = 1,2. A locally finite A(U)-invariant measure p on Z is called
a U-joining with respect to the pair (u1, p2) if the push-forward (m;).p is
proportional to u; for each ¢ = 1, 2; here 7; denotes the canonical projection
of Z to I';\G. If uis A(U)-ergodic, then we call p an ergodic U-joining.

We will classify U-joinings with respect to the pair of the Burger-Roblin
measures. The reason for this is that for I' geometrically finite and Zariski
dense, the Burger-Roblin measure m?R is the unique locally finite U-invariant
ergodic measure in I'\G which is not supported on a closed U-orbit ([4], [33],
[42]). Therefore the Burger-Roblin measure for I'\G, which we will call the
BR-measure for simplicity, plays the role of the Haar measure in Ratner’s
joining theorem for I' a lattice.

In what follows, we assume that at least one of I'y and I's has infinite
co-volume in G; otherwise, the joining classification was already proved by

Ratner. Under this assumption, the product measure mF‘F X mEQR is never

a U-joining (with respect to the pair (m?F,mI%R)), since its projection to
I';\G is an infinite multiple of m?f{ for at least one of ¢ = 1,2. On the other
hand, a finite cover self-joining provides an example of U-joining. Recall
that two subgroups of G are said to be commensurable with each other if

their intersection has finite index in each of them.

Definition 1.2 (Finite cover self-joining). Suppose that for some gy € G, I'y
and gy 115 g0 are commensurable with each other; this in particular implies
that the orbit [(e, go)]A(G) |I|is closed in Z. Now using the isomorphism

(T1 N gy 'T290)\G = [(e, 90)]A(G)

IFor § ¢ G, A(S) denotes the diagonal embedding of S into G x G.
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given by the map [g] — [(g,909)], the push-forward of the BR-measure

BR to Z gives a U-joining, which we call a finite cover self-joining.
I'Ngg T'290

If 1 is a U-joining, then any translation of u by (e, up) is also a U-joining,
whenever ug belongs to the centralizer of U, which is U itself. Such a
translation of a finite cover self-joining will also be called a finite cover self-
joining.

The following is our main result:

Theorem 1.3 (Joining Classification). Let I'y and 'y be geometrically finite
and Zariski dense subgroups of G. Suppose that either I'y or I's is of infinite
co-volume in G. Then any locally finite ergodic U-joining on Z is a finite
cover self-joining.

If pu is a U-joining and p = [ p, is the U-ergodic decomposition, then it
follows from the U-ergodicity of the BR-measure that almost every p, is a
U-joining. Therefore the classification of U-ergodic joinings gives a complete
description for all possible U-joinings.

Theorem yields the following by the definition of a finite cover self-
joining;:

Corollary 1.4. Let 'y and I's be as in Theorem . Then Z admits a
U -joining measure if and only if I'y and I's are commensurable with each
other, up to a conjugation.

See Remark for a slightly more general statement where I’y is not
assumed to be geometrically finite.

In the course of our classification theorem, we obtain equidistribution of
a non-closed U-orbit zU in I'\G. When T is a lattice, it is well-known that
such zU is equidistributed with respect to the Haar measure ([7], [32]). For
I" geometrically finite, the equidistribution is described by the BR-measure,
with the normalization given by the Patterson-Sullivan measure ugs on zU
(see section [2.2 for a precise definition). We call a norm || - || on F algebraic
if the 1-sphere {t € F : ||t|| = 1} is contained in a union of finitely many
algebraic varieties.

Theorem 1.5. Let I' be a geometrically finite and Zariski dense subgroup
of G. Fiz x € T\G such that zU is not closed. Then for any continuous
function ¢ on T'\G with compact support, we have

1
lim / Y(zu)du = mER (Y
T—o0 uES(By (T)) By (T) (zu) )
where By(T) = {u € U : ||lu|| < T} is the norm ball in U ~ F with respect

to an algebraic norm.

Indeed, we prove this theorem in a greater generality where I' is a geo-
metrically finite and Zariski dense subgroup of G = SO(n, 1)° for any n > 2
(see Theorem [4.6)).
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Theorem was proved for G = PSLa(R) in ([39], [22]). One of the
difficulties in extending Theorem to a higher dimensional case (even to
the case n = 3) is the lack of a uniform control of the PS-measure of a small
neighborhood of the boundary of By (T). For n = 2, such a neighborhood
has a fixed size independent of T', but grows with T" — oo for n > 3.

We mention that Theorem applied to the Apollonian group can be
used to describe the distribution of the accumulation of large circles in an
unbounded Apollonian circle packing, whereas the papers [17] and [26] con-
sidered the distribution of small circles. We refer to Theorem [5.4] for a window
version of Theorem [I.5] which is one of the main ingredients in our proof of
Theorem

Similarly to the finite joining case, we can deduce the classification of U-

equivariant factor maps from the classification of joinings (see sub-section
)
Theorem 1.6 (U-factor classification). Let I' be a geometrically finite and
Zariski dense subgroup of G. Let (Y,v) be a measure space with a locally
finite U-invariant measure v, and p : (T\G, mB®) — (Y, v) be a measurable
U -equivariant factor map, that is, p*mIBR =wv. Then (Y,v) is isomorphic to
(To\G, m??) for some subgroup T'g of G which contains T' as a subgroup of
finite index. Moreover, under this isomorphism, the map p can be conjugated
to the natural projection T\G — T'g\G.

We now discuss the proof of Theorem Our proof is modeled on
Ratner’s proof [31]. However, the fact that we are dealing with an infinite
measure introduces several serious technical difficulties which are dealt with
in this paper. Here we briefly describe some of the main steps and difficulties.

The main ingredient in the proof is the polynomial behavior of unipotent
flows, which guarantees slow divergence of orbits of two nearby points under
unipotent subgroups. This means that for two nearby generic points x and
y in Z, the set of u € By(T) such that the divergence of the two orbits
x(u,u) and y(u,u) is in the intermediate range, that is, roughly of distance
one apart, has Lebesgue measure comparable to that of By (T). In order to
utilize this property in acquiring an additional invariance of a U-joining in
concern, we also need to know that this set is dynamically non-trivial, i.e.,
x(u,u) and y(u,u) for these times of u stay in a fixed compact subset. In
the case of a finite measure, this can be ensured using the Birkhoff ergodic
theorem.

When Z is of infinite volume, there is no a priori reason for this to hold,
for instance, the set of u € By (T') where x(u, u) returns to a compact subset
can be “concentrated” near the center, along some sequence of T’s. This
is one of the main issues in the way of obtaining rigidity type results for
general locally finite measures (cf. [23]).

For a U-joining measure p on Z, we first prove a window-type equidis-
tribution result for the U-action on each space I';\G with respect to the
BR-measure. This enables us to establish the required non-concentration
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property for p-generic points, using the fact that p projects to the BR-
measure

Based on this non-concentration property, we can use the construction
of a polynomial like map in section and the fact that an infinite joining
measure cannot be invariant under a non-trivial subgroup of {e} xU (Lemma
to draw two important corollaries:

(1) almost all fibers of each projection of u are finite;
(2) p is quasi-invariant under the diagonal embedding of a connected
subgroup of the normalizer Ng(U).

In the finite measure case, it is possible to finish using an entropy argu-
ment, based on the invariance by the action of a diagonalizable subgroup.
Such an argument using entropy is not understood in the infinite measure
case. We adapt an original argument of Ratner in [31] (also used by Flaminio
and Spatzier in [9] for convex cocompact groups), which avoids a “direct”
use of entropy. This involves a step of showing that a measurable set-valued
N¢(U)-equivariant factor map Y : I';\G — I'2\G is also equivariant under
the action of the opposite horospherical subgroup U. We use a close rela-
tionship between the BR and BMS measures and show that essentially the
same proof as in [9] works here, again, modulo the extra technical difficul-
ties caused by the presence of cusps. Roughly speaking, one constructs two
nearby points x and y = z1, so that the U-orbits of T (z)u, and Y(y) do
not diverge on average. The fact that the divergence of these two orbits
is governed by a polynomial map then implies that the two orbits “do not
diverge”. One then concludes that the map commutes with the action of U
and completes the proof.

Notation In the whole paper, we use the following standard notation. We
write f(t) ~ g(t) as t — oo to mean lim;_,o f(t)/g(t) = 1. We use the
Landau notations f(t) = O(g(t)) and f < ¢ synonymously to mean that
there exists an implied constant C' > 1 such that f(t) < C'-g(t) for all ¢ > 1.
We write f(t) < g(t) if f(t) = O(g(t)) and g(t) = O(f(t)). For a space
X, C(X) (resp. C*°(X)) denotes the set of all continuous (resp. smooth)
functions on X. We also let C.(X) and C°(X) denote the set of functions
in C(X) and C°(X) respectively which are compactly supported. For a
compact subset €2 of X, we denote by C(Q2) and C*°(£2) the set of functions
in C¢(X) and C2°(X) respectively which vanish outside of Q. For a subset B
in X, 0(B) denotes the topological boundary of B with the exception that
O(H™) means the geometric boundary of the hyperbolic n-space H". For a
function f on I'\G and g € G, the notation g.f means the function on I'\G
defined by g.f(x) = f(zg).

Given a subset S C G, we let A(S) ={(s,s) : s € S}. Also given a group
H and a subset S C H we set Ng(S) := {h € H : hSh™! = S}, i.e., the
normalizer of S in H

Acknowledgment We would like to thank M. Einsiedler, Y. Minsky and
A. Reid for useful discussions.
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2. BASIC PROPERTIES OF PS-MEASURE

For sections 2-5, let n > 2 and G be the identity component of the
special orthogonal group SO(n,1). Then G can be considered as the group
of orientation preserving isometries of the hyperbolic space H". Let I' < G
be a discrete subgroup. Let A(I') C O(H") denote the limit set of I', and ¢
the critical exponent of I'. The convex core of I' is the quotient by I' of the
smallest convex subset in H" which contains all geodesics connecting points
of A(T'). The group I is called geometrically finite if a unit neighborhood of
the convex core of I' has finite volume. Throughout the paper, we assume
that

I' is geometrically finite and Zariski dense.

2.1. Conformal densities. A family of finite measures {u, : © € H"} on
O(H") is called a I'-invariant conformal density of dimension §, > 0 if for
any x,y € H", £ € 9(H") and v € T,

Yotta = e and T (g) = ¢~dub)
diy
where v, 5 (F) = pz (v~ (F)) for any Borel subset F' of 9(H"). Here B¢(y, z)
denotes the Busemann function: S¢(y, x) = limy—o0 d(&, y) — d(&, x) where
& is a geodesic ray tending to £ as t — oo.

We denote by {v,} the Patterson-Sullivan density, i.e., a I'-invariant con-
formal density of dimension d, which is unique up to a scalar multiple.

For each z € H", we set m,, to be the unique probability measure on O(H")
which is invariant under the compact subgroup Stabg(x). Then {m, : = €
H"} forms a G-invariant conformal density of dimension (n — 1), which will
be referred to as the Lebesgue density.

Denote by {G® : s € R} the geodesic flow on the unit tangent bundle
TL(H") of H*. For w € T*(H"), we denote by w* € 9(H") the forward
and the backward endpoints of the geodesic determined by w, i.e., wt =
limg 400 G° (w)

Fix o € H" and w, € TX(H"). Let K := Stabg (o) and M := Stabg(w,)
so that H" and T*(H") can be identified with G/K and G/M respectively.
Let A = {as : s € R} be the one-parameter subgroup of diagonalizable
elements in the centralizer of M in G such that G*(w,) = [M]as = [asM].
For g € G, define

g* = gwF € 9(H").
The map Viz : G — 9(H") given by g +— gt (resp. g — g~) will be called
the visual map (resp. the backward visual map).
2.2. PS measure on gU C G. Let U denote the expanding horospherical

subgroup, i.e.,

U={g9g€G:asga_s —eass— +oo}.



JOINING 7

The group U is a connected abelian group, isomorphic to R®~!; we use the
parametrization t — u¢ so that for any s € R,

A_sUtQs = Uest-

For any g € G, the restriction Viz |,y is a diffeomorphism between gU
and O(H") — {g~}. Using this diffeomorphism, we can define measures on
gU which are equivalent to conformal densities on the boundary:

Leb( ) (nfl)ﬁ(gut)_'_(o,gut (0))

dj —e dmo(gue) s

d,ugU(gut) _ eéﬁ(g“t>+(O’gut(o))dyo(gut)_‘—

The conformal properties of {m,} and {v,} imply that these definitions are
independent of the choice of o € H"”. The measure duLeb (gug) is independent
of the orbit gU:

dpgt (gus) = dpgf™ (ug) = dt
and is simply the Lebesgue measure on U = R"™!, up to a scalar multiple.
We call the measure d,u the Patterson-Sullivan measure (or simply PS-
measure) on gU. For sunphmty, we write

dp o (guy)  and  dpgS(t) = dpui(gu)

although these measures depend on the orbits but not on the individual
points.

These expressions are also useful as we will sometimes consider Mgs
a measure on U in an obvious way, for instance, in the following lemma.
Let M(U) be the set of all regular Borel measures on U endowed with the
following topology: i, —  if and only if [ fdu, — [ fdu for all f € C.(U).

The following is proved in [9] for I convex co-compact but the proof works
for I' geometrically finite.

Lemma 2.1. [9, Lem. 4.1, Cor. 4.2].

e For g € G, the measure ugs assigns 0 measure to any proper sub-
variety of U.

e The map g — uf]’s is a continuous map from {g € G : g* € A(T')}
to M(U).

The following is an immediate consequence:

0 (t) = du

Corollary 2.2. For a compact subset 2 C G and any s > 0,

0< inf ,uPS gBy(s)) < sup ,uPS gBy(s)) < oo.
gegtear)” ? (9Bu(s)) geQgteAr) * (9B (#))

For simplicity, we set |t| to be the maximum norm of t. For 7" > 0, we
set
By(T):={ut €U : |t| <T}.
For any s € R, we have:
pg" (Bu(€”)) = gy (Bu(1));
pg(Bu(e®)) = e Dot (Bu(1)).
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2.3. PS measure on zU C I'\G. Set
X =T\G.

For 2 € X, we define the measure u£® on the orbit U as follows. Choose
g € G such that = [g]. If the map u +— zu is injective, ub> will be
simply the push-forward of the measure ugs on gU. In general, we first
define a measure LS on (U N g~ 'Tg)\U as follows: for f € C.(U), let
f€C.(Ung~'Tg)\U) be given by f([u]) = > roetng—1rg f (You). Then the
map f + f is a surjective map from C,(U) to C.((U N g~ 'T'g)\U), and

/ F()) 5[] = / F(u)daFS (8)
[uleUng—1T'g\U U

is well-defined, by the I'-invariance of the PS density. This defines a locally
finite measure on (U N g~ 'T'g)\U by [28, Ch.1]. Noting that the map (U N
g 'Tg)\U — 22U given by [u] — zu is injective, we denote by pb> the
push-forward of the measure ziL® from (U N g~ 'Tg)\U (cf. [25]).

The map p5° is defined similarly. We caution that ul® is not a locally
finite measure on I'\G unless zU is a closed subset of X.

A limit point £ € A(T) is called radial if some (and hence every) geodesic
ray toward £ has accumulation points in a compact subset of I'\G, and
parabolic if it is fixed by a parabolic element of I' (recall that an element
g € G is parabolic if the set of fixed points of g in J(H") is a singleton.) A
parabolic limit point £ € A(T") is called bounded if the stabilizer I'¢ acts co-
compactly on A(I')—{£}. We denote by A(I") and Ay, (I') the set of all radial
limit points and the set of all bounded parabolic limit points respectively.
As T’ is geometrically finite, we have (see [3])

AT) = A(T) U App(T).

Definition 2.3. For z = [¢] € X, we write z € A(T') and =z~ € A,(T) if
g~ € A(T') and g— € A,(T) respectively; this is well-defined independent of
the choice of g.

If x= € A;(T), then the map u +— xu is injective on U.
Lemma 2.4. For x € X, we have v~ € A(T) if and only if |ubS| = cc.

Proof. Choose g € G so that [g] = z. If = ¢ A(T'), then A(I") is a compact
subset of (H") \ {¢~}, and hence |ugs\ < oo. If g € App(I') and zU is
a closed subset of X and ul® is supported on the quotient of {gu € gU :
(gu)™ € A(T)} by the stabilizer T',—, which is compact by the definition of a
bounded parabolic fixed point. Hence |55 < co. Suppose that g= € A.(T).
Since |uFS| = |uES| and (gU)* N A(T') # (), we may assume without loss of

g
generality that g™ € A(T).



JOINING 9

Let ©Q be a compact subset of G such that v;ga_s, € € for sequences
s; = +oo and 7; € I'. Then

pe” (Bu(e™)) = ey (Bu(1))

= S, (Bu(1)

> %%, inf 13 (Bu(1)).

Z e o o (By(1))
Since infyeq p+encr) m,> (Bu(1)) > 0 by Corollary we have |ubS| =
00. g

2.4. BMS and BR measures. Fixing o € H", the map
w = (w+a wo,s= 511)— (Oa 7T(w))
is a homeomorphism between T (H") with

(O(H") x O(H") —{(£, &) : £ € O(H")}) x R.

BMS _ pBMS

Using this homeomorphism, we define measures m and

mPR = mBR on T1(H") as follows:

dmPMS (w) = Purt (0m(W)) 0By = (0 (W)) gy, (1 H)dyy(w™ )ds; and

dinPR(w) = e DBu+(0mw)) 08, - (07 (W)) gy (1w dvy(w™ )ds.

The conformal properties of {v,} and {m,} imply that these definitions
are independent of the choice of 0 € H". Using the identification T'(H")
with G/M, we lift the above measures to G so that they are all invariant
under M from the right. By abuse of notation, we use the same notation
mBMS and mPBR. These measures are left I-invariant, and hence induce
locally finite Borel measures on X, which are the Bowen-Margulis-Sullivan
measure mPMS and the Burger-Roblin measure mPBR respectively.

Note that

e supp(mPMS) = {z € X : 2F € A(D)};
e supp(mPR) ={z € X : 27 € A(D)}.
Sullivan showed that mBMS is a finite measure [41]. The BR-measure
mBR is an infinite measure unless T is a lattice [25].
We also consider the contracting horospherical subgroup

U={g€G:a_sgas —eass— o0}
and the parabolic subgroup
P = MAU.

We note that P is precisely the stabilizer of w} in G. Given gy € G define
the measure v on gy P as follows

dy(gop) = eiéﬁ(gop)_(O’gop(o))dVo(gopwg)dmdS,

for s = B(gop)- (0, 90p(0)), p = maii, and dm is the probability Haar measure
of M.
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This way we get a product structure of the BMS measure which is an
important ingredient in our approach: for any gg € G,

BMS () = / (gopue) il (6)dv (gop) (2.1)
goP J gopU

3. UNIFORMITY IN THE EQUIDISTRIBUTION OF PS-MEASURE

We keep notations from the last section; so X = I'\G. For simplicity, we
will assume that [mBMS| = 1; this can be achieved by replacing {v,} by a
suitable scalar multiple if necessary.

Theorem 3.1 (Mixing of the A-action). [42] For any i1, € L?(mBMS),
we have

lim 1 (xas)wg(a:)deMS(x) = mBMS(wl)mBMS(wg).
s—=oo Jp\a

The following is immediate from Theorem

Theorem 3.2. Fiz ¢y € L*(mPMS) and a compact subset Q of X. Let
F C L*(mBMS) be a a relatively compact subset. Then for any € > 0, there
exists S > 1 such that for all s > S and any ¢ € F,

] | olaaeta)am™(g) — S ()m )| < e

Theorem can be used to prove the following: for any ¢ € C.(X),
r € X, and any bounded Borel subset B C 2U with u£S(0(B)) =0,

tim [ G(rua)duS®) = P BmPS@); and  (31)
S§—00 B
lim e("_l_‘s)s/ Y(zugas)dt = pES(B)mPR () (3.2)
S5§—00 B

(see [33] and [25] for M-invariant 1)’s and [24] for general 9’s).

In this paper, we will need uniform versions of these two equidistribution
statements; more precisely, the convergence in both statements are uniform
on compact subsets. Since the uniformity will be crucial for our purpose,
and it is not as straightforward as in the case when I' is a lattice, we will
provide a proof. We will be using the following definitions.

Let d denote the left G-invariant and bi-K-invariant metric on G which
induces the hyperbolic metric on G/K = H". For a subset S C G, S,
denotes the e-neighborhood of e in the metric d, that is,

Se={s€ S :d(s,e) < e} (3.3)
Lemma 3.3. For any compact subset 2 C G, there exists R > 0 such that
(gBy(R))" NAI) #0  for any g € Q.

Proof. The claim follows since the map g + dgn)(9~, A(T)) is continuous
where dyn) is the spherical distance of 9(H"). O
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For Q C X, the injectivity radius of € is defined to be the supremum of
€ > 0 such that the map g — xg is injective on G, for all z € .

Theorem 3.4. Fiz i) € C.(X), a compact subset Q@ C X and a number
r > 0 smaller than the injectivity radius of Q. Fiz ¢ > 0 and let F,(c) be an
equicontinuous family of functions 0 < f <1 on By(r) such that f|p, (r/a) >
c. For any sufficiently small € > 0, there exists S = S(1, Fr,€,Q) > 1 such
that for x € Q with x* € A(T'), for any f € F,, and for any s > S, we have

(1)

<e 3 (f);

/B ( )w(xutas)f(t)duzps(t) — B ()ymBMS ()

(2)

<e b3 (f)

(15 / eugas) f(6)dt — uES(F)mPR(y)
By (r)

where 113 (f) = JoBuw) F(t)dpzS(t).

Proof. Let  be a compact subset of G which projects onto QB (1). Fix a
non-negative function ¢ € C.(G), whose support injects to I'\G. For each
small n > 0, we define functions 1, + on G by
tp +(h) == sup ¢(hw) and ¢, _(h) := inf (hw).
weGy, wely
Fix ¢ > 0. By the continuity of ¢ and equicontinuity of F, there exists
0 < n < € such that

sup [¢n,+(h) — ¥y —(h)| < €/2, and
heG

sup () — f(£)] <e/2.
feFr|t—t/|<n

Recall P = MAU and P, denotes the n-neighborhood of e in P. The
basic idea is to thicken xBy(r) in the transversal direction of P, and then
to apply the mixing Theorem However the transverse measure of x P,
may be trivial for all small 5 in which case the thickening approach does not
work. So we flow z until we reach za, for which the transverse measureon
xas P, is non-trivial uniformly over all x € €2. This however will force us to
further subdivide By (r) into “smaller” boxes. Let us now begin to explain
this process carefully.

For any p € P, and t € By(1), we have

P g € U, ) Pp

where p, : By (1) = By(1+ O(n)) is a diffeomorphism onto its image and
D > 0 is a constant depending only on 7. y
Let R > 1 be as in Lemma with respect to 2. Set

r1:=n/R and sg := log(rfl). (3.4)
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Without loss of generality we may assume 1 < r/10, by taking n smaller if
necessary. 3
For any g € ) we put

go ‘= gas, € QasO.
Then for all g € Q, we have

VgoP(90Py) > 0; (3.5)

this follows from he choice of R in view of the fact that (¢B;;(R))™ is con-
tained in (goPy;)” = (9Ppes0) -

For any ¢; > 0, let F,,(c1) C C(By(r1)) be an equicontinuous family
of functions f such that 0 < f < 1 and f|p,(r,/a) = c1. Fix g € Q with
g" € A(T"). We first claim that there exists some S > 1 (depending on rq, c1,
equicontinuity of Fy, (¢1) and ) such that for all s > S, and all f € F,, (c1),

S [ otguea) SO0 - ORI W) < e ufS) (30)

where u S(f) = ngU ft)du (t) Associated to f € F,, (c1), define the
function fy € C. (goBU(l))

fo(goug) == f(e™™t).
Let oo := @y,4 be a function defined on goP,By(1) C G given by

f(e™0t)xgo P, (90P)
19 ut (0),pu 0))’
g0 P,)e Bu,j( £(0),Pup, (1) (0))

which is well-defined by (3.5). Then ¢q is supported in the set goBy (1 +
O)P,.
We observe that for each p € Pm (gout)™ = (gopu,, ()", the mea-

sures dufS(t) and d((p,).pS)(t) = duES, (o, (t)
ous Wlth each other, and the Radon-Nikodym d
55 (Ut(O),Pupp(t)( ))

If s> 2s0+ log(D/n) then

) d PS
¢ Lwﬂwwm%va@@>

©0(gopup, (1)) =

) are absolutely continu-
erivative at t is given by

= / P (Ygousas—s,) folgous)dps (t) <
By (1)

PS

(gopn// wn +(790pupp(t)as so)fo(gout)#( )dﬂgop(Pp( ))d’/(gop)

:Aﬂwwmsmmwmﬁmw>

by .
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Hence if we set
Ui (Th) =) dys(yh) and @7 y(Th) =) e *pp4(vh),
yel vyel
then
Z/q/) Ygugas) f .“ ( ) < <a8750\1'n,+aq)f,g>mBMS- (3.7)
vyel
Since F,, (c1) is an equicontinuous and uniformly bounded family of func-
tions, the collection {®y, : f € F, (c1),9 € Q} is a relatively compact
subset of L?(mBMS),

In view of the assumption that inf ;¢ Fry(e1) flBy(ri/4) = c1, Corollary
implies that

coi= inf {,UngS(f) : f € ]:7"1(61)} > 0.
gEQ,gTEA()

Now by Theorem there exists S > 2sq + log(D,n~!) such that for all
s > .S and for all g €

@550 Wty @ g)mmns — mPM3 (U YmPM3 (@ )] < ege /2.
Since mPMS(® ) = e 00 uES(fo) = pkS(f), w
(@s—so Unts P g)mprts <mBMS(¢>u§ (f) + €/2p,> (f) + coe/2
< P () g S () + epy > (f)-

we deduce

Combined with . for all s > S,

S [ otguea FOae) < P + ().

~yel

The lower bound

> [ otgueal SO e) = P - (1)

can be obtained similarly. This finishes the proof of .

We now deduce (1) using and a partition of unity argument. Con-
sider a sub-covering B of {usBy(r1) : us € By(r)} for By (r) of multiplicity
k depending only on the dimension of U.

Let {o¢ : t € I} C F,(1) be an equicontinuous partition of unity subor-
dinate to B. By the choice of n and r; < 1, we have

sup  [f(t+t) — f(B)] <e.
fEF |t |<rt

For any f € F.(c), define

L(f):={tel: sup |f(t+t)oe(t')| < 2e}
t’eBy(r1)

and let Ir(f) :=1— I(f).
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Then the family {fo¢ : t € Ix(f), f € F-(c)} satisfies the conditions of
the family in with 71 and ¢; = e. Therefore, there exists some S > 1,
independent of f € F,.(c), so that for any z € Q with 2T € A(T), for all
s> S and all t € I3(f), we have

‘/w(wums)f(t + )0t () i, () — g, (for)m BMS(W‘ < e g, (for).

(3.8)
Hence

\ [ a6+ o) — 1 (Fom BMS<¢>'so<e>u§S<f>.

telx(f

On the other hand, we have

‘ [ e 16+ o) @) WS oo BMS@/})]

teli(f

<Y Op(@)py® (us By (1)) < O(e)ph, (Bu(r)) < O()up>(f)  (3.9)
IL(f)

where the implied constants depend only on v, x and the positive lower
bound for ulS(f)’s.
Since [ = ser, (pun(s) fots and imply (1) of the theorem.
Now the uniformity statement regarding (2) follows from the uniformity
of (1); this follows directly from the argument in [25] using the comparison
of the transversal intersections. (]

4. EQUIDISTRIBUTION OF NON-CLOSED U-ORBITS

We call a point € X with z* € A(T") a PS-point.
Recall:

By(T):={us €U :|t| <T}

where [t| is the maximum norm of t € U = R" 1,

One way of characterizing the set A;(I") of radial limit points in terms of
U-orbits is that if 2= € A;(I"), then uy — xuyt is an injective map from U to
X, zUM is not closed in X and pb® is an infinite measure (Lemma .

The following theorem of Schapira shows that for 2= € A.(I"), most PS-
points of By (T") come back to a compact subset in a quantitative way.

Theorem 4.1. [38] For any € > 0 and any compact subset Q C X, there
exists a compact subset Q = Q(e,Q) C X such that for any © € Q with
x~ € Ay(T), there exists some T, > 0 such that for all T > Ty,

pz {ug € Bu(T) : zug € Q} = (1 — )z (Bu(T)).

We will also make a repeated use of the following basic fact:



JOINING 15

Lemma 4.2. [38, Lem 4.5] For a fized k > 1, there exists 3 > 1 such that
for any compact Q C X, there exists To(2) > 1 such that for any z €
with x= € A(T') and for any T > Typ(R2), we have

pa (Bu(T)) < B - uy>(Bu(T)).

4.1. Relative PS-size of a neighborhood of 9(By(T)). In order to
study the distribution of 2By (T') either in the PS measure or in the Lebesgue
measure, it is crucial to understand the size of a neighborhood of d(x By (T'))
compared to the size of 2By (T) in the PS-measure.

We do not know in general whether the following is true: for x € X with
x~ € Ay(T), there exists p > 0 such that

. PS(By (T By (T—
fim STy =0 (4.)

Noting that

1S (By (T+p)\Bu (T=p)) _ Moo o Bu+pT")\Bu(1—pT"1)
1S (By (1)) = S Bu() )

this question is directly related to the uniformity of the size of a neighbor-
hood of a 1-sphere based at xajg_,. where x is in a fixed compact subset.

When T is convex-cocompact, and z+ € A(T') so that = € supp(mPMS),
then now follows since supp(mPM3) is compact and any 1-sphere has
zero PS-measure, and hence pl> e (Bu(l + pT~ )\ By(1 — pT71)) is
uniformly small for all large T'. When there is a cusp in X, the PS-measure
of a ball around za_,g7 depends on the rank of a cusp where it stays (see
Theorem for a precise statement), and it is not clear whether holds

or not.

We will prove a weaker result which will be sufficient for our purpose. Let
us begin with the following lemma which a consequence of the fact that I
is Zariski dense, together with a compactness argument.

For a coordinate hyperplane L of R"~! = U, set L(Y) :== LN By (1). Define
0,(LM) to be the p-thickening of L™ in the orthogonal direction.

Lemma 4.3. Let Q C X be a compact subset. For any n > 0 there exists
some po > 0 so that

1y (Op (L)) < - S (yBu (1))
for all y € Q N supp(mPMS) and all p < po.
Proof. We prove this by contradiction. Suppose the above fails; then there

exist ) > 0, and sequences 3 € QNsupp(mPMS) and coordinate hyperplanes
L. so that

MyPS(O1/k(Lk(1)) >y (ye Bu(1)).
Passing to a subsequence we may assume y, — y € € N supp(m
and Ly = L for all k. Now for every a > 0 we have Olh(l'/(l)) C Ou(LWM)

BMS)

for all large enough k. Since ,ugks — ugs by Lemma it follows that
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,ugs((’)a(L(l))) > n/2 for all @ > 0. This implies ugs(L) > 0 which contra-
dicts the Zariski density of I'. This proves the lemma. O

Lemma 4.4. Let Q C X be a compact subset. For any € > 0 there exist
some pg = po(e, Q) > 0 with the following property: for all x € Q with
x~ € A (T) there exists some Ry > 0 so that

wa (Bu(T + p) \ Bu(T = p)) < € uz°(Bu(T)).
for all T > Ry and all 0 < p < po.

Proof. Let ¢; > 1 and T1 > 1 be so that for all x € Q with 2= € A,(T") and
T > Tl)

1y (Bu(T +2)) < b (By(2T)) < eapy” (Bu(T))

as given by Lemma [£.2]

Apply Theorem with ©Q and €/(2¢;) and let Qo = Q(€/(2¢1),£2) and
T, > 1 be given by that theorem.

Let T > T, + 17 in the following. By our choice of (Jg and T}, we have

WES{t € Bu(T +2) : wuy ¢ Qo} < 55 iS(Bu (T +2))
< Suy> (Bu(T)).
For each y € 9(zBy(T)) N Qo Nsupp(pt®) and any p > 0, put
Wy r(y) == 2(Bu(T + p) \ Bu(T — p))) NyBu(1).

Note that for each y € d(xBy(T')) there exist some coordinate hyperplane
Li(y),...,Le(y), for some 1 < ¢ <n —1, so that

W,or(y) € Ujy0,(Li(y)M). (4.2)
Since
{yBu(1) : y € d(xBy(T)) N Qo N supp(uy°)}

is a covering for

2(By(T + p) \ Bu(T — p)) N Qo Nsupp(uh°),

we can find a finite sub-cover Uyc;,yBy(1) with multiplicity at most &,
where k depends only on the dimension of U by the Bescovitch covering
theorem.

Applying Lemma with 7 := €/(2c1k(n — 1)) and Qp we get some
po = po(n, Qo) so that the conclusion of that lemma holds true. Thus using
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that lemma and , for every 0 < p < pgo and T > T, + T, we have
pe” (Bu(T + p) \ Bu(T = p))
<y ({u € Bu(T +2) s wu ¢ Qo}) + py > (Uyes, Wor (1)
s1y>(Bu(T)) + e sy 1y S (Wor(y))
S1e (Bu(T) + 00 ey 1y (Op(Li(y) ™M)
§iy° (Bu(T)) + n(n — D> (Uye rpyBu (1)
St (Bu(T)) + g (Bu(T +2))
ety (Bu(T)).
This implies the lemma. U

IN AN IN DA

IN

4.2. Equidistribution of a U-orbit in PS-measure. We now prove an
equidistribution result of xU in the PS-measure:

Theorem 4.5. Let x~ € A (I"). Then for any ¢ € Co(X) we have

. 1 PS BMS
T piz> (Bu(T)) /BU(T) Ylau)dpg™(8) = m= )

The main ingredients of the following proof are Theorem [3.4], Theorem
and Lemma In view of Theorem we only need to focus on
the part of x By (T) which comes back to a fixed compact subset @, as this
part occupies most of the PS-measure. We will use a partition of unity
argument for a cover of By(T) N Q by small balls centered at PS-points.
Each function in the partition of unity will be controlled by Theorem [3.4]
here the uniformity in loc. cit is of crucial importance. In this process, we
have an error occurring in a small neighborhood of the boundary of x By (T)
and Lemma [4.4] says this error can be controlled.

More precisely, we proceed as follows.

Proof. By the assumption that = € A, (T), there exists a compact subset
2 C X and a sequence s; — +o0 such that xa_g, € Q.

Let Q@ = Q(6,Q) C X be a compact subset given by Theorem Let
po = po(e,Q2) > 0 be given by Lemma applied with Q and € > 0. Let
S > 1 be the constant provided by Theorem applied with 2, r = pp and
e > 0. Now choose sg > S so that zg := za_,, € §; note that z; € A.(T).
Apply Theorem [£.1] and Lemma [4.4) with z, and let Ty := T}, + Ry,. Then
for all T' > Ty we have

poy {us € Bu(T) : mous ¢ Q} < - iy (Bu(T)). (4.3)
For each T' > Ty, we will consider a covering of the set
Dy := 2oBy/(T) Nsupp(uy°) N Q

and an equicontinuous partition of unity {f, : y € Jr} subordinate to this
covering as follows. Let Jr := {y € Dr} denote a maximal collection of
points where {yBy(po/8)} are disjoint. Then {yBy(po/2) : y € Jr} covers
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Dy, moreover, the covering {yBy(po) : y € Jr} has multiplicity x which
depends only on the dimension of U.
Let f € C*°(By(po)) be such that

0<f<1, f‘BU(PO/S) =land 1/2< f|BU(P0/2) <1
For every y € Dr put fy(yut) :== f(ut) and let Fp =3 ; f. Then
1/2 < Pr(zout) < k, for zguy € Drp.

For each y € Jr, put f, := f,/Fr. Then {f, : y € Jr} is an equicontinuous
partition of unity subordinate to the covering {yBy(po) : y € Jr}. In partic-
ular, we have 0 < f, <1, > ; fy=1onzoBy(T —p),and > ; f, =0
outside zoBy (T + p). Moreover, we have

fy|yBu(p0/8) =1and i < fy|yBu(p0/2) <1 forall y € Jr. (4.4)

Fix ¢ € C.(X). Without loss of generality, we may assume that ¢ is
non-negative. For T' > Ty, by applying Theorem and Lemma 4.4{(1), we
have

/ ¢(960Utaso)d/i5(§<t) =
xoutEmeoBU(T)

Z / woutaso)fy(élfout)dﬂxl)os(t)
yep ? @naoBu (T

+O(upy (BU(T + po) \ Bu(T — po)))
= Z 1 () mPM3 () (1 £ O(€)) + O(e - s (Bu(T)))

yGJT
=ty (Bu(T)) - m"M3(4) + O(e - g (Bu(T)))

where the implied constants depend only on .
Hence if T' > €Ty, then

/ arue)dulS(t)
By (T)

— 6550/ w(xoutas())dumpos(t)
By (Te™®0)

= ¢%%0 </ 1/1(370umso)dﬂxp§ (t)+0O (6 MfEO (BU( )))>
zoBy (Te™%0)NQ

= e (upS (Bu(Te™)) - m™S(0) + O (e pb(By(Te™™))))

= 115> (Bu(T)) - m"M8(¢) + O(e - ;> (Bu (1))

where the implied constant depends only on .
This finishes the proof as € > 0 is arbitrary. O
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4.3. Equidistribution of a U-orbit in Lebesgue measure. We will use
a similar idea as in the proof of Theorem to show the equidistribution
of xBy(T) in the Lebesgue measure. The main difference is that we now
need to control the escape of the orbit (measured in Lebesgue measure as
opposed to the PS measure as in Theorem to flares as well as to cusps.
For this, we utilize the idea of comparing the“transversal intersections” of
the PS-measure of xU and the Lebesgue measure of zU.

Theorem 4.6. Let x= € A(T'). Then for any ¢ € C.(X), we have

B ST o
Proof. Fix x and @ as above. Without loss of generality, we may assume
that ¢ is non-negative. Let P denote the parabolic subgroup MAU. We
call W = 2P, U, an admissible box if W is the injective image of P, U, in
I'\G under the map g — zg and pL5 (2pUs,) # 0 for all p € P.,.

Since 9 is compactly supported, using a partition of unity argument, we
may assume without loss of generality that ¢ is supported in an admissible
box zP,,Ue, for some z € IT'\G and 0 < €1 < €.

Since z~ € A,(T'), there exists a compact subset 2 C I'\G and a sequence
s; — 400 such that za_s, € 2. Now fix € > 0 smaller than ¢; and €p. Let
Q = Q(€,92) C X be a compact subset given by Theorem Apply Lemma
with Q and € > 0 and let pg > 0 be so that

wy> (Bu(T + 4po) \ Bu(T —4po)) < €

for all z € Q2 whenever T' > R,.

Let S > 1 be the constant provided by Theorem [3.4{2) applied with €,
po = 7, and € > 0. Now choose sy > S so that zg := za_s, € 2; note
that z; € A.(T"). Apply Theorem and Lemma with z¢ and put
To := Ty, + Ry, By Theorem for all T > T}, we have

WES € By(T) - wque ¢ Q) < e~ uES (Bu(T)). (45)

Given p > 0, for each y € zoU, let f, € C(yBy(p)) be a function such
that 0 < f, <1 and f, =1 on yBy(p/8).

P(zug)dt = mPR ().

Claim A: There exists ¢ > 1 such that for any y € zqU,
00 [ ) fy e <o 15 By )
o

where fy 1 (yu) = supyey, fy(yuu') for n > 0. To prove this, define

P.(so) :=={p € P, : yBu(p)as, N zpUe, # 0}.
For small > 0, we define: for w € supp(¢))G,,

p () = sup P(wg), Ty (wp) = / Pt (wpug) dt;
geGy wplU
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and for zpu € 2P, U,

~ 1

Wy 4 (2pu) = U )\I’n,-l—(Zp)-
€0

pES (zp

Then we have, for some fixed constant ¢ > 0,

e(n_l—é)so/ ¢(yutaso)fy(yut)dt
yBu (po)

< 6_650 Z fy,ce—5061,+(zpa750)\1’6617+(Zp) by [24’ Lemma 6'2]
PEP=(s0)

< / @061,+(yutaso)fy,cefsoel,+(yut)duyps(t) by [247 Lemma 65]
U

PS
< /’Ly (fy,ce_soq,-i-)

where the implied constant depends only on W. This implies the claim.
Without loss of generality, from now we assume that sg is big enough so
that ce™*%¢; < min{py/10, €}.
Using the claim (A) applied to a partition of unity subordinate to the
covering by po-balls of the set

zo(Bu (T + po) \ Bu(T' — po))

and the fact that ce™%%¢; < pg, we get

e(n=1=0)s0 / Y(zougas,)dt
By (T"+po)\Bu (T"—po)
Ky Py (Bu(T' +2p0) \ Bu(T' = 2p0))) < € gy (Bu(T")).  (4.6)

for all 7" > Ty where in the last in equality we used Lemma
As it was done in the proof of Theorem for every T > Ty, we fix a

covering {yBy(po)} : y € I} of
2By (T") Nsupp(uby) N Q

and let {f, : y € Iv} be an equicontinuous partition of unity subordinate
to this covering as in (4.4). We recall in particular that

{yBu(po/2) : y € I} covers zoBy (T') Nsupp(uh>) N Q. (4.7)
Set

Qo(T") := Uyer,,yBu(po).
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Put Ty := Te~* > Tp. Then using Theorem [3.4(2) and (4.6) we have

e(n=1=8)s0 / Y(zougas,)dt
zous€Qo(T1)

= e(n-1-00 §° / Y(rousas, ) fy(zous)dt
yeITl BU (PO)

+0 (6(17,15)50

= > sy (fy) mPH @) (1 £ 0(e)) + O(e - gy (Bu(T1)))

yelr
= Mmo (BU(Tl)) BR(?/)) + O(e- :u:co (BU(TI)))

where the implied constants depend only on .

Let J7, be a maximal set of points in 29 By (11)\Qo(71) so that {y By (po/16) :
y € Jp, } is a disjoint family. Then {yBy(po/4) : y € Jp, } covers xoBy(11) \
Qo(T1); moreover, by we have

/ w(xgutaSO)dt>
By (T1+po)\Bu (T1—po)

supp(5) 11 (Uyesr, yBu (po/3) )
C (zoBu(T1 + po) N Q) U (zo(Bu(T1 + po) \ Bu(Ti — po))) - (4.8)

Let {fy : y € Jp,} be a partition of unity subordinate to {yBu(po/4) :

y € Jp, }. Applying Claim A to {f, : y € Jp, } and using and (4.6), we
have

e(n—1=9)so / P(zougas,)dt
20 By (T1)\Qo(T1)

> (n=1=8)%0 Z / yut%o)fy(yut)dt

yeir, yBu (po/4)

< Z “y (fy.p0/10,4)

yeJry
< pipe (2o Bu (Tt + po) N Q) + pho (Bu (Tt + po) \ Bu(Tt — po)) by (3)
< € pb3 (v By (Th)).
Observing that

L dt = 76(
pES(By(T)) /BU(T) Viwue) pES(By (Th))

we have shown that for all T > Tye®,

S zug)dt = mPR c
BT oy, O = 70 + 00

which finishes the proof. O

n—1-9§)sg

/ P(zougas,)dt (4.9)
By (Th)
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Both theorems [4.5 and [4.6] are proved in [22] for the case n = 2. Theorem
is also proved in [22] for the unit tangent bundle of a convex cocompact
hyperbolic n-manifold. However as clear from the above proofs, the proof
in the convex cocompact case is considerably simpler since the support of
mBMS is compact.

Remark 4.7. Although Theorems and are stated for the norm balls
By (T') with respect to the maximum norm on U ~ R", the only property
of the max norm we have used is that {t € R" : ||t|max = 1} is contained
in a finitely many union of algebraic sub-varieties in the proof of Lemma

In fact, our proofs work for any norm || - || on R™ as long as the 1-
sphere {t € R™ : ||t|| = 1} is contained in a finitely many union of algebraic

sub-varieties.

Remark 4.8. Theorem cannot be made uniform on compact subsets;
for instance, if ™ is very close to a parabolic limit point, the convergence is
expected to be slower. However, Egorov’s theorem implies that for a given
compact subset @ C X and any € > 0, there exists a compact subset @’
with mBR(Q — Q') < € on which the convergence in Theorem is uniform.
We will use this observation later.

5. WINDOW LEMMA FOR HOROSPHERICAL AVERAGES

In this section we first prove that for = € A,(I"), the PS-measure of
xBy(T) is not concentrated near the center z, in the sense that for any
n > 0, there exists 7 > 0 such that for all large T" > 1,

we>(Bu(T)\ Bu(rT)) = (1 = ), (Bu (T)). (5.1)
This is of course immediate in the case when I' is a lattice, in which case
ptS(By(T)) = pke®(By(T)) = ¢ - T™ ! for some fixed ¢ > 0. The in-
equality also follows rather easily when I' is convex cocompact since
pbS(zBy(T)) < T9 for all x € supp(mPMS). For a general geometrically
finite group, our argument is based on Sullivan’s shadow lemma. We re-
mark that (5.1]) is not a straightforward consequence of Shadow lemma and
finding r i is rather tricky as we need to consider several different

possibilities for the locations of xa_jog7 and za_jog(,7) in the convex core
of ' (see the proof of Lemma [5.2]).

5.1. Shadow lemma. For ¢ € Ay, (I'), choose g¢ € G such that 9 =&
and set, for each R > 0,
H(E R) =Ussr geUa K.
The rank of the horoball H(&, R) of depth R is defined to be the rank
of a finitely generated abelian subgroup I'¢ := Stabr(§) and is known to be
strictly smaller than 26.

The thick-thin decomposition of the convex core of the geometrically finite
manifold I'\H" (see [3]) implies that there exists R > 1 and a finite set
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{&, -, &} C App(I') of representatives of I'-orbits in App(I') such that
I'H (&, R)’s are disjoint and

supp(mPMS) ¢ ¢y U (I_Ilef\I‘Hi> (5.2)

where Cyp C X is compact and H; = H(&;, R).
The following is a variation of Sullivan’s shadow lemma, obtained by
Schapira-Maucourant [22]:

Theorem 5.1. Let Q C X be a compact subset. There exists A = A\(Q2) > 1

such that for all x € Q N supp(mBPMS) with = € A(T') and T > 1,
AflTée(k(sz)fé)d(c():xaf logT) S MES(BU(T)) S )\T&e(k(ﬁ,T)fts)d(C(),xa, logT)7

where k(x,T') is the rank of H; if xa_1og7 € I'H; for some i > 1, and equals

0 ifmaflogT € Co.

5.2. Non-concentration property of PS measures.

Lemma 5.2 (Window lemma for PS-measure). Let Q@ C X be a compact

subset. For any 0 < n < 1, there exists 0 < r =r(n,Q) <1 and Ty > 1 such
that for all x € Q with = € Ay(T") and T > Ty, we have

we > (Bu(rT)) < n- py°(Bu(T)). (5.3)
Proof. Let Cy be given as ([5.2). We first claim that it suffices to prove the
following: for any 0 < 1 < 1, there exists 0 < r < 1 such that for all
y € Co Nsupp(mPMS) with y~ € A,(T"), and T > 1, we have
py > (Bu(rT)) < 0 ,°(Bu(T)). (5.4)
Without loss of generality, we may assume {2 contains Cy. By Lemma 3.3
there exists Ry > 1 such that for all x € €,

2By (Ro) N (Co N supp(m"M)) # 0.

Let Ty > Ror~!, so that we have rT + Ry < (2r)T for all T > Tp.
If y = zuy € xBy(Ro) N Co N supp(mBPM9), then z,y € Q. Hence by
Lemma [4.2] applied to © and (5.4), there exists ¢g > 1 such that

WES(Bu(rT)) < pES(Bu(rT + Ro)) < pbS(Bu(2rT))
< coplS(Bu(rT)) < neop® (Bu(T)) < neoul(Bu(T + Ro))
< neolS (Bu(21)) < neulS(Bu(T)).

This proves the claim. Therefore, we need to verify only for x €
Co N supp(mPMS) with 2~ € A, (T'). In particular, za_ 157 € supp(mBMS).
Let po := max; rank(H;) and A = A(2) be as given in Theorem As
remarked before, 26 > pg.
Set
) = (gx2) /G5,

Since A2 < 1, we have 7(n) < min{(nA=2)Y/(20-ro) nx=2}.
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In view of Theorem [5.1] it suffices to show that r := r(n) satisfies the
following:

AL k@ T)=0)d(Cowa1057) > 10\ o (k(@rT)=0)d(Co w0 rog 7).

or equivalently

77)\_26(k($7T)_5)d(607$a— logT)e(_k(zzTT)“l‘é)d(CO?wa— log TT) Z 7"6. (55)
From the triangle inequality, we have

d(CO)xa—logT) - “OgT’ < d(COwTa—long) < d(C07$a—10gT) + ‘ IOgT"
(5.6)
We prove this by considering two cases:
Case 1: k(z,T) > k(x,rT).
Then
(k‘(:E, T) - 5)d(CO7 xa—logT) - (k‘($, TT) - 5)d(CO) xra— 10ng)
> (k(x7 TT) - 5)(d(CO; xTa— logT) - d(COa zra— 10ng))
> —|k(x,rT) — 0| - |logr|.

Hence the lefthand side of is bigger than or equal to nA~2plk@rT)=dl,
Considering two cases k(x,rT) < ¢ and k(z,rT) > § separately, it is easy
to check that our r = r(n) satisfies pA=2rF@ 1) =0l > 10 Hroving G-5).
Case 2: k(z,T) < k(z,rT).
We first consider the case when k(x,T) = 0, so that d(Co,za_10g7) = 0
and 0 < d(Co, xa—10g,7) < |logr| by . Then the left-hand side of
becomes

n)\*Qe(*k(I,TT)Jr(S)d(CO,1‘(1, long) Z n)\727~‘k(m7’rT)76| Z 7-6

as before, proving the inequality (5.5]).
We now assume that k(x,T) > 1. Then k(z,rT) > 2, and hence § > 1.
In this case, za_1og 7 and xa_og,7 are in two distinct horoballs, and hence

there exists r < p < 1 such that za_jog,7 € Co. We take a maximum such
p. Then

d(Co, va_10g7) < d(Ta_10g(57), Ta—10gT) < |log pl;
d(Co, a—10g77) < d(TA_ 10g(,T) Ta—10gr7) < log(pr™!).
It follows

e(k(va)f(s)d(Cvaaf logT) > e(l*&)d(Co,xa, logT) > p(S*l

and
e(k(a:,rT)*J)d(Co,xaf log rT) < max{l, (p/r)k(x,rT)—é}.

Therefore ([5.5)) is reduced to the inequality
nA72p° 7 > max{1, (p/r)Hr 0} (5.7)

If max{1, (p/r)*®T)=0} = 1, since p > r, this follows from pA=2r0~1 >
9, which holds, by the definition of r = r(n).
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: k(z,rT)—0
It remains to prove that when (p/r) > 1,

pA—2 K@ T) =1 5 26—k T) (5.8)

By our definition, we have 7(n) < (pA\=2)1*+1/(20=p0)  Therefore we have
p26—1—k(m,rT)/T%—k(ac,rT) > maX{p_l, (p/’l‘)%_k(gc’rT)}.
The conclusion now follows by taking two cases: p < 7’()\27)_1)1/ (20—k(z,rT))

and alternatively r(\2n~1)1/(0—k@rT)) < p < 1. This completes the proof.
[l

5.3. Equidistribution for windows. We now draw the following corol-

laries of Lemma [5.2] and Theorems 4.5 and [4.6]
For ¢ € Co(X) and T > 0, we define the notation

Proj(z) = /B PRICHAC:

CTw(x):/B (T)@Z)(:Eut)dt.

Theorem 5.3 (Window lemma for horospherical average). Fiz a compact
subset Q C X. For any n > 0, there exists 0 < r =r(n,Q) < 1 such that the
following holds:

(1) forx € Q with x= € A(T') and for any non-negative 1 € Co(X) with
mBR(y) > 0, there exists Ty = To(z,v) such that

Lrrp(x) <n-Lrp(z)  for all T > T,

(2) forx € Q with x~ € A(T") and for any non-negative 1p € Cc(X) with
mBMS () > 0, there exists Ty = To(w, 1) such that

Prrip(z) <n-Pri(z)  for all T > Tp.
Proof. Let r = r(n/4,Q) be as in Lemma [5.2] Let x € Q with 2~ € A(T).
By Theorem there exists Ty = T'(z, ) so that for all T > Ty,
Lrrip(x) < 2mPR () (By (rT)
Lrp(x) = g ()™ (Bu(T)).
Hence

Lori(x) < 4%&1&(»@) <n-Lrip(x)

by the choice of r. This proves (1). (2) is proved similarly using Theorem
in place of O

Theorem 5.4 (Equidistribution for window averages). For any compact
subset Q C X, the following hold: for any x € Q with x= € A;(I") and any
v € Cc(X), we have
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~ fBU(T)—BU(rT) p(zug)dt -
i WPS(By(T) — Bu(rT)) (¢); (5.9)

o Pl S e
i fBU(g)S By(rr) PEUe)dpg"(t) BAIS ) (5.10)
T—o0 Mo (BU(T) — BU(TT))

where r = r(1/2,9Q) be as in Lemmal[5.9 for n =1/2.

Proof. By Theorem we have
Lrp(x) = mP(p) - 1> (Bu(T)) + ar - with ar = o(uy,” (Bu(T)));

Lorp(z) = mBR(p) - uES(By (rT)) + by with by = o(uES(By (rT))).
Since pbS(By(T) — By (rT)) > uES(By (1)), it follows that |ar| + [br| =
o(uES(By(T) — By (rT))). Hence (1) follows. Similarly (2) can be seen using
Theorem (4.5 O

Remark 5.5. Note that if Theorem [4.6] holds for ¢ uniformly for all points
in a given compact subset €2, then Theorem (2) also holds for ¢ uniformly
for all z € Q. This observation will be used later.

5.4. Remark on measure classification. Burger [4] classified all locally
finite U-invariant measures on I'\PSLy(R) when I' is convex cocompact with
d > 1/2. Roblin [33] extended Burger’s work in much greater generality, and
classified all U M-invariant ergodic measures on I'\G when T' is a geometri-
cally finite subgroup of a simple Lie group G of rank one. Extending this
work, Winter [42] obtained a classification of all U-invariant ergodic mea-
sures on I'\G when T is also assumed to be Zariski dense. In the case of
G =S0(n,1)° and I' geometrically finite, we can also deduce this classifica-
tion result from Theorem [3.4] using the Hopf ratio theorem.

First, recall the Hopf ratio theorem proved by Hochman formulated in a
setting we are concerned with:

Theorem 5.6. [12] Let H be a connected Lie group and T’ a discrete sub-
group. Let RF = N C H be a connected abelian subgroup. Let p be a locally
finite N -invariant ergodic measure on I'\G. Let ¢, € C.(I'\H). Suppose
g > 0. Then for p-almost all x such that fBN(OO) o (xu)dt = oo,

-~ Jpy) Pr(zw)dt ()

T—o00 fBN(T) ¢2((L‘U)dt N ,u(wg)'

Theorem 5.7. The only ergodic U-invariant measure on X which is not
supported on a closed orbit of MU 1is the BR measure.

Proof. Let p be such a measure. Let ¢ € C.(X) be a non-negative function
so that p(y) > 0 and mBR(y) > 0. Then since the support of u is not
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contained in any closed MU-orbit, there exists z € X with = € A,(T") and
the Hopf ratio ergodic theorem holds: for all ¢ € C.(X), we have

oo Lrp(x) ()

Therefore
ple) _ mPp)
p()  mBR(y)
It follows that p and mBR are proportional to each other. O

We mention that when G is a general simple group of rank one, we expect
an analogue of Theorem holds. However in these cases, the horospherical
subgroup is not abelian any more and the Hopf ratio theorem is not available
for a general non-abelian nilpotent group action (cf. [13]). However a weaker
type of the Hopf ratio theorem is still available (see [I3], Theorem 1.4]) and
together with this, it is plausible that an analogue of Theorem [£.6] would
yield an alternative proof for the above mentioned measure classification
theorem.

6. RIGIDITY OF AU-EQUIVARIANT MAPS

For the rest of the paper, we let F =R or C and G = PSLy(F). Let

10 . (11
U.—{ut—<t 1>.t€IF},U.—{ur—<O 1).1‘6F},
s/2
A:{CLS:<€O 6_2/2>28€R}.

Let I'; and I's be geometrically finite, and Zariski dense subgroups of G
and set for each i = 1,2

and

We denote m%_MS the BMS-measure on X; associated to I'; for each i =
1,2. We assume that |m1]§i\/{s\ = ]m%v[s| = 1. When there is no room for

confusion, we will omit the subscript I'; from the notation of these measures.
Suppose
Ul,...,Ug:Xl —)XQ

are Borel measurable maps and consider a set-valued map:

T(z) = {vi(z),...,ve(z)}. (6.1)

We assume that T is U-equivariant in the sense that there exists a U-

invariant Borel subset X’ C X7 with mBMS(X’) = 1 such that for all z € X’
and every ut € U, we have

T (zug) = Y(x)ug. (6.2)

The main aim of this section is to prove Theorem that if Y is AU-
equivariant on a BMS-conull set, it is also U-equivariant.
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Theorem 6.1. Suppose that for all x € X' and every auy € AU, we have
Y (zauy) = Y (z)au.

Then there exists a BMS-conull subset X" C X' such that for all x € X"
and for every u, € U with xt, € X", we have

Y (zty) = ().

This is proved in [9] for the case I' is convex cocompact and ¢ = 1;
the proof is based on Ratner’s proof of the rigidity of U-factors [29] in the
lattice case. Here we use similar strategy and generalize this to the case
of a geometrically finite group allowing also £ > 1. The presence of cusps
requires extra care in this extension.

Let us recall that following terminology from [16]. Let C,a > 0 and we
denote by | - | the absolute value of F. A function f : F” — F is said to be
(C,a)-good on a ball B if the following holds: for any ball V' C B and any
€ > 0 we have

(0%
: < 6) .
e eV :|f(z)<ep<C <supv 7] oV (6.3)
where ¢ denotes the Lebesgue measure on F”. It follows from Lagrange’s
interpolation and induction that if f is a polynomial in n variables and of
degree bounded by d, then f is (C,a)-good on F" where C' and « depend
only on n and d.

The (C,a)-good property for fractal measures was studied in [I5]. We
need the following lemma (a version of this is [9, Lemma 5.1] for I convex
cocompact); our proof is soft and uses compactness arguments. This can
be thought of as a weak form of the (C,a)-good property of polynomials.
Recall a point = € X is called a BMS-point (resp. BR-point) if it lies in the
support of mBMS (resp. mBR).

For d > 0 and £ > 1, let Py, be the set of functions © : U — R of the
form

O(t) := min{|O1(t)[%, ..., |O(t)[*}

where the function ©; : U — F is a polynomial of degree at most d for each
1<i<U.

Lemma 6.2. Let d, ¢ > 0 be fixred. For any compact subset I C X1, there
exists some C1 = C1(K,d, ¢) > 0 depending on d,l and K with the following
properties: Let x € K be a BMS point with x= € Ay(T) and let s > 0 be so
that xa_s € K. Then for any © € Pgy, we have

-
133 (Bu (e*))

Proof. Write KBMS = K N supp(mBPMS). Note that the above statement is
invariant under scaling the map ©. Further, for any € KBMS any s € R

/ @(t)d,umps(t) > Cl . SUPteBU(eS) @(t)
By (e®)
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and all © € Py, we have

S S PSy_ L o561 duPS (68
(153 (Bu (e#)) /BU(es)@(t)de (t) uES(By(e?)) /BU(1)®( t)dp, " (€t)

1 5 PS
ks (Bu(D)) /BU(I) Ot)dtza_, (8

where O(t) := O(e°t). Suppose now the statement (1) fails. Then we have
e a sequence z; € KBMS, a sequence s; — oo such that y; := z;a_s, €
K, ) )
°a sequence 0, € Pdg with supp,, (1) ©i(t) =1
so that AP (B (D) BU fBU dpy S (t) — 0 as i — oo.

KBMS and ©; —

1S continuous on

Passmg to a subsequence we may assume that y; — y €
O € Py, with SUPge By (1) O(t) = 1. Since the map z — pbS i

KBMS nd

0 <inf,ciBms pLS(By (1)) < SUP,cxBMS plS(By (1)) < oo,

it follows that
/ O(t)dpy 5 (t) = 0.
By (1)

This implies that ,uES(BU(l)ﬂ{t : ©(t) # 0}) = 0 which contradicts the fact

that y € supp(mPM3) in view of Zariski density of T, proving the claim. [
We also recall the following mean ergodic theorem.

Theorem 6.3. [35, Thm. 17] For any Borel set K of X1 and any n > 0,
the set

has full BMS measure.

In the following, let X’ be the set which satisfies (6.2) for T. Fix n > 0.
By Lusin’s theorem, there exists a compact subset

K, € X' N supp(mBMS) (6.4)

with mBMS(KC,)) > 1 — 5 so that v; is uniformly continuous on K, for each
1 <i</ Since {x € X1 :2~ € A;(I'1)} has a full BMS-measure, it follows
from Theorem [6.3] that there exist a compact subset

Q, C {z € X' Nsupp(m®M®) : 27 € A,(T})} (6.5)
with mBMS(Q,)) > 1 — 5 and T;, > 1 such that for any z € Q, and T > T,),
1 / PS BMS
—_—— XK, (xug)du,”(t) > (1 —n)m K 6.6
MES(BU(T)) Bu(T) n( t) ( ) ( ) ( 7]) ( )

>1—2n.
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The following is a key ingredient of the proof of Theorem

Proposition 6.4. Under the hypothesis of Theorem[6.1], there exists a com-
pact subset @ C {x € X' : 27 € A(D)} with mBMS(Q) > 0.9, ¢ > 0 and
so > 0 such that for any |r| < €, for any s > so and © € Q such that
Ty, TUpGg, Tas € 2,

Y (zty)ti—y C Y(z) - {g€G:d(e,g) <c-e *}. (6.7)
where ¢ > 1 1s an absolute constant.

Proof. Fix a small n > 0. Let K, and 2, be as in (6.4) and (6.5). Fix a
small € > 0. Let 0 < € < €/2 be such that

d(vi(z),vi(z") <€ (6.8)
for all 1 <4 < ¢ and all z,2’ € K, with d(z,2') < €. Fix x € Q,, [r| < €
and s > 0 such that xas, i, riras € €.

We will first explain the idea of proofs assuming T is an actual map, i.e.,
¢ =1. Writing
Y (zty)t_y = Y(x)hs hs € G,
we would like to show that
d(e,hs) = O(e™?). (6.9)
Set gs := a_shsas so that
Y (zty)tU_ras = Y(x)asgs = L(xas)gs.
As T is A-equivariant on €, we have Y (zty)t_ras = Y (2Uras)t_o—s, and
hence
Y (ztpas)ti_p—sp = Y(xas)gs. (6.10)
We will study the divergence of the points Y (xtyas)u_.—sp and Y(x)as
along u¢ flow and show that for all s large and for all t € By (e®),

Y (2tyas)tU_o—spus and Y(zag)ug

stay within bounded distance from each other, that is, u_¢gsu¢ is uniformly
bounded for all t € By (e®). This will imply that the element gs is close to
the centralizer of U, which is U itself. We will then be able to conclude that
the element hs = asgsa—s is of size O(e™%).

For all [t] < e®, set

Br(t) = retem
Then we have

. 1+ert e *r
losplls = ( t 1 > = U, (t)9r (6.11)

where g, € P = AMU with d(e,g;) < €. It is worth mentioning that the
function S,(t) above is our time change map, and is responsible for the two
aforementioned properties of g,.
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Step 1: We claim that for all [t| < e® such that Tasug, Tirasug_ (y) € Ky,
and for any 1,
d(vi(xty)ti_rasug, T(zas)uy) < €. (6.12)
Using the U-equivariance, we have for any t € F and 1,
Vi (2Uy ) U—yasuy
€ Y(2lUpas)U_e—sptiy  USING Tlpls = TAsTp—syp
= Y(ztras)ug_,(t)g—r by
= T(@trasug_,(t))g—r
= Y(zasutg—L)g_r by (6.11);
where we used the identities:
Ur@sUg_ (t) = Gsl_e—spUB_(t) = asueg_y

by (6.11). The choice of ¢ made in implies that for all [t| < e® such
that xasut,:pasutgj = TUrAsUg_ () € Ky, we have

d(vi(xty)t_rasut, T(zasug)) < 2e.

This implies (6.12)) by the U-equivariance of Y.
Step 2: Letting

Ke(s,r) == {t € By(e®) : wasus, virasug_ ) € Ky}
and sp = logT;,, we claim that for all s > s,
Ho, (K (5,7)) = (1= con) i, (Bu(€®)) (6.13)

where cg > 0 is an absolute constant.
Since zas, riras € €y, we get from that if s > s,

WES {t € Bu(e®) : s € Ko} > (1— 2l (Bule?))  (6.14)
and
uEs o {t € Bu(e®) s atwaguy € K} > (1= 2n)pbs o (Bu(e®)).  (6.15)
Note that Jac(Br)(t) = 1+O(€) for all t € By(e®), and hence implies
:u':puras{t € Bu(e”) : wlrasug_, () ¢ K}
< lyna, {t € Bu(e® + O(¢)) : wivasug ¢ K}
<20 Hygq, (Bu(e® + O(€))
< (2e11) * 10ea, (B (€°))
(mBMS)

where ¢ is given by Lemmam 4.2|for supp . This is equivalent to saying

that

KBS {t € Bu(e)) s winasug ) ¢ K} < (2em) - uES . (Bu(e)).
(6.16)
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Note that (zaste-spug_,¢))" = (zasug)’ since g € P. It follows from
the definition of the PS-measure dpu}5(t) = ew@“t)*(O’yut(o))duo((yut)ﬂ and
the fact |[e~*r| = O(e™®¢’) that on By(e®),

bz, (B-r(t)) = (1 +O(e™°€))dpigy, (t).

Therefore (6.16]) implies that

:Uacas {t € BU( ) xﬂl‘asuﬂ,r(t) ¢ ICT]} < (6277) :uxas (BU( )) (617)
for some absolute constant ¢y > 0. Hence this together with (6.14)) implies

the claim (6.13]).

Step 3: If > 0 and € > 0 are sufficiently small, then for each 7, there
exists k(7) such that for all s > sq,

sup d(vi(xar)ﬂ,rasut,vk(i) (ras)ug) < 1. (6.18)
teBy (e%)
Put
O(t) = min{d(v;(xty)i_rasus, Y(zas)us)?, 1}
Then for any s > sq,

1
Hgmg(BU(es)) /BU(eS)G( )dﬂmas( )

1
O T — / O(t)duS (t) by (5.13)
:umag (BU(e )) Kz (s,r)
< conte by (612).

Recall now that if y,z € X are two point then for all t € F so that
d(yug, zug) is sufficiently small, the map t — d(yus, zug)? is governed by
a polynomial of bounded degree, see [29]. By , for any sufficiently
small € > 0, ©,5 € Pygy where d depends only on the dimension. If we
set y := xas € Qy, then ya_s = x € (). Hence applying Lemma for
Yy = xas, we obtain that

sup O(t) < 2(con +¢€)/C1:=¢

[t[<es
where C1 = C1(,,d,¢). If n and e are sufficiently small so that 2(con +
€)/C1 < 1, then

d(vi(ztp)U_rasug, T(zas)uy) < CI/Q.
It follows that for each 7, there exist 1 < k(i) < ¢, and a subset J(s) C
By (e®) with £(J(s)) > $+€(By(e®)) so that if we set
O;(t) := d(vi(zly)i_rasus, , Vi) (zas)ug)?,
then

sup 0;(t) <.
teJ(s)
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Therefore the above and the fact that polynomials of a bounded degree are
(C, a)-good with respect to the Haar measure, see (6.3)), imply that

(B () S €I(6) < CH(sup O™ (B (e")

Hence
sup ©; < ¢-CY = 20" %0 (con + €) /Ch.

[t|<es
Therefore (6.18) holds for n and e sufficiently small.
Step 4: For every 1 < i </, define g,; € G by the following
Ui(xaras) = Uk(4) (xas)gs,i-
We claim
d(e,asgsia—s) = O(e” ).

The equation (6.18]) in particular implies that g, ; is contained in an O(1)
neighborhood of the identity.

We further investigate the element g, ;. Write gs; = (acs gj), so that

Zs s

P Ts + yst Ys
Y—tgs,itit = (Zs + (ws - xs)t - yst2 Ws — yst> '
Therefore, (6.18)) and the fact that det g5; = 1 imply

|25] = O(1), |1 —as| = O(e™®), |1 —ws| = O(e™), lys| = O(e™™).

This implies

d(e,asgsia—s) = O(e”?). (6.19)
This proves for so (given in Step 2) and Q = Q,, ¢ > 0 for sufficiently
small 7, ¢ > 0 (given in Step 3). O

Proof of Theorem [6.1]
Let © and € > 0 be as in Proposition[6.4 By the ergodicity of the A-flow
for the BMS measure, which follows from Theorem and the Birkhoff

ergodic theorem, there exists a conull subset X” of X’ such that for all
xe X"A,

1 S
lim 5’/ xa(zas)ds = mPMS(Q) > 0.9 (6.20)
0

S—o00

Let € X" and @, € U such that za, € X”. We will show
Y (zty) = V().

By , we can choose arbitrarily large sg > 1 such that zas,, ztras, €
Q, and e *°r is of size at most €. Setting zg := zas, and roy := e *r, it
suffices to show that Y (zoty,) = Y(x0)tr,, thanks to the A-equivariance.
Therefore, we may assume without loss of generality that

re X"ANQ, zi, € X"ANQ and |r| < €.
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By (6.20), we have a sequence s, — 400 so that ziyas, ,xas, € ) for
all m. By Proposition we have
Y(zty)i—r C Y(x) -{g € G:dle,g) <ce *m}. (6.21)

Hence Y (zty)ti_y = Y(x), proving the claim.

7. JOINING CLASSIFICATION

We let G = PSLy(FF) for F = R, C. Let I'; and I's be geometrically finite,
and Zariski dense subgroups of G. Set X; :=I';\G for i = 1,2 and
7 = X1 x Xo.
We keep the notations U, A, U, etc. from section @ Let
{e} for G = PSLa(R)

M= { <e;9 e_%) L0 ¢ R} for G = PSLy(C). (7.1)

Since M is considered as a subgroup of PSLy(C), two elements which differ
by —1 are identified. We set P = MAU.

We will use the notation A for the diagonal embedding map of G into
G x G; 80 A(g) = (g,9) for g € G. For t € F, |t| denotes the absolute value
of t and for T' > 0, we set

BU(T) = {Ut eU: ’t‘ < T}.

7.1. Construction of a polynomial-like map. We fix a rational cross-
section £ for A(U) in G x G as follows:
L=({e} xG) -A(P)=P xG.

Then LN A(U) = {e} and the product map from £ x A(U) to G defines a
diffeomorphism onto a Zariski open dense subset of G x G. We will use L as
the transversal direction to A(U) in G x G.

We observe that Ngxg(A(U)) = A(AM) - (U x U) and

Naxa(AU)) N L = A(AM) - ({e} x U)

Suppose that we are given a sequence h, = (h,lf, hi) € G x G such that
hi € Naxa(A(U)) with hy, — e as k — oo. Associated to {hx}, we will
construct a quasi-regular map

0 : AU) - A(AM) - ({e} x U)
following [2I], Section 5]. Via the identification F = A(U) given by t —
A(ug), we will define the map ¢ on F, which will save us some notation.
Accordingly, we will write t € By(1) to mean that uy € By (1), etc.

For g = <Z Z) € G and for t # —ab~!, define

c+dt
o (t) =
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We denote the pole of oy by R(g) and put R(g) = oo if oy is defined
everywhere. That is, R(g) = —ab~! if b # 0 and co otherwise.
Set
ai(t) = a1 (t) and Ry, = R(h}) for each k.

Note that R — oo as k — oo. A direct computation shows that for all
t € F — {Ry}, we can write hyA(ut) as an element of A(U)L where the
A(U) component is given by A(ug, ). We will denote by ¢ (t) for its
transversal component so that

hiA(ug) = Alug, 1)) er(t) € A(U)L.

We renormalize these maps ;s using a representation corresponding to
A(U). Recall that by a theorem of Chevalley there is a finite dimensional
representation (p, W) of G x G, where G x G acts from the right on W and
a unit vector 4 € W so that

A(U)={h e G xG:qp(h) = q}.
Then
Noxa(AW)) = {h - gp(h)p(A(ue)) = gp(h) for all ug € U}.

We choose a norm || - || on T so that B(g,2) N ¢p(G x G) C gp(G x G).
Now for each k, define ¢ : F — W by

O (t) = gp(hiA(us));
<z~5k is a polynomial map of degree bounded in terms of p and qu(o) =q.

Explicit construction of ¢;: Consider the following representation: let
G x G act on W = F2 @ F?2 @ My(F) by

(91,92)-(v1,v2, Q) = (v191,v292, 91 ' Qg2)-
Then the stabilizer of g := (eq, €1, I2) is precisely A(U). If we write hf =

% bi
(ak k), then, up to an additive constant vector, say, g, € W we have

% d
o _ 1 2 — Ayt 0
Pr(t) = g + <bkt’ 0,05t,0, <.Akt2 + Byt Akt>>

where A = bkd% — bzd}ﬁ and By = a}Cd% + b,lgcz — b%c,lg — a%d,lc. Hence ¢y, is a
polynomial of degree at most 2.

Let T}, > 0 be the infimum of T" > 0 such that

sup[ld(t) - gll = 1.
tGBU(T)

Since hy, € Ngxa(A(U)), ¢y is a non-constant polynomial and hence we get
T} # oo, moreover, in view of our assumption hy — e we have T, — oo as
k — oo. 3

By normalizing ¢ by

o (t) == ¢ (Tit),
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we obtain a sequence of equicontinuous polynomials ¢;. Hence, after passing
to a subsequence, ¢ converges to ¢ where

t — ¢(t) is a non-constant polynomial of degree at most 2.
Supgepy, (1) |9(t) — gll = 1 and ¢(0) = g,

[6(t) : t € By(1)} C gp(G x G)

the convergence is uniform on compact subsets of F.

Put
p=(pc) oo
where p/ is the restriction to £ of the orbit map g — gp(¢g). Then ¢ : F — L

is a rational map defined on a Zariski open dense subset @ C F containing
zero and ¢(0) = e. We have

@(t) = limg g (Tit)

and the convergence is uniform on compact subsets of O.
Note also that for any ty € F, we have

¢(t)p(A(ut,))
= lim g (Tit) p(A(ugy )
= lim gp(he (i) p(A )
= h};n qp(hkA(uTk(t—i-to/Tk))) = ¢(t).
Therefore ¢(t) € Naxa(AU)) N L.
The following observation will be important in our application:

Lemma 7.1. There is n > 0 such that p(t) = e and t € By(n) implies
t = 0, that is, 0 is an isolated point in ¢~ '(e).

Proof. Since ¢ is a non-constant polynomial of degree at most 2, the set
{t € F: ¢(t) = q} consists of at most two points. O

7.2. A(U)-recurrence for the pull back function ¥. As before, we nor-

malize |mRMS| =1 for i = 1,2. For the sake of simplicity, we will often omit

the subscript I'; in the notation of mRMS and m?iR.

For the rest of the section, let 1 be an ergodic U-joining of Z with respect
to m?lR X mEQR. In particular, if m; : X7 x Xo — X; denotes the projection

onto i-th coordinate, then
(mi)ups = M.
BR

We also suppose that f is an infinite measure, that is, at least one of mp.

is infinite. Without loss of generality we will assume m?QR is an infinite

measure.

Lemma 7.2. The following set has a full p-measure in Z:

{(z1,22) € Z : 2, € A (Iy) for each i =1,2}.
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Proof. Since A;(I';) has the full Patterson-Sullivan measure in A(IT';) by Sul-
livan [40], V; := {z; € X; : x; € A;(T;)} has a full mPR-measure. Since
() st = mBR we have m; H(Y1) Ny '(Y2) has a full y-measure. O

Recall that a Borel measure p is h quasi-invariant if h.p is a positive
multiple of u where h.u(B) := u(Bh) for any Borel subset B.

Lemma 7.3. If  is quasi-invariant under (e, g) for some g € G, then it is
invariant under (e, g).

Proof. Suppose (e, g)in = cp. Let Q C X5 be a compact subset with m%R(Q) >
0. Then we have

cu(2 x Xa) = (e, g)u(2 x X2) = p((2 x X2)(e, g)) = p(2 x Xz).
Since 0 < p(2 x Xo) = mF‘F(Q) < 00, we get ¢ = 1. O
Definition 7.4. We fix the following:
e a non-negative function ¢ € C.(X1) with mBR(y) > 0, and
U:=1¢om e C(2);

e a compact subset Q1 C {z € X7 : 2~ € A(T1)} with mBR(Qy) > 0
such that both Theorems [4.6] and [5.4)(2) hold for 3 uniformly for all
x1 € Q1 (such ©Q; exists in view of the remarks and ;

e a3 constant
0<r:=1r050)<1

where 7(0.5,€7) is as given in Theorem
e a compact subset

QC U xOWCZ
such that ©(Q) > 0 and for all z € Q and for all f € C.(Z),

. fBU(T)f(xA(ut))dt _plf)
A oo YA (ue))dt ~ p(w)’ (7.2)

BR " we have

Note that since (71).u =m
0 < u(¥) < oo; in particular, ¥ € L' (u).

Since W is defined as the pull-back of a function on X7, we can transfer the
recurrence properties of U-orbits in X to statements about A(U)-recurrence
properties with respect to ¥. We record these properties of ¥ in the following
two lemmas.

Lemma 7.5. For any x € Z with m1(x)~ € Ay(T'1), we have

/ U(zA(ug))dt — oo as T — oc.
By(T)
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Proof. For such an x, we have, by Theorem

[ wes@de= [ m@udt ~ ab (Bu(T) ).
Bu(T) By(T)
Since mBR (1) > 0, we have Sy ) ¥ (@A(ug))dt — oo. O

Lemma 7.6. There exists Ty = To(1, Q) > 1 such that for any x € Z with
m1(z) € Q and any T > Ty,

/ U(zA(ug))dt < %/ U(zA(ug))dt.
By (rT) By(T)
Proof. For x € Z with 71 (z) € Q, we have

/ U(zA(ug))dt —/ U(zA(ug))dt
By (T)

By (rT)

:/ w(wl(x)ut)dt—/ Y(mi(@)ug)dt
By (T)

By (rT)

z;éﬂmwm@mmﬁ

= %/ U(xA(ug))dt (7.3)
By (T)
where the inequality follows by Theorem O

7.3. Joining measure. In this section we will use ergodic theorems and
polynomial like behavior of unipotent orbits, the construction of a polynomial-
like map in §[7.1]in order to produce extra quasi-invariance for the measure.
We begin with the following.

Lemma 7.7. Let Y C Z be a Borel subset such that for ally € Y,
(1) limp_00 fBU(T) U(yA(ug))dt = oo;
(2) for all f € Cc(Z2),
o JBom TWAW)IE  pu(f)
T—o0 fBU(T) U(yAug))dt — p(P)
If h € Ngxg(A(U)) satisfies Y NYh # &, then p is h quasi-invaraint.
Proof. Let h € Ngxg(A(U)) = A(AM) - (U x U) and y € Y such that

yh € Y. Since, under conjugation, A(AM) acts on A(U) by homothethy
composed with rotations,

hilA(ut)h = A<u5h(t))
where S : U — U is a homothety composed with a rotation.
If the A(A)-component of h is (as,as), then By (By(T)) = By(e®T) and
the Jacobian of 3, is equal to e~V where (n — 1) is the dimension of U
as a real vector space.
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For any f € C.(Z) and for any all large T' > 1,

‘u(h-f) N u(f)'

p(h W) ()

| uef) Iy TWAMORAE g, 5y () SWRAL))AE  pu(f)
p(h-¥) fBU(T)\I’(yA(Ut)h)dt fgh(BU(T))‘I’(yhA(Ut))dt ()

< |#hf) Jpp(r) F A (ue)h)dt . Jy(esr) FWhA(ue))dt — yy(f)

T u(h ) [y YWAu)R)dE | | [ oy Y(yhA(ug))dt p(T) |

Since both y and yh belong to Y, it follows that the last two terms tend to
zero as T — oco. Hence

pu(h-¥)

p(h.f) = “pf),
() = £ )
finishing the proof. ([
For 0 <rg<1,and T > 0, set
1y (T) i= Bu(T)\ Bu(roT), (7.4)
For a Borel function f on Z, and = € Z, set
Drf(z) = / F(@A(uy))ds. (7.5)
1.(T)
Corollary 7.8. For any f € C.(Z), and any x € Q, we have
. Drf(x) _ p(f)
1 = . .
P D) p(v) (7.6)

Proof. This follows from Lemma and ([7.2)). U

Remark 7.9. Let F C L'(Z, 1) be any countable subset. Then there is a
full measure subset Q' C Q so that holds for all f € F and z € Q’.
Indeed by the Hopf ratio theorem and the fact that F is countable there is
full measure subset Q' C Q so that analogue of holds for all f € F.

Then using Lemmawe have g;\{j((?) — % forall fe Fandallz € Q.

Fix a small € > 0, and choose > 0 small enough so that ©(Q{g : |g] <
ny) < (1+€)u(Q). We put

Q= Q{g: gl <n/4}, and Q41 = Qg : 9| < n}.

Set
F:={xo,X0. X0, }-

Using this and Egorov’s theorem and Remark [7.9] we can find a compact
subset

QCQ
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with u(Q) > (1 — €)u(Q), such that for any f € F and any 6 > 0, there
exists some Ty = Ty(f,0) so that if T' > Tp, then

‘ Drf(z)  p(f)

Dr¥(z)  p(¥)
Such a subset will be referred to as a set of uniform convergence for the
family F (cf. [23, Lemma 7.5]).

Lemma 7.10. Fix 0 < o < 1/2. There exist Ty = Tp(v,21) > 0 and
co = co(10, Q1) > 1 such that for all T > Ty and for all x € Q. we have

cgl/ W (A (ug)) dt g/ WA (ug)) dt gco/ WA (ug)) db
(1) By (1) I (T0)

<6 forallze Q.. (7.7)

where rE = (1+0)r and T = (1 £0)T.

Proof. Since Theorem [5.4(2) holds for ¢ uniformly for all 7 (z) € Oy, there
exists Ty > 1 such that for any z € Q. and for any T > Ty,

/ ) \I/(xA(ut))dt—/ (m (2)ue)db
I +(T5)

Iy (T5)
> dmPR () (15, (Bu(Ty) - Bu(riT;))

On the other hand, by Lemma and Lemma [£.2] there exist Ty > Tj
and ¢ > 0, depending only on €; such that if m(z) € Q,

iPS o (Bu(Ty) = Bulri Ty )) = 5ubS (Bu(Ty ) = conlS, (Bu(T)).

Since Theorem holds for 1, uniformly for all 7;(x) € €5, we have, for
all sufficiently large T > 1,

PO BUT) = 3 [ dm@ud

To

By (T)
Therefore,
[ A fn NS, (B (D)
I+ (T5)
> % Y(mi(z)ug)dt = 2 U(zA(ug))dt.
By (T) By (T)
The other direction can be proved similarly. ([l

The following lemma will be used to compare ergodic averages along two
nearby orbits.

Lemma 7.11. Let {Ry} be a sequence tending to infinity as k — oo and fix
a small number 0 < o < 1/2. For each k, let ay, : F — F be a rational map
with no poles on Bp, (F). Suppose that for all t € B, (F),

1 -0 < |Jac(ag)(t)| <1+o0.
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Then there exist ¢1 > 1 and Ty = T1(2,%¢,F) > 1 such that for all T} <
T < Ri/4, x € Q. and f € F, we have

et Drf(z) < /1 ! (@A (uay(w)))dt < c1 - Drf(z).

Proof. First note that
/ F (@A (o 1))t = / FeAu)aclon) (©)lds.  (7.8)
I.(T) ak(I-(T)

Setting r¥ = (14 o)r and 7" = (1 + 0)T, note that
I+(T;) C a(1(T)) € I (T;).

To

Now for all T > 2Ty (), ), where Tj is as in Lemma we have
|tz 1-0) [ e
1(T) L+ (T5)

=(1-0)—F7=% / U(zA(ug))dt + a1 (T)
I +(Ts)

To

()
_ - a)cgl/ F(@A(u))db + o (T)
By (T)

> (1—0)cy ' Drf(x) + oa(T)

Lemma [Z10 > (1 _ U)CO M(f) /B - \I/(.%A(Ut))dt + al(T)

(T : : a;(T) _
where a;(T)’s satisty limp_, To o, YGA@E — 0
By Lemma and (7.7)), it follows that for all x € Q,,
Oéi(T)

I -
T5e0 Dy f(2)

where the convergence is uniform on Q..
Therefore for all x € Q. and T large,

(1—0)cy'Drf(z) + az(T) > ¢ 'Drf(z)
and hence

/ F@A(ugye)))dt > ¢ "Dy f(x)
1.(T)

for some ¢; > 1 and for all T bigger than some fixed 77 > 1. The other
inequality can be proved similarly. O

For a subset S C GxG, we denote by (S) the minimal connected subgroup
of G x G containing S.



42 AMIR MOHAMMADI AND HEE OH

Theorem 7.12. Let hy € G X G — Ngxg(A(U)) be a sequence tending
toe as k — oo. If Qchy N Qe # @ for all k, then u is quasi-invariant
under a nontrivial connected subgroup of A(AM)({e} x U). Moreover, if
hi € {e} x G for all k, then u is invariant under a nontrivial connected
subgroup of {e} x U.

Proof. We use the notation used in the construction of the map ¢ in section
with respect to {hx}. By our assumption we have that there are points
Yr € Qe so that xp = yphr € Q.. Recalling the maps ¢ and ay from above,
we have

e A(ug) = YeheA(ur) = ypA(Uay (t)) Pr(t)-

Now let
= sup d(e,or(t)) =n/4, 7 = min{r, Ry},
t€By (1)
and
Ry, = sup{0 < R < 00: 0.9 < Jac(ag)|pym) < 1.1}
Note that

sup d(e, ¢ (8)) = /4.
tEBU(Té)

Note that ©y = 7 /T} is bounded away from 0; in particular, 7, — oo.
Passing to a subsequence we may assume that ©, converges to some O.
By the definition of Q., we have, for all large enough T,

Ji,or) A u))dtup)
fIT(T) fa(zeA(ue))dt  p(f2)| —

for f17f2 eF= {XQ?XQ+7XQ++} and 2k = Tk Yk-
With this notation, the above implies: for all large enough k£ and all

To < T < 71 we have
{t € L(T) : 21 A(ut), Ye A(Uayv) € QF # 9. (7.9)
To see this, let k£ be large and let Ty < T < 7. Then

{t € I(T) : i Aug) € QF C{t € L(T) : yrA(ug,r)) € Qi+ }
C{tel.(T): xpAu) € Qi+ }-

On the other hand we have

g{t S IT<T) : xkA(ut) S Q} > (1 — E)E{t S IT(T) : xkA(ut) S Q++}
(7.10)
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where || denotes the Lebesgue measure on F. From these two and Lemma
we get
f{t S IT(T) : ykA(uak(t)) € Q} (7.11)
> le{t e I, ( ) : ykA(ut) € Q} (7.12)
= ci(1—e)t{t € I(T) : ypAlue) € Ot}
ci(l=e)t{t € I(T) : v A(u, 1 ) € 9}
> (1 - e)t{t € I,(T) : z (Ut) €9}
> (1 —e)’t{t € I(T) : 2 A(ug) € Qi)

Now (|7.9) follows by applying (7.10) and (7.11]), in view of the choice of €
and the fact that by Corollary (7.8)) we have

Ut e I(T) : 2 A(ug) € Q44 } > 0 for all large enough 7.

For each k, let m; > 0 be the maximum integer so that "7, > Tj.
Then for any ¢ > 0 and all large enough k we have ¢ < my. Let £ > 0
and apply with Ty, = rf71,. Then for each k we find ¢ € I.(Tk ) so
that 20 = yrA(ug,(r)) satisfies zpp € Q and zp ppr(t) € Q. Passing to
a subsequence we get: there exist some 2z, € Q and some s € By(0) \
By (r©) so that zpp(s) € Q. Therefore by Lemma we have u is ¢(s)
quasi-invariant. Now if we choose ¢ large enough, then ¢(s) # e in view
of Lemma however, it can be made arbitrary close to the identity by
choosing large ¢’s. This implies the first claim, since the image of ¢ is
contained in the subgroup A(AM)({e} x U).

Now, if hy, € {e} X G, the image of ¢ is contained in Ngxa(A(U))N({e} x
G) = {e} x U. Indeed, @i (t) = (e, u_tgrus) and ay(t) = t. Therefore we get
1 is quasi-invariant under the action of a nontrivial connected subgroup of
{e} x U; hence the claim follows from Lemma O

7.4. Infinite joining measure cannot be invariant by {e} x V' for
V < U. We recall some basic facts about dynamical systems. Consider an
action of one-parameter subgroup W = {w;} on a separable, o-compact and
localiy compact topological space X with an invariant Radon measure pyg.
A Borel subset £ C X is called wandering if [, xg(zw;) < oo for almost
all z € E. The Hopf decomposition theorem says that X is a disjoint union
of invariant subsets D(W) and C(W) where D(W) is a countable union of
wandering subsets which is maximal in the sense that any wandering subset
is contained in D(W) up to null sets (see [I8]). The sets D(W) and C(W)
are called the dissipative part, and the conservative part of X respectively.
If D(W) (resp. C(W)) is a null set, this action is called conservative (resp.
dissipative). If the W-action is ergodic, then it is either conservative or
dissipative. The following is well known (e.g. [1]).
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Lemma 7.13. If ug is ergodic and infinite, then for any non-negative f €
Ll (/’LO); T
f—T f(zwy)dt

5T — 0

for almost all x € X.

Remark 7.14. We recall that if I" is not a lattice, then the BR measure is an
infinite measure; this was proved in [25] using Ratner’s measure classification
theorem.

We take this opportunity to present an alternative argument. To see this,
we note that if the BR-measure were a finite measure, it would have to be
A-invariant, since |asmBR| = e(=95|mBR| for all s and hence § = 2. For I
geometrically finite, this implies I' is a lattice. In the general case, one can
utilize facts from entropy to prove a similar result as we now explain. Indeed
by the Mautner phenomenon, any AU-invariant finite ergodic measure on
I'\G is A-ergodic so we may reduce to the ergodic caseﬂ Now we have an A-
ergodic measure which is U invariant; in particular it has maximum entropy.
This implies the entropy contribution from U has to be maximum as well
which implies the measure is also U invariant, see [21I, Theorem 9.7] for a
more general statement. This implies I'\G has a finite G invariant measure,
finishing the proof.

We need the following lemma which says almost all ergodic components
of mBR is infinite for any one-parameter subgroup of U; our proof of this
lemma uses Ratner’s classification theorem for finite invariant measures for
unipotent flows.

Lemma 7.15. Let ' be a Zariski dense, discrete subgroup of G. Suppose I
is not a lattice. Let V be a one-parameter subgroup of U, and let mPR =
fY nydo(y) be the ergodic decomposition with respect to V. Then for o-a.e.
y, we have 1, is an infinite measure.

Proof. We will use the fact that the set Ay, (I") of parabolic limit points is
a null set for the Patterson-Sullivan measure since App(I') is a countable
set and that a proper Zariski closed subset of G is a null set for the mBR-
measure, since [' is Zariski dense. Assume the contrary, that is: the set

Yo ={y €Y : 1, is a finite measure }

has positive measure.
It follows from Ratner’s measure classification theorem [32]: that for all
y € Yy, we have one of the following holds
(1) supp 1, = 2V for some compact orbit 2V
(2) supp 1y = aU for some compact orbit zU;
(3) there exists H which is locally isomorphic to PSLy(R) so that for
some g € G,V C g 'Hg, n, is a g~ ' Hg invariant (finite) measure
on a closed orbit I'Hyg;

2Indeed similar reductions are possible using Hopf argument in more general settings.
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(4) ny is PSLy(C) invariant.

In both (1) and (2) above we get = € App(I') and these form a measure
zero subset of mBR. The conclusion in (4) cannot hold on a positive measure
set as it would imply I' is a lattice, contrary to our assumption. Therefore
for o-a.e. y € Yy the conclusion (3) above holds. We first note that the
collection of H so that (3) holds is countable, see [32, Theorem 1.1] or [0,
Proposition 2.1]. Therefore if (3) holds there exists some H with I'H a
closed orbit (with finite volume) so that

mPR{ge G gV c Hg} > 0. (7.13)
Since {g € G : gV C Hg} is a proper Zariski closed subset, this yields a
contradiction. O

Lemma 7.16. The joining p is not invariant under {e} x V' for any non-
trivial connected subgroup V of U.

Proof. It suffices to prove the claim when V' is one dimensional subgroup of
U.Set V={vy:teR}and V = {0 = (e,vy) : t € R}.
By the choice of ¥, ¥ € L!(u), and for any z = (x!,2%) € Z and any
T > 1, we have
T -
U (xy)dt

Also note that every element of the sigma algebra
E={B x Xy: B C X; any Borel set}

is V invariant. In particular, f/—ergodic components of y are supported on
atoms of = which are of the form {z'} x X; for 2! € X;. Let

= /Z p2d7(2)

be an an ergodic decomposition of p for the action of V, see [1]. Then the
above discussion implies that for T-a.e. z., supp(u.) C {zl} x X3 for some
mi € X;. In particular, taking the projection onto Xs we get an ergodic
decomposition of m%R for the action of V: mIBQR = (m)spt = [, fidr(2)
where fi, = (m2)sp.. By Lemma a.e. fi, is an infinite measure.

This gives a contradiction if we apply for a point (2!, 22) where 22

lies in the conull set given by Lemma applied to some 7, as above. [

7.5.  We draw two corollaries of Theorem|[7.12]in this subsection. Let P(X>)
denote the space of probability Borel measures. By the standard disintegra-
tion theorem (cf. [, 1.0.8]), for each i = 1,2, there exists an mPR co-null
set X| C X; and a measurable function X{ — P(X3) given by ! — 7}
such that for any Borel subsets Y C Z and C' C Xj,

p N (0) = [ pnt ) amBR(a),

The measure 47} is called the fiber measure over 7 Y(zh).
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Theorem 7.17. There exist a positive integer £ > 0 and an mBPR conull

subset X' C Xy so that Wfl(xl) s a finite set with cardinality ¢ for all
z! € X'. Furthermore,

pot(a?) =1/t
for any x* € X' and (z',2?) € w7 (2h).

Proof. We first prove that for a.e. ! € X1, the fiber measure ,u;r} is fully
atomic. Assuming the contrary, we will show that u is invariant under
{e} x V for some non-trivial connected subgroup of U, which will be a
contradiction by Lemma [7.16

Put B = {z! € X : i} is not fully atomic}, and suppose that m®%(B) >
0. For any z' € B we write

pgr = (pgt)® + (pga)°
where (p71)* and (u71)¢ are respectively the purely atomic part and the
continuous part of the fiber measure [14]. Let

B' = {(z!,2%): 2" € B, a® €supp((u})°)}-

We take Q C B’ and Q. C Q be as in section for each small € > 0; In
particular, (7.7]) holds for Q..
Let now x = (z!,22) € Q. be so that there exists a sequence {x) =

(z',22)} C Q. so that z, — . Such x exists since Q C B’. We write

Tk = (xl’x%) = (x17$2)(67gk)
where g # e and g — e. There are two possibilities to consider: Recall
that

Naxa(AU)) N ({e} x G) ={e} x U.

Case 1. For all large enough k, we have g € U, and hence (e, gi) €
Ngxa(A(U)). Since (zt, 22), (2, 22g) € Q, Lemma implies that p is
quasi-invaraint under ((e, gx)), Since gr — e, and U is a unipotent group,
we get 4 is invariant by a non-trivial connected subgroup of {e} x U, which
is a contradiction by Lemma [7.16

Case 2. By passing to a subsequence, we have g ¢ U, that is, hy =
(e,9x) € Naxa(A(U)). By Theorem we get p is invariant, by a non-
trivial connected subgroup of {e} x U. This is again a contradiction by
Lemma [Z.16l This shows that almost all fiber measures are atomic.

Set

S={("2*) e Z: pli(a") = max puli(y)}.
yem H(ah)
Then ¥ is a A(U)-invariant set. Since almost all fiber measures are atomic,
we have p(X) > 0. Therefore, in view of the A(U)-ergodicity of i, we have ¥
is conull. We thus conclude that for p-almost every point, the fiber measures
are uniform distribution on /-points. O
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Corollary 7.18. The joining measure p is quasi-invaraint under a non-
trivial connected subgroup A" of A(AM)({e} x U) which is not contained in
{e} x U.

Proof. Let the notation be as in Theorem[7.12] In particular, Q is a compact
subset with ©(Q) > 0 and Q. C Q with pu(Q.) > (1 — €)u(Q).

With this notation let x,yr € Qe; suppose zp = yrphg, with hy — e as
k — oo. Since (7;)sp = mPR, we can choose xj, so that for at least one of i =
1,2, mi(hg) ¢ Na(U). This, in particular, implies that hy ¢ Naxa(A(U)).

Now apply Theorem with {x;} and {yr}. We get a map

¢ : A(U) = Naxa(AU)) N L =A(AM) - ({e} x U)

so that p is quasi-invariant under a non-trivial connected subgroup, L say,
of (Im(y)).

Note that by Lemma and Lemma we have {e} xV is not contained
in L for any nontrivial subgroup V of U. Therefore the conclusion follows.

By replacing i by (e, u).u, we may assume that p is A(A'U)-invariant for
a non-trivial connected Lie subgroup A’ of AM in the rest of the section.

7.6. Reduction to the rigidity of measurable factors. By Theorem[7.17]
we have: p-a.e fibers of w1 have cardinality ¢ for some fixed ¢ € N.
We put
Y(z') = m ' (a).
Then there exist a U-invariant BR co-null subset X’ C X7 and ¢ measurable
maps
Ul,...,vg:X/—>X2
so that Y(z') = {vi(z!),...,ve(x!)} for all ' € X' (see [31], [34]). Note
that if p is A(L)-quasi invariant for some subgroup L C G, then T is L-
equivariant. Therefore the set-valued map Y is A’U-equivariant; for all
z! € X' and every a’ug € A'U, we have

T(zta'ug) = Y (z")a ug. (7.15)

Lemma 7.19. Let X' be a U-invariant Borel subset of X1 with mPMS(X') =
1 satisfying (6.2)). Then there exist x € X', and a subset L, C AM generate
AM such that for any g € Ly,

Y(zg) C Y(z)gU. (7.16)

Proof. Let n > 0 be small, and let K, C X', Q, C X" and T}, > 0 be as in
and . For € > 0, let ¢ > 0 be as in . We also assume that
for all g € AM with d(e, g) < €, the Jacobian of g-action on U is bounded
from above and below by 1 + § respectively.

By the ergodicity of A-action (see ), there exists a compact subset
Q; C Q, such that mBMS(Q%) > 1 —4n and for any z € Q;, ra_g, € Q, for
an infinite sequence s; — +oo.

Since mBMS(Q%) > 1 —4n, if n > 0 is small enough, we have = € €2, such
that the measure of L, := {am € AM : xg € Q,d(e,g) < €'} is at least
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half of the measure of the set {g € AM : d(e,g) < €'} where the measure is
taken with respect to the Haar measure of AM.

Let g9 € L, be a Lebesgue density point of L,. Replacing x with zgy, we
may assume that e is a density point of L,.

In the following, we fix g € L.

As g normalizes U, we have

T(xg)g~ uy = Y(zurg)g™".
Hence if zug, zutg € K, then for each ¢,
d(vi(zg)g tug, T(z'ug)) < 2¢

by the continuity of T in K.
Since x, g € ;, we get from that if 7' > Ty,

3 {t € By(T) : zug € Ky} > (1 — 20) > (By(T)) (7.17)

and
WES{t € By(T) : agug € Ky} > (1— 20l (Bu (1) (7.18)
Since dut® and duggs are absolutely continuous with each other as g € AM

and the Radon-Nikodym derivative is given by |Jac(g)|®

|Jac(g)| < 14 5, we have

satisfying 1 — § <

WES{ € By(T) s wueg & Ko} < uES{t € Bu((1+ )T) : gus & Ky}
< (com)py>(Bu(T))
for some absolute constant ¢g > 1. Consequently, we have
pE3 4t € By(T) : zug, vugg € Ky} > (1 — ern)pubS(By(T)). (7.19)
for some ¢1 > 1.
Fixing 7, put
O(t) = min{d(v;(zus), Y(zg)g tug)?, 1}.
Then for any 1" > T,
1
1z (Bu(T))

Let s; — oo be a sequence tending to +oo such that za_,, € €2,. Then
Lemma [6.2] implies that

/ O(t)dutS(t) < 2¢ + 4n.
By (T)

sup O(t) <1/2
[t]<e%:
if n and e are sufficiently small.
It follows that

sup d(vi(zug), T(xg)g tug) < 1. (7.20)
telU

We claim that
Y(xg)g~' C Y(z)U. (7.21)
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Suppose not; then there exists i such that for all j, vi(zg)g™! = vj(z)gm.;
for gm; ¢ U. On the other hand, implies that u_¢gm ju¢ is uniformly
bounded for all t. It implies that g,, ; belongs to the centralizer of U, which
is U itself. This yields a contradiction, proving the claim. Note that we have
shown for any g € L,. Since e is a density point of L, it generates
AM by the lemma below, and finishes the proof.
O

Lemma 7.20. Let H be a connected Lie group. If W C H is a Borel subset
such that e € W is a Lebesgue density point, then W generates H .

Proof. As e € W is a Lebesgue density point, pg(W) > 0 where ug is a
Haar measure. The convolution

£(9) = xw * xww-1(g) = /H s (hg)xaw— (b~ (h)

is a continuous function and f(e) = pug(W) > 0. Therefore there exists
a neighborhood O of e in H on which f never vanishes. This means that
O c W~'W. Since any neighborhood of e in H generates H, the claim
follows. O

Let us recall that the BMS measure and the BR-measure on X; have
product structures, and have the “same transversal measures”. To be more
precise, let ¥ € C.(X) and further assume that supp(v)) C yP.U. with
P = MAU. Then

mBR () = [ [ (ypu)dv(yp)dugs® (u), and (7.22)
mBMS (1) = [ [ (ypu)dy(yp)dpbs (u)
where dv is the transversal measure on P.
It follows that

Lemma 7.21. If Q C X; is U-invariant and mPR(Q) = 1, then Q has full
BMS-measure.

Proposition 7.22. The set-valued map Y is AMU -equivariant; there exists
an AMU -invariant BR co-null subset X" C Xy such that for all z* € X"
and every amuy € AMU, we have

T (z'amug) = Y(a')amuy. (7.23)

Proof. Tt suffices to show that p is A(AM)-quasi-invariant. Let Y C Z be
a A(U)-invariant p-conull subset such that for all y € Y we have

(1) limp ;00 fBU(T) ‘Ij(yA(ut))dt = 00
(2) for all f € C.(2),
fBU(T) f(yA(ug))dt w(f)

P Ty VA ) p(9)
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Note that by the definition of Y, the support of u is {(x!,2?) : 2! €
X1,22 € T(2Y)}}, and hence {(z',2?) : ' € X', 2% € Y(2')} has full u-
measure. Therefore, replacing X’ with a conull set, we may assume that X’
is a U-invariant subset with full BR-measure satisfying , X' c{z” €
A:(T1)}, and that

{(z',2?) : 2! € X' 2 € (a1} C V. (7.24)

By Lemma we have mBMS(X’) = 1. Let ' € X’ and L,» C AM be
as in Lemma so that for any g € L,1, we have

vi(atg) = vj(a!)ugg (7.25)

for some j and uy, € U.
As ujg € UAM, we can write u,g = uggu; ' for some uy € U. Since X’
is U-invariant and T is U-equivariant on X', we have

(z'g, vj (e ugguy ') = (z'g,v1(z'g)) € Y.
Therefore,
Y NY(y, uggugl) # 0.
Hence by Lemma [7.7} p is quasi-invariant under the closed subgroup R

generated by (g, uggug_l). Since L1 generates AM , this will finish the proof
if we show

ug =e foreach g€ L,1.

Let A € A(AM) be a connected subgroup as in the remark following
Corollary [7.18 Suppose ug # e. Consider the commutator of elements of A’
and (g, Ug gy ). Note that the first component belongs to the commutator
subgroup [AM, AM] = {e}. For any non-trivial b € A, set

(67U) L= (bv b)(g>uggug_1)(b_1ab_l)(g_lvugg_lugl)

= (e, buggug_lb_lugg_lug_l).

We make the following observations:

e U is the commutator subgroup of AMU and hence v € U.

® v # e since uy # e.

e v # e can be made arbitrarily close to e by choosing these parameters
close but not equal to e.

Recall now that A" and R leave p quasi-invariant. Therefore any (e, v)
as above leaves p quasi-invariant and thus invariant by Lemma [7.3] Hence
we get that if ug # e, then there is a sequence v; — e in U \ {e}, so that
(e,v;) leaves the measure invariant for all ¢ > 1. Therefore, there is a non-
trivial connected subgroup V' < U so that y is invariant under {e} x V. This
contradicts Lemma and finishes the proof. O

Proposition 7.23. Let T : X1 — X3 be as above. In particular, it satisfies
that Y(zg) = Y(x)g for all x € X' and all g € MAU. Then there exists
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g0 € G such that T'1 N qalfgqo has finite index in I'y so that if we put
aqol'y = Ur<j<el’2qo; for v; € T'1, then

T(Tig) = {T2qovjg:1 <5 <4}

on a BR conull subset of X1. Moreover p is a A(U)-invariant measure sup-
ported on {(z',Y(z1)) : z* € X1} and hence a finite cover self-joining (see

Def. ([1.2)).

Proof. By Theorem and (7.21), we have YT (zg) = Y(x)g for all z € X’
and all g € UM AU where X’ is given by loc. cit. Fixing x¢p € X', define

T'(z0g) := Y(z0)g

for all g € G. Then Y and Y’ coincide with each other on Y := zq(UMAU).
Since UM AU is a Zariski open subset of G, mPM3(Y’") = 1, and hence
T = Y’ on a BMS-conull subset. Hence we may assume without loss of
generality

T(zg) = Y(x)g (7.26)

for all g € G and x € Y/ with zg € Y'. Let I'1gp € Y’ and write Y(I'1go) =
{T'2h1,...,I'2hy}. Then for every g € G such that T'1gog € Y’ we have

YT (T1909) = {T2h19,...,T2heg}.

Note that for all v € T'; we have Flgg(galygo) = I'igo € Y. Therefore,
applying the G-equivariance of T to gy vgo € 90 11 g0, we get the
set {I'2h1g,...,Taheg} is right invariant under g()_lrlgo. It follows that
[o\ah; (go_lFlgO) is finite for each ¢. Putting ¢; := higo_l, we have ['9\I'aq; Ty
is finite. Let qi1,---,q, be such that the corresponding cosets I's\I'2¢;I";
are distinct and Ulgigrrg\rgqil—‘l = UlgiggFQ\ngl'Fl. Thus, if for each
1 <i<rweput I'ng;I'1 = Ulsjggirgqi%j for Yij € I'y, then

Y(Tig) = {T2917119,-- - T2g17v16:95 - - - T1grvr19, - -, Togryre, g} (7.27)

on a BMS conull subset of X.

In particular we get q; 11 ¢ is commensurable with a subgroup of T's.
Repeating the argument with I'y we get, up to a conjugation, I'; and I'y are
commensurable with each other.

Note that in view of , the U-invariant set X” =Y’ N X'U has full
BR measure. Let now g € G be so that I''g € X”. Then we can write

g = g'u where I'1¢’ € X’ and u € U. Now property (7.15)) of T and (7.27))
imply

T(T1g) = T(T1g )u
={Togim19'u, ..., Togime g u, ..., Tagrymig'u, . .. . Togrype, g'u}
={T2017119, - -, 201710, 9, - - s L2019, - - -, T29rvr0,.9} -

Now for every 1 <4 < r we have that the set

{(a*,2?) : 2t =T1g € X", 2* € {T29iv1 9, - - -, T29i%ie, 9} } (7.28)
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is A(U)-invariant and has positive p measure. Therefore, by the ergodic-
ity of p, we get r = 1 and p is a A(U)-invariant measure supported on
the set . This implies that p is a finite self-joining as defined in the
introduction. This finishes the proof. O

Remark 7.24. Note that for a general discrete non-elementary subgroup
I', the Patterson-Sullivan density always exists, although it may not be a
unique I" conformal density of dimension dr, and hence the BR-measure is
well-defined on I'\G. Given this, the above proof yields a stronger version of
Corollary [I.4]in the introduction where I's is not assumed to be geometrically
finite. Namely, we have: if I'; is geometrically finite and Zariski dense and
Iy is a Zariski dense (not necessarily geometrically finite) subgroup of G
with infinite co-volume, then a U-joining on I'1\G x I'2\G with respect to
the pair (m?lR, m%R) exists only when I'; is commensurable with a subgroup
of I's, up to conjugation.

7.7. In this section we deduce Theorem [L.6] from Theorem [[.3l When I'
is a lattice, this deduction is due to [31] and [43] (see also [8, Sec. 6]). In
the following, we assume that I' has infinite co-volume. Although the basic
strategy is similar to the finite volume case, we will need a certain property
of geometrically finite groups of infinite co-volume in the proof.

Define the following closed subgroup of G:

Hr := {h € G : h.aPR = mBR}

where h.nPR(B) = mBR(Bh) for any Borel subset B of G. Clearly, I' is
contained in Hrp.

Lemma 7.25. The following hold:

e [' is a finite index subgroup of Hr.
e Hp={g€G:gA(T) = A(D)}.

Proof. Set F :={g € G : gA(T') = A(I")}. Since the support of mPR is given
by {9 € G:g~ =g(w,) € A(I")}, the inclusion Hr C F follows.

Note that F is a discrete subgroups of G. Indeed the identity component
F* is normalized by I'. Since G is simple and I' is Zariski dense in G, it
follows that F'° is either G or trivial. The former however contradicts the
fact that I' is not a lattice.

Hence the isometric action of F' on the convex hull C(T") of A(T") is properly
discontinuous. As I' is geometrically finite, the orbifold I'\C(I') has finite
volume. Now, F\C(I") is an orbifold which is covered by I'\C(I") and hence
F\C(T') has finite volume as well, so I" is of finite index in F'. This implies
the first claim.

As [F : T] < oo and T' is geometrically finite, their Patterson-Sullivan
densities are equal up to a constant multiple and hence the corresponding

BR-measures are proportional to each other. This implies the second claim.
O
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We denote by Commg(I') the commensurator subgroup of I', that is,
g € Commg(T) if and only if gI'g~! and I' are commensurable with each
other.

Corollary 7.26. We have: Commg(I') C Hr.

Proof. This follows from Lemma since
AT) = AT Nglg™) = A(gTg™H).
for any g € Commg(T"). O

Let p be the factor map as in Theorem [I.6] and p denote the lift of p
to G. Then p is a left I'-invariant and right U-equivariant map from G to
Y. In view of Lemma and replacing I' by a bigger subgroup of Hr, if
necessary, we may assume

I = {h € Hr : p(hg) = p(g) for mPR-a.e. g € G}. (7.29)
Define
Q :={(h,u) € Hr x U : p(hgu) = p(g) for m®R-a.e. g € G}.
Since mBR is left Hpr-invariant and right U-invariant we get that @ is a

closed subgroup of Hr x U. The subgroup @ acts on G by
q(g) = hgu
for ¢ = (h,u) € Q and g € G.
Lemma 7.27. The subgroup Q is contained in Ng(T') x U.
Proof. If (h,u) € Q, then for any v € ' and mPR-a.e. g € G, we have
p(vhgu) = p(hgu) = p(g) = p(vg) = P(hygu).

is right U-invariant, the above implies
BR

Since mBR

p(vhg) = p(hyg) for m>t-ae. g € G.

By the definition of Hr, we deduce

p(g) = p(hyh~tg) for mPRae. g € G,

that is, hyh™! € T by (7.29). So h € Ng(I). O

Proof of Theorem Set X = I'\G. Given the factor map p :
(X, mBR) — (Y,v) we can disintegrate mP? into mB® = [|, 7, dv(y) where
7,(p~1(y)) = 1 for v-a.e. y. Recall, e.g. from [10], that we can construct the
independent self-joining relative to p by

i /Y 7 %7, du(y). (7.30)

Then [ is a U-joining on Z := X x X supported on X x, X := {(z1,z2) :
p(z1) = p(x2)}. Disintegrate i into A(U)-ergodic components:

= /Z,uz do(z). (7.31)
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By Theorem we have pu, is a finite cover self joining for o-a.e. z. That
is, p, is the image of mP® on a closed orbit [(e,g.)]A(G)(e,u,) where
g. € Commg(T') and u, € U. Note that (g,,u,) € Hp x U for o-a.e. z
by Corollary

We now compare the two descriptions (7.30) and (7.31) of & and get the
following consequences. Since

BR

p(g.9u,) = p(g) for o-a.e. z and m~*-a.e. g € G,

we have (g.,u,) € Q.
Recalling from Lemma that I' x {e} is normal in @, consider the
following subgroup

L:=T x{e}\Q.

Then the above discussion implies that in (7.31]), we can consider o as a
probability measure on L. Hence we may write

i = / fie do(£)
L
where, for o-a.e. £, uy is the image of the BR-measure on

(' x I)\{(g,£(9)) : g € G},

up to a constant multiple.

Following the proof of [10, Thm. 3.9(iii)], we now claim that the convolu-
tion o x o is equal to 0. Comparing with , we get that for v-a.e. y, the
measure 7, is supported on a single L orbit. Furthermore, for 7,-a.e. x € X
we have

/ F(l(2))do(0) = / @ )dry (') for all f € Cu(X). (7.32)
L X

Now using (7.32)), for all f € C.(X) and 7,-a.e. z, we have

mwnz//j%mww%mwgz//f%@WMﬂ@%)
//fﬁz ))do (62)dTy(z //f (2")dr, (2")dT,

—/f@%yww/}mmww—dn
X L
This proves the claim.

It follows that o is the probability Haar measure of a compact subgroup
R of L by [10, Lemma 3.11, Rk. 3.12]. Since [Hr : I'] < oo by Lemma [7.25]
it follows that R is a finite subgroup of '\ Vg (I') x {e} C I\ Q.

All together we get 7, is the push forward of the Haar measure o to
an orbit of R in X for v-a.e. y € Y. That gives (Y,v) is isomorphic to
R\(I\G,mPR). This implies [1.6] 0
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