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Abstract. We survey effective arguments concerning unipotent flows
on locally homogeneous spaces.

1. Introduction

In the mid 1980’s Margulis resolved the long standing Oppenheim con-
jecture by establishing a special case of Raghunathan’s conjecture. Further
works by Dani and Margulis in the context of the Oppenheim conjecture
and Ratner’s full resolution of Raghunathan’s conjectures have become a
corner stone for many exciting applications in dynamics and number theory.

Let us briefly recall the setup. Let G be a connected Lie group and
let Γ ⊂ G be a lattice (i.e. a discrete subgroup with finite covolume) and
X = G/Γ. Let H ⊂ G be a closed subgroup of G. This algebraic setup gives
hope for the following fundamental dynamical problem.

Describe the behavior of the orbit Hx for every point x ∈ X.

However, without further restrictions on H this question cannot have any
meaningful answer, e.g. if G is semisimple and H is a one parameter R-
diagonalizable subgroup of G, then the time one map is partially hyperbolic
(and in fact has positive entropy and is a Bernoulli automorphism) and the
behavior of orbits can be rather wild giving rise to fractal orbit closures, see
e.g. [47]. There is however a very satisfying answer when H is generated by
unipotent subgroups, e.g. when H is a unipotent or a connected semisimple
subgroup; in these cases Ratner’s theorems imply that closure of all orbits
are properly embedded manifolds, see §5.

These results, however, are not effective, e.g. they do not provide a rate
at which the orbit fills out its closure. As it is already stated by Margulis in
his ICM lecture [60], it is much anticipated and quite a challenging problem
to give effective versions of these theorems. It is worth noting that except
for uniquely ergodic systems, such a rate would generally depend on delicate
properties of the point x and the acting group H. Already for an irrational
rotation of a circle, the Diophanine properties of the rotation enters the
picture. The purpose of this article is to provide an overview of effective
results in this context of unipotently generated subgroups.
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Let us further mention that there has been fantastic developments both
for other choices of H and also beyond the homogeneous setting. In fact the
papers [53, 29, 30] give partial solutions to the conjectures by Margulis [58]
concerning higher rank diagonalizable flows, the papers [10, 5, 6, 7] (inspired
by the methods of Eskin, Margulis and Mozes [32]) concern the classification
of stationary measures, and [35, 36] concern the SL2(R) action on moduli
spaces and apply also the method developed for stationary measures. These
works, with the exception of [10], are all qualitative and an effective account
of these would be very intriguing. This article however will focus on the
case where H is generated by unipotent elements.

We note that good effective bounds for equidistribution of unipotent or-
bits can have far reaching consequences. Indeed the Riemann hypothesis is

equivalent to giving an error term of the form Oε(y
3
4

+ε) for equidistribution
of periodic horocycles of period 1/y on the modular surface [82, 73].

Given the impact of Margulis’ work for the above research directions and
especially the research concerning effective unipotent dynamics on homoge-
neous spaces portrait here, but more importantly our personal interests, it
is a great pleasure to dedicate this survey to Gregory Margulis.

1.1. Periodic orbits and a notion of volume. Suppose x ∈ X is so that
Hx is dense in X. As will be evident in the following exposition, and was
alluded to above, the orbit Hx may fill up the space very slowly, e.g. x may
be very close to an H-invariant manifold of lower dimension. To have any
effective account, we first need a measure of complexity for these intermediate
behaviors.

We will always denote the G-invariant probability measure on X by volX .
Let L ⊂ G be a closed subgroup. A point x ∈ X will be called L-periodic if

stabL(x) = {g ∈ L : gx = x}

is a lattice in L. Similarly, a periodic L-orbit is a set Lx where x is an
L-periodic point; given an L-periodic point x we let µLx denote the prob-
ability L-invariant measure on Lx. By a homogeneous measure on X we
always mean µLx for some L and x. Sometimes we refer to the support
of a homogeneous measure, which is an L-periodic set for some L, as a
homogeneous set.

Fix some open neighborhood Ω of the identity in G with compact closure.
For any L-periodic point x ∈ X define

(1.1) vol(Lx) =
mL(Lx)

mL(Ω)

where mL is any Haar measure on L. We will use this notion of volume as
a measure of the complexity of the periodic orbit.

Evidently this notion depends on Ω, but the notions arising from two
different choices of Ω are comparable to each other, in the sense that their
ratio is bounded above and below. Consequently, we drop the dependence
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on Ω in the notation. See [24, §2.3] for a discussion of basic properties of
the above definition.

The general theme of statements will be a dichotomy of the following
nature. Unless there is an explicit obstruction with low complexity, the
orbit Hx fills up the whole space – the statements also provide rates for this
density or equidistribution whenever available.

We have tried to arrange the results roughly in their chronological order.

2. Horospherical subgroups

Let G be a semisimple R-group and letG denote the connected component
of the identity in the Lie group G(R).

A subgroup U ⊂ G is called a horospherical subgroup if there exists an
(R-diagonalizable) element a ∈ G so that

U = W+(a) := {g ∈ G : anga−n → e as n→ −∞};
put W−(a) = W+(a−1).

Horospherical subgroups are always unipotent, however, not necessarily
vice versa, e.g. for d ≥ 3, a one parameter unipotent subgroup in SLd(R) is
never horospherical. In a sense, horospherical subgroups are large unipotent
subgroups. E.g. if U ⊂ G is a horospherical subgroup, then G/NG(U) is
compact, where NG(U) denotes the normalizer of U in G.

Let Γ ⊂ G be a lattice and X = G/Γ. We fix a horospherical subgroup
U = W+(a) for the rest of the discussion. The action of U on X has been the
subject of extensive investigations by several authors – when G = SL2(R)
or more generally G has R-rank one, this action induces the horocylce flow
when G = SL2(R), or horospherical flow in the general setting of rank one
groups.

Various rigidity results in this context are known thanks to the works
of Hedlund, Furstenberg, Margulis, Veech, Dani, Sarnak, Burger and oth-
ers [44, 40, 61, 80, 14, 15, 18, 73, 12]. Many of these results and subsequent
works use techniques which in addition to proving strong rigidity results, do
so with a polynomially strong error term, e.g. the methods in [73, 12, 75, 78]
relying on harmonic analysis or the more dynamical arguments in [61, 48, 81];
see Theorems 2.1 and 2.2 below for some examples.

Let U0 ⊂ U be a fixed neighborhood of the identity in U with smooth
boundary and compact closure, e.g. one can take U0 to be the image under
the exponential map of a ball around 0 in Lie(U) with respect to some
Euclidean norm on Lie(U). For every k ∈ N, put Uk = akU0a

−k.
We normalize the Haar measure, σ, on U so that σ(U0) = 1.

2.1. Theorem. Assume X is compact. There exists some δ > 0, depending
on Γ, so that the following holds. Let f ∈ C∞(X), then for any x ∈ X we
have ∣∣∣ 1

σ(Uk)

∫
Uk

f(ux) dσ(u)−
∫
X
f dvolX

∣∣∣�X S(f)e−δk,
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where S(f) denotes a certain Sobolev norm.

The constant δ depends on the rate of decay for matrix coefficients cor-
responding to smooth vectors in L2(X, volX), in other words, on the rate of
mixing for the action of a on X. In particular, if G has property (T ) or Γ is
a congruence lattice, then δ can be taken to depend only on dimG.

As mentioned above there are different approaches to prove Theorem 2.1.
We highlight a dynamical approach which is based on the mixing property
of the action of a on X via the so called thickening or banana technique; this
idea is already present in [61], the exposition here is taken from [48].

Making a change of variable, and using σ(U0) = 1, one has

1

σ(Uk)

∫
Uk

f(ux) dσ(u) =

∫
U0

f(akuy) dσ(u)

where y = a−kx.
The key observation now is that the translation of U0 by ak is quite well

approximated by the translation of a thickening of U by ak. To be more
precise, let B be an open neighborhood of the identity so that

B = (B ∩W−(a))(B ∩ ZG(a))U0.

Then since ak(B ∩W−(a))a−k → e in the Hausdorff topology, we see that
akU0y and akBy stay near each other. This, in view of the fact that y stays
in the compact set X, reduces the problem to the study of the correlation∫

X
1B(z)f(akz) dvolX ;

which can be controlled using the mixing rate for the action of a on X.

As the above sketch indicates, compactness ofX is essential for this unique
ergodicity result (with a uniform rate) to hold. If X is not compact, there
are intermediate behaviors which make the analysis more involved – for
instance, if x lies on a closed orbit of U , or is very close to such an orbit,
Theorem 2.1 as stated cannot hold. We state a possible formulation in a
concrete setting, see [75, 78] for different formulations.

2.2. Theorem. Let G = SLd(R) and Γ = SLd(Z). There exists some δ > 0
so that the following holds. For any x = gΓ ∈ X and n, k ∈ N with k > n
at least one of the following holds.

(1) For any f ∈ C∞c (X) we have∣∣∣ 1

σ(Uk)

∫
Uk

f(ux) dσ(u)−
∫
X
f dvolX

∣∣∣�d S(f)e−δn,

where S(f) denotes a certain Sobolev norm.
(2) There exists a rational subspace W ⊂ Rd of dimension

m ∈ {1, . . . , d− 1}
so that

‖ugw‖ �d e
n for all u ∈ Uk,
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where w = w1∧ . . .∧wm for a Z-basis {w1, . . . , wm} of W ∩Zn, and
‖ · ‖ is a fixed norm on

∧mRd.

Similar results hold for any semisimple group G. In the more general
setting, Theorem 2.2(2) needs to be stated using conjugacy classes of a finite
collection of parabolic subgroups of G which describe the non-compactness
(roughly speaking the cusp) of X.

The proof of Theorem 2.2 combines results on quantitative non-divergence
of unipotent flows [55, 16, 17, 21, 49], together with the above sketch of the
proof of Theorem 2.1, see [50] and [63].

Recall that a subgroup H ⊂ G is called symmetric if H is the set of fixed
points of an involution τ on G, e.g. H = SO(p, n−p) in G = SLn(R). Trans-
lations of closed orbits of symmetric subgroups presents another (closely re-
lated) setting where effective equidistribution results, with polynomial error
rates, are available. In this case, as well, the so called wave front lemma [34,
Thm. 3.1], asserts that translations of an H-orbit stay near translations of
a thickening of it. Therefore, one may again utilize mixing; see, e.g. [34, 4].
Analytic methods also are applicable in this setting, see [23].

We end this section by discussing a case which is beyond the horospherical
case, but is closely related. Let Ĝ = GnW where G is a semisimple group
as above and W is the unipotent radical of Ĝ. Let Γ̂ ⊂ Ĝ be a lattice and
put X̂ = Ĝ/Γ̂. Let π : Ĝ→ G be the natural projection.

2.3. Problem. Let U ⊂ Ĝ be a unipotent subgroup so that π(U) is a horo-
spherical subgroup of G. Prove analogues of Theorem 2.2 for the action of
U on X̂.

Strömbergsson [79], used analytic methods to settle a special case of this
problem, i.e., G = SL2(R) n R2 with the standard action of SL2(R) on R2,
Γ = SL2(Z) n Z2, and U the group of unipotent upper triangular matrices
in SL2(R); his method has also been used to tackle some other cases.

3. Effective equidistribution theorems for nilflows

In this section we assume G is a unipotent group. That is: we may assume
G is a closed connected subgroup of the group of strictly upper triangular
d×d matrices. Let Γ ⊂ G be a lattice and X = G/Γ, i.e., X is a nilmanifold.

Rigidity results in this setting have been known for quite some time thanks
to works of Weyl, Kronecker, L. Green, and Parry [3, 67], and more recently
Leibman [51].

Quantitative results, with a polynomial error rate, have also been estab-
lished in this context and beyond the abelian case, see [39, 42]. The complete
solution was given by B. Green and Tao [42]; here we present a special case
from loc. cit. in this setting describing the equidistribution properties of
pieces of trajectories.
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3.1. Theorem ([42]). Let X = G/Γ be a nilmanifold as above. There exists
some A ≥ 1 depending on dimG so that the following holds. Let x ∈ X,
let {u(t) : t ∈ R} be a one parameter subgroup of G, let 0 < η < 1/2, and
let T > 0. Then at least one of the following holds for the partial trajectory
{u(t)x : t ∈ [0, T ]}.

(1) For every f ∈ C∞(X) we have∣∣∣ 1

T

∫ T

0
f(u(t)x) dt−

∫
X
f dvolX

∣∣∣�X,f η

where the dependence on f is given using a certain Lipschitz norm.
(2) For every 0 ≤ t0 ≤ T there exists some g ∈ G and some H ( G so

that HΓ/Γ is closed with vol(gHΓ/Γ)�X η−A and for t ∈ [0, T ] we
have

|t− t0| ≤ ηAT =⇒ dist(u(t)x, gHΓ/Γ)�X η

where dist is a metric on X induced from a right invariant Riemann-
ian metric on G.

This is a consequence of a special case of a more general effective equidis-
tribution result for polynomial trajectories on nilmanifolds [42, Thm. 2.9],
as we now explicate. Since T > 0 is arbitrary, we may assume that u(t) =
exp(tz) for some z in the Lie algebra of G of norm one. We note that for

T ≤ η−O(1) the above is trivial. In fact, as is visible in the maximal abelian
torus quotient every point belongs to an orbit gHΓ/Γ of bounded volume of
a proper subgroup H ( G and now (2) follows by the continuity properties

of the one-parameter subgroup if T ≤ η−O(1). Hence we will assume in the
following T > η−O(1) for a constant O(1) which will be optimized.

For every 1
2 ≤ τ ≤ 1, put Bτ = {u(nτ) : n = 0, 1, . . . , Nτ} where Nτ =

bT/τc. We now apply [42, Thm. 2.9] for the sequence (discrete trajectory)
Bτ . Assume first that Bτx is η-equidistributed, for some τ ∈ [1

2 , 1]. That is:

(3.1)
∣∣∣ 1

Nτ

Nτ−1∑
n=0

h(u(nτ)x)−
∫
X
hdvolX

∣∣∣�X,h η

for all h ∈ C∞(X). In this case Theorem 3.1(1) holds. Indeed

1

Nττ

∫ Nτ τ

0
f(u(t)x) dt =

1

τ

∫ τ

0

1

Nτ

Nτ−1∑
n=0

f(u(s)u(nτ)x) ds,

so the claim in (1) follows from (3.1) applied with h(·) = f(u(s)·) for all
0 ≤ s ≤ τ .

The alternative in [42, Thm. 2.9] to η-equidistribution as above is an ob-
struction to equidistribution in the form of a slowly varying character of
G/Γ. To make a precise statement we need some notation. Fix a ratio-
nal basis for Lie(G). Using this basis we put coordinates (also known as
coordinates of the second kind) on G; the standing assumption is that Γ
corresponds to elements with integral coordinates, see [42, Def. 2.1 and 2.4]
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– the estimates1 will depend on the complexity of the structural constants
for group multiplication written in this basis (which we assume to be fixed).
Following [42] we denote the coordinates of g ∈ G by ψ(g). In this notation,
given a character χ : G → R/Z with Γ ⊂ ker(χ), there exists a unique
kχ ∈ ZdimG so that χ(g) = kχ · ψ(g) + Z, see [42, Def. 2.6].

Assume (3.1) fails for all τ ∈ [1
2 , 1]. Then, by [42, Thm. 2.9], see also [42,

Lemma 2.8], we have: there are constants A0, A1 > 1, and for every τ there
is a character χτ : G → R/Z with Γ ⊂ ker(χτ ) so that the following two
conditions hold.

(a) Let kτ ∈ ZdimG be so that χτ (g) = kτ · ψ(g) + Z, then we have the
bound ‖kτ‖ �G,Γ η

−A0 ,

(b) ‖χτ (u(τ))‖R/Z �G,Γ η
−A1/T , where ‖x‖R/Z = dist(x,Z).

Let Hτ denote the connected component of the identity in ker(χτ ). In-
formally, (a) tells us that χτ defines a closed orbit HτΓ/Γ of not too large
volume – indeed the latter covolume is bounded by ‖kτ‖. Moreover, ‖kτ‖
controls the continuity properties of χτ . On the other hand, (b) tells us that
the character changes its values very slowly along the discrete trajectory
(since we are allowed to think of a large T ). We wish to combine these for
various τ ∈ [1

2 , 1] to obtain (2).
To that end, note that the number of characters χτ so that (a) holds

is ≤ η−O(1) for some O(1) depending on A0. Moreover, (b) implies that
there exist some C = C(G,Γ), some A2 depending on A0 and A1, and for
every 1/2 ≤ τ ≤ 1 some rational vector vτ with ‖vτ‖ � 1 and denominator

bounded by O(η−O(1)) so that the distance of ψ(u(τ)) to vτ + ψ(Hτ ) is
< Cη−A2/T . For every 1

2 ≤ τ ≤ 1 let Iτ be the maximal (relatively open)
interval so that for all s ∈ Iτ the distance of ψ(u(s)) to vτ + ψ(Hτ ) is

< Cη−A2/T . This gives a covering of [1
2 , 1] with η−O(1)-many intervals.

Therefore, at least one of these intervals, say I0 = (a0, b0) defined by τ0, has

length b0 − a0 � ηO(1). Let χ = χτ0 . Then for any τ ∈ I0 we have that the

distance of ψ(u(τ)) to vτ0 + ψ(Hτ0) is < Cη−A2/T . Since b0 − a0 � ηO(1),

we get that the distance of ψ(u(τ)) to vτ0 +ψ(Hτ0) is� η−O(1)/T for all 0 ≤
τ ≤ 1. Hence we obtain the character estimate ‖χ(u(τ))‖R/Z �X η−O(1)/T
for all 0 ≤ τ ≤ 1.

Let g ∈ G and γ ∈ Γ be so that u(t0) = gγ and ‖ψ(g)‖ �X 1. Let
H = Hτ0 . Then since γHΓ = HΓ, the claim in (2) holds with g and H if
we choose A large enough.

We now highlight some elements involved in the proof of [42, Thm. 2.9]
for our simplified setting of a linear sequence, i.e. a discrete trajectory – the
reader may also refer to [42, §5] where a concrete example is worked out.

Let τ = 1, i.e., consider {u(n) : n = 0, 1, . . . , N − 1} on X. The goal is to
show that either (3.1) holds or (a) and (b) above must hold for a character
χ; note first that replacing {u(t)} by a conjugate we will assume x in (3.1)

1Indeed the estimates in part (1) also depends on this basis.
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is the identity coset, Γ, for the rest of discussion. The proof is based on an
inductive argument2 which aims at decreasing the nilpotency degree of G.
For the base of the induction, i.e., when G is abelian, one may use Fourier
analysis to deduce the result, e.g. see [42, Prop. 3.1].

The following corollary, see [42, Cor. 4.2], of the van der Corput trick
plays an important role in the argument. Let {an : n = 0, 1, . . . , N − 1}
be a sequence of complex numbers so that 1

N

∑N−1
n=0 an ≥ η. Then for at

least η2N/8 values of k ∈ {0, 1, . . . , N−1}, we have 1
N

∑N−1
n=0 an+kān ≥ η2/8

where we put an := 0 for n /∈ {0, 1, . . . , N − 1}.
Let an = h(u(n)Γ), and suppose that (3.1) fails. One may further restrict

to the case where h is an eigenfunction for the action of the center of G
corresponding to a character ξ whose complexity is controlled by η−O(1),
see [42, Lemma 3.7]. Note that if ξ is trivial, then h is Z(G)-invariant;
thus we have already reduced the problem to G/Z(G), i.e, a group with
smaller nilpotency degree. Hence, assume that ξ is nontrivial, in consequence∫
hdvolX = 0. Now by the aforementioned corollary of the van der Corput

trick, there are at least η2N/8 many choices of 0 ≤ k ≤ N so that

(3.2)
1

N

N−1∑
n=0

h(u(n+ k)Γ)h(u(n)Γ)� η2/8.

Fix one such k and write u(k)Γ = vΓ for an element v in the fundamental
domain of Γ; note that {(v−1gv, g) : g ∈ G} ⊂ {(g1, g2) ∈ G × G : g1g

−1
2 ∈

[G,G]} =: G′. Similarly, define Γ′. Two observations are in order.

• (3.2) implies that 1
N

∑N−1
n=0 h̃(wnΓ′)� η2/8 where h̃ is the restriction

of ĥ(y, z) = h(vy)h(z) to G′ and wn = (v−1u(n)v, u(n)).

• since h is an eigenfunction for the center of G, we have h̃ is invariant
under ∆(Z(G)) = {(g, g) : g ∈ Z(G)}, moreover, h̃ has mean zero.

The above observations reduce (3.2) modulo ∆(Z(G)), i.e., to the group
G′/∆(Z(G)) which has smaller nilpotency degree, see [42, Prop. 7.2]. There
is still work to be done, e.g. one needs to combine the information obtained
for different values of k to prove (a) and (b); but this reduction, in a sense,
is the heart of the argument.

4. Periodic orbits of semisimple groups

Beyond the settings which were discussed in §2 and §3, little was known
until roughly a decade ago. The situation drastically changed thanks to the
work of Einsiedler, Margulis, and Venkatesh [25], where a polynomially ef-
fective equidistribution result was established for closed orbits of semisimple
groups.

We need some notation in order to state the main result. Let G be
a connected, semisimple algebraic Q-group, and let G be the connected
component of the identity in the Lie group G(R). Let Γ ⊂ G(Q) be a

2The reader may also see the argument in [67, §3].
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congruence lattice in G and put X = G/Γ. Suppose H ⊂ G is a semisimple
subgroup without any compact factors which has a finite centralizer in G.

The following is the main equidistribution theorem proved in [25].

4.1. Theorem ([25]). There exists some δ = δ(G,H) so that the following
holds. Let Hx be a periodic H-orbit. For every V > 1 there exists a subgroup
H ⊂ S ⊂ G so that x is S-periodic, vol(Sx) ≤ V , and∣∣∣∣∫

X
f dµHx −

∫
X
f dµSx

∣∣∣∣�G,Γ,H S(f)V −δ for all f ∈ C∞c (X),

where S(f) denotes a certain Sobolev norm.

Theorem 4.1 is an effective version (of a special case) of a theorem by
Mozes and Shah [65]. The general strategy of the proof is based on effectively
acquiring extra almost invariance properties for the measure µ = µHx. This
general strategy (in qualitative form) was used by in the topological context
by Margulis [56], Dani and Margulis [19] and also by Ratner in her measure
classification theorem [69, 70].

The polynomial nature of the error term, i.e., a (negative) power of V ,
in Theorem 4.1 is quite remarkable – effective dynamical arguments often
yield worse rates, see §5. A crucial input in the proof of Theorem 4.1,
which is responsible for the quality of the error, is a uniform spectral gap
for congruence quotients.

The proof of Ratner’s Measure Classification Theorem for the action of
a semisimple group H is substantially simpler; a simplified proof in this
case was given by Einsiedler [28], see also [25, §2]. This is due to complete
reducibility of the adjoint action of H on Lie(G) as we now explicate. Let
{u(t) : t ∈ R} be a one parameter unipotent subgroup in H, and let L be
a subgroup which contains H. Then one can show that the orbits u(t)y
and u(t)z of two nearby points in general position diverge in a direction
transversal to L. This observation goes a long way in the proof. Indeed
starting from an H-invariant ergodic measure µ, one may use arguments like
this to show that unless there is an algebraic obstruction, one can increase
the dimension of the group which leaves µ invariant. In a sense, the argument
in [25] is an effective version of this argument – a different argument which
is directly based on the mixing property of an R-diagonalizable subgroup in
H was given by Margulis, see [64].

Let us elaborate on a possible effectivization of the above idea. The
divergence of two nearby points u(t)y and u(t)z is governed by a polynomial
function; e.g, in the setting at hand, write y = exp(v)z for some v ∈ Lie(G),
then this divergence is controlled by Ad(u(t))v. In consequence, one has a
rather good quantitative control on this divergence.

However, the size of T so that the piece of orbit, {u(t)y : 0 ≤ t ≤ T},
approximates the measure µ depends on y. More precisely, suppose µ is
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{u(t)}-ergodic3. Then it follows from Birkhoff’s ergodic theorem that µ-a.e.

y and all f ∈ C∞c (X) we have 1
T

∫ T
0 f(u(t)y) dt→

∫
X f dµHx. However, for

a given ε > 0 the size of T so that∣∣∣ 1

T

∫ T

0
f(uty) dt−

∫
X
f dµHx

∣∣∣�f ε where f ∈ C∞c (X)

depends on delicate properties of the point y, e.g. y may be too close to a
{u(t)}-invariant submanifold in support of µ.

One of the remarkable innovations in [25] is the use of uniform spectral
gap in order to obtain an effective version of the pointwise ergodic theorem.
The required uniform spectral gap has been obtained in a series of papers
[46, 66, 76, 45, 11, 13, 41]. This is then used to define an effective notion of
generic points where the parameters ε and T above are polynomially related
to each other.

If H is a maximal subgroup, one can use the above (combined with
bounded generation of G by conjugates of H and spectral gap for volX)
to finish the proof. However, Theorem 4.1 is more general and allows for
(finitely many) intermediate subgroups. The main ingredient in [25] to deal
with possible intermediate subgroups is an effective closing lemma that is
proved in [25, §13]. In addition to being crucial for the argument in [25],
this result is of independent interest – it is worth mentioning that the proof
of [25, Prop. 13.1] also uses spectral gap.

Theorem 4.1 imposes some assumptions that are restrictive for some appli-
cations: H is not allowed to vary, moreover, H has a finite centralizer. The
condition that H is assumed not to have any compact factors is a splitting
condition at the infinite place; this too is restrictive in some applications.

4.2. Adelic periods. In a subsequent work by Einsiedler, Margulis, Mo-
hammadi, and Venkatesh [24], the subgroup H in Theorem 4.1 is allowed to
vary. Moreover, the need for a splitting conditions is also eliminated. The
main theorem in [24] is best stated using the language of adeles; the reader
may also see [26] for a more concrete setting.

Let G be a connected, semisimple, algebraic Q-group4 and set X =
G(A)/G(Q) where A denotes the ring of adeles. Then X admits an ac-
tion of the locally compact group G(A) preserving the probability measure
volX .

Let H be a semisimple, simply connected, algebraic Q-group, and let
g ∈ G(A). Fix also an algebraic homomorphism

ι : H→ G

3By the generalized Mautner phenomenon, when H has no compact factors, one can
always choose {u(t)} so that µ is {u(t)}-ergodic

4The paper [24] allows for any number field, F , but unless X is compact, δ in Theo-
rem 4.3 will depend on dimG and [F : Q].
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defined over Q with finite central kernel. E.g. we could have G = SLd and
H = Spin(Q) for an integral quadratic form Q in d variables.

To this algebraic data, we associate a homogeneous set

Y := gι(H(A)/H(Q)) ⊂ X

and a homogeneous measure µ; recall that we always assume µ(Y ) = 1.
The following is a special case of the main theorem in [24].

4.3. Theorem ([24]). Assume further that G is simply connected. There
exists some δ > 0, depending only on dim G, so that the following holds.
Let Y be a homogeneous set and assume that ι(H) ⊂ G is maximal. Then∣∣∣∣∫

X
f dµ−

∫
X
f dvolX

∣∣∣∣�G S(f)vol(Y )−δ for all f ∈ C∞c (X),

where S(f) is a certain adelic Sobolev norm.

As we alluded to above Theorem 4.3 allows H to vary, it also assumes
no splitting conditions5 on H; this feature is also crucial for applications,
e.g, H(R) is compact in an application to quadratic forms which will be
discussed momentarily. These liberties are made possible thanks to Prasad’s
volume formula [68], and the seminal work of Borel and Prasad [8]. Roughly
speaking, the argument in [24, §5] uses [68] and [8] to show that if at a prime
p the group H(Qp) is either compact or too distorted, then there is at least a
factor p contribution to vol(Y ). Thus one can find a small prime p (compared
to vol(Y )) where H is not distorted.

The dynamical argument uses unipotent flows as described above – the
source of a polynomially effective rate is again the uniform spectral gap.

Let us highlight two corollaries from Theorem 4.3. The method in [24]
relies on uniform spectral gap. However, it provides an independent proof of
property (τ) except for groups of type A1 – i.e., if we only suppose property
(τ) for groups of type A1, we can deduce property (τ) in all other cases as
well as our theorem. In particular it gives an alternative proof of the main
result of Clozel in [13] but with weaker exponents, see [24, §4].

Another application is an analogue of Duke’s theorem for positive definite
integral quadratic forms in d ≥ 3 variables as we now explicate. Even in a
qualitative form this result is new in dimensions 3 and 4 since the splitting
condition prevented applying unipotent dynamics before.

Let Qd = POd(R)\PGLd(R)/PGLd(Z) be the space of positive definite
quadratic forms on Rd up to the equivalence relation defined by scaling and
equivalence over Z. We equip Qd with the push-forward of the normalized
Haar measure on PGLd(R)/PGLd(Z).

LetQ be a positive definite integral quadratic form on Zd, and let genus(Q)
(resp. spin genus(Q)) be its genus (resp. spin genus).

5Compare this to the assumption that H has no compact factors in Theorem 4.1.



12 M. EINSIEDLER AND A. MOHAMMADI

4.4. Theorem ([24]). Suppose {Qn} varies through any sequence of pairwise
inequivalent, integral, positive definite quadratic forms. Then the genus (and
also the spin genus) of Qn, considered as a subset of Qd, equidistributes as
n→∞ (with speed determined by a power of | genus(Q)|).

In the statement of Theorem 4.3 we made a simplifying assumption that
G is simply connected; PGLd, however, is not simply connected. Indeed the
proof of Theorem 4.4 utilizes the more general [24, Thm. 1.5]. In addition
one uses the fact that

PGLd(A) = PGLd(R)KPGLd(Q) where K =
∏
p PGLd(Zp)

to identify L2(PGLd(R)/PGLd(Z)) with the space of K-invariant functions
in L2(PGLd(A)/PGLd(Q)).

Similar theorems have been proved elsewhere (see, e.g. [38] where the
splitting condition is made at the archimedean place). What is novel here,
besides the speed of convergence, is the absence of any type of splitting
condition on the {Qn} – this is where the effective Theorem 4.3 becomes
useful.

Theorem 4.3 assumed ι(H) ⊂ G is maximal. This is used in several places
in the argument. This assumption is too restrictive for some applications;
see, e.g. [31] where ι(H) ⊂ G has infinite centralizer. The following is a
much desired generalization.

4.5. Problem. Prove an analogue of Theorem 4.3 allowing ι(H) to have
arbitrary centralizer in G.

The uniform spectral gap, which is the source of a polynomially effec-
tive error term, is still available in this case. However, in the presence of an
infinite centralizer closed orbits come in families; moreover, there is an abun-
dance of intermediate subgroups. These features introduce several technical
difficulties.

See [27] in this volume and also [26, 1] for some progress toward this
problem.

5. The action of unipotent subgroups

We now turn to the general case of unipotent trajectories. Let G be an
R-group and let G be the connected component of the identity in the Lie
group G(R); U will denote a unipotent subgroup of G. Let Γ ⊂ G be a
lattice and X = G/Γ.

Let us recall the following theorems of Ratner which resolved conjectures
of Raghunathan and Dani.

5.1. Theorem ([69, 70, 71]). (1) Every U -invariant and ergodic proba-
bility measure on X is homogeneous.

(2) For every x ∈ X the orbit closure Ux is a homogeneous set.
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The above actually holds for any group which is generated by unipotent
elements. In the case of a unipotent one-parameter subroup U more can be
said. Suppose Ux = Lx as in Theorem 5.1(2), Ratner [71] actually proved
that the orbit Ux is equidistributed with respect to the L-invariant measure
on Lx.

Prior to Ratner’s work, some important special cases were studied by
Margulis [56], and Dani and Margulis [19, 20]. The setup they considered
was motivated by Margulis’ solution to the Oppenheim conjecture – unlike
Ratner’s work, their method is topological and does not utilize measures.
Let G = SL3(R), let Γ = SL3(Z), and let U be a generic one parameter
unipotent6 subgroup of G. In this context, the paper [20], proves that Ux
is homogeneous for all x ∈ X.

Theorem 5.1 has also been generalized to the S-arithmetic context, i.e.,
product of real and p-adic groups, independently by Margulis and Tomanov
[57], and Ratner [72].

Let us recall the basic strategy in the proof of Raghunathan’s conjectures,
see also the discussion after Theorem 4.1. The starting point, á la Margulis
and Ratner, is a set of “generic points” (a dynamical notion) for our unipo-
tent group U . The heart of the matter then is to carefully investigates
divergence of the U -orbits of two nearby generic points; slow (polynomial
like) nature of this divergence implies that nearby points diverge in direc-
tions that are stable under the action of U . I.e., the divergence is in the
direction of the normalizer of U – this is in sharp contrast to hyperbolic dy-
namics where points typically diverge along the unstable directions for the
flow. The goal is to conclude that unless some explicit algebraic obstructions
exist, the closure of a U -orbit contains an orbit of a subgroup V ) U .

As was mentioned above, the slow divergence of unipotent orbits is a ma-
jor player in the analysis. This actually is not the only place where polyno-
mial like behavior of unipotent actions is used in the proofs. Indeed in pass-
ing from measure classification to topological rigidity (and more generally
equidistribution theorem) non-divergence of unipotent orbits [55, 16, 17],
plays an essential role, see also §5.4.

Generic sets play a crucial role in the above study, and the existing no-
tions, e.g. minimal sets in the topological approach or a generic set for
Birkhoff’s ergodic theorem in Ratner’s argument, are rather non-effective.
Providing an effective notion of a generic set which is also compatible with
the nice algebraic properties of unipotent flows is the first step towards an
effective account of the above outline. With that in place one then may try
to carry out the above analysis in an effective fashion. The caveat though
is that the estimates one gets from such arguments are usually rather poor,
i.e., rather than obtaining a negative power of complexity one typically gets
a negative power of an iterated logarithmic function of the complexity; see

6A one parameter unipotent subgroup of SLd(R) is called generic if it is contained in
only one Borel subgroup of SLd(R)
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the discussions in §4 for an instance where this argument is carried out
successfully and actually with a polynomial rate.

5.2. Effective versions of the Oppenheim conjecture. The resolution
of the Oppenheim conjecture by Margulis [56], has played a crucial role in
the developments of the field.

Let us recall the setup. Let Q be a non-degenerate, indefinite quadratic
form in d ≥ 3 variables on Rd. The Oppenheim and Davenport conjecture

stated that Q(Zd) = R if and only if Q is not a multiple of a form with
integral coefficients. Quantitative (or equidistribution) versions were also
obtained [32, 33, 62, 59]; see also [74, 9, 2] where effective results for generic
forms (in different parameter spaces) are obtained.

On an effective level one might ask the following question. Given ε > 0
what is the smallest 0 6= v ∈ Zd so that |Q(v)| ≤ ε. Analytic methods, which
were used prior to Margulis’ work to resolve special cases of the Oppenheim
conjecture, yield such estimates. Marguli’s proof, however, is based on dy-
namical ideas and does not provide information on the size of such solution.

The paper [43] proves a polynomial estimate for n ≥ 5 and under ex-
plicit Diophantine conditions on Q – this paper combines analytic methods
together with some ideas related to systems of inequalities which were devel-
oped in [32]. In [74] and [9] analytic methods are used to obtain polynomial
estimates for almost every form in certain families of forms in dimensions 3
and 4.

In general, however, the best known results in dimension 3 are due to
Lindenstrauss and Margulis as we now discuss.

5.3. Theorem ([54]). There exist absolute constants A ≥ 1 and α > 0 so
that the following holds.

Let Q be an indefinite, ternary quadratic form with detQ = 1 and ε > 0.
Then for any T ≥ T0(ε)‖Q‖A at least one of the following holds.

(1) For any ξ ∈ [−(log T )α, (log T )α] there is a primitive integer vector
v ∈ Z3 with 0 < ‖v‖ < TA satisfying

|Q(v)− ξ| � (log T )−α.

(2) There is an integral quadratic form Q′ with | detQ′| < T ε so that

‖Q− λQ′‖ � ‖Q‖T−1

where λ = |detQ′|−1/3.

The implied multiplicative constants are absolute constants.

The above theorem provides a dichotomy: unless there is an explicit Dio-
phantine (algebraic) obstruction, a density result holds; in this sense the
result is similar to Theorem 2.2 and Theorem 3.1. Note, however, that the
quality of the effective rate one obtains here is (log T )−α – ideally one would
like to have a result where (log T )−α is replaced by T−α, however, such an
improvement seems to be out of the reach of the current technology.
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We now highlight some of the main features of the proof of Theorem 5.3.
An important ingredient in the proof is an explicit Diophantine condi-
tion [54, §4]; this is used in place of the notion of minimal sets which was
used in [56, 19, 20]. We will discuss a related Diophantine condition in the
next section; one important feature of the notion used in [54] is that it is
inherited for most points along a unipotent orbit, see also Theorem 5.8.

The proof in [54] then proceed by making effective and improving on sev-
eral techniques from [56, 19, 20]. If one follows this scheme of the proof,
the quality of the estimates in Theorem 5.3(1) would be (log log T )−α. In-
stead [54] uses a combinatorial lemma about rational functions to increase
the density of points, see [54, §9] – this lemma, which is of independent
interest, is responsible for the better error rate in Theorem 5.3(1).

5.4. Effective avoidance principles for unipotent orbits. Let G be
a connected Q-group and put G = G(R). We assume Γ is an arithmetic
lattice in G. More specifically, we assume fixed an embedding ι : G→ SLd,
defined over Q so that ι(Γ) ⊂ SLd(Z). Using ι we identify G with ι(G) ⊂ SLd
and hence G ⊂ SLd(R). Let U = {u(t) : t ∈ R} ⊂ G be a one parameter
unipotent subgroup of G and put X = G/Γ.

Define the following family of subgroups

H =
{
H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)

}
where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of
H. Alternatively, H ∈ H if and only if H is a connected Q-subgroup and
H(C) is generated by unipotent subgroups. We will always assume that
G ∈ H.

For any H ∈ H we will write H = H(R); examples of such groups are
H = SLd(R), SLd(R) n Rd (with the standard action), and SOd(R). By a
theorem of Borel and Harish-Chandra, H∩Γ is a lattice in H for any H ∈ H.

Define NG(U,H) = {g ∈ G : Ug ⊂ gH}. Put

S(U) =

( ⋃
H∈H
H 6=G

NG(U,H)

)
/Γ and G(U) = X \ S(U)

Following Dani and Margulis [22], points in S(U) are called singular with
respect to U, and points in G(U) are called generic with respect to U . This
notion of a generic point is a priori different from measure theoretically
generic points for the action of U on X with respect to volX ; however, any
measure theoretically generic point is generic in this new sense as well.

By Theorem 5.1(2), for every x ∈ G(U) we have Ux = X.
In [22], Dani and Margulis established strong avoidance properties for

unipotent orbits, see also [77]. These properties, which are often referred to
as linearization of unipotent flows in the literature, go hand in hand with
Ratner’s theorems in many applications, see e.g. [65, 37].
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In this section we will state a polynomially effective version of the results
and techniques in [22]. These effective results as well as their S-arithmetic
generalizations are proved in [52].

The main effective theorem, Theorem 5.8, requires some further prepara-
tion. Let us first begin with the following theorems which are corollaries of
Theorem 5.8.

5.5. Theorem ([52]). There exists a compact subset K ⊂ G(U) with the
following property. Let x ∈ G(U), then Ux ∩ K 6= ∅.

Theorem 5.5 is a special case of the following.

5.6. Theorem ([52]). There exists some D > 1 depending on d, and some
E > 1 depending on G, d and Γ so that the following holds.

For every 0 < η < 1/2 there is a compact subset Kη ⊂ G(U) with the
following property. Let {xm} be a bounded sequence of points in X, and let
Tm →∞ be a sequence of real numbers. For each m let Im ⊂ [−Tm, Tm] be a

measurable set whose measure is > Eη1/D(2Tm). Then one of the following
holds.

(1)
⋃
m{u(t)xm : t ∈ Im} ∩ Kη 6= ∅, or

(2) there exists a finite collection H1, . . . ,Hr ∈ H and for each 1 ≤ i ≤ r
there is a compact subset Ci ⊂ N(U,Hi), so that all the limit points
of {xm} lie in ∪ri=1CiΓ/Γ.

Theorem 5.6 is yet another reminiscent of the sort of dichotomy that we
have seen in previous sections: unless an explicit algebraic obstruction exists,
the pieces of the U -orbits intersect the generic set; see also Theorem 5.8
where this dichotomy is more apparent.

The polynomial dependence, Eη1/D, in Theorem 5.6 is a consequence of
the fact that Theorem 5.8 is polynomially effective. We note however that
even for Theorem 5.5 it is not clear how it would follow from the statements
in [22].

We now fix the required notation to state Theorem 5.8. Let ‖·‖ denote the
maximums norm on slN (R) with respect to the standard basis; this induces
a family of norms, ‖ · ‖ on

∧m slN (R) for m = 1, 2, . . .. Let furthermore
g = Lie(G) and put g(Z) := g ∩ slN (Z).

For any η > 0, set

Xη =
{
gΓ ∈ X : min

0 6=v∈g(Z)
‖Ad(g)v‖ ≥ η

}
.

By Mahler’s compactness criterion, Xη is compact for any η > 0.
Let H ∈ H be a proper subgroup and put

ρH :=
∧

dimH Ad and VH :=
∧

dimHg.

The representation ρH is defined over Q. Let vH be a primitive integral
vector in ∧dimHg corresponding to the Lie algebra of H, i.e., we fix a Z-
basis for Lie(H) ∩ slN (Z) and let vH be the corresponding wedge product.
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We define the height of H ∈ H by

(5.1) ht(H) := ‖vH‖.

Given H ∈ H and n ∈ N, define

ht(H, n) := enht(H).

Given a finite collection F = {(H, n)} ⊂ H × N, define

ht(F) = max{ht(H, n) : (H, n) ∈ F}.

Using the element vH ∈
∧dimH g we define the orbit map

ηH(g) := ρH(g)vH for every g ∈ G.

Given a nonzero vector w ∈
∧r g, for some 0 < r ≤ dim G, we define

w := w
‖w‖ .

Let z ∈ g with ‖z‖ = 1 be so that u(t) = exp(tz). Let H ∈ H; the
definition of NG(U,H) then implies that

NG(U,H) = {g ∈ G : z ∧ ηH(g) = 0}.

We will need the following definition of an effective notion of a generic
point from [52].

5.7. Definition. Let ε : H × N → (0, 1) be a function so that ε(H, ·) is
decreasing and ε(·, n) is decreasing in ht(H).

A point gΓ is said to be ε-Diophantine for the action of U if the following
holds. For every nontrivial H ∈ H, with H 6= G, and every n ∈ N we have

for every γ ∈ Γ with ‖ηH(gγ)‖ < en

that ‖z ∧ ηH(gγ)‖ ≥ ε(H, n).
(5.2)

Given a finite collection F ⊂ H×N, we say that gΓ is (ε;F)-Diophantine
if (5.2) holds for all (H, n) ∈ F .

This is a condition on the pair (U, gΓ). We note that the definition of
singular points S(U) using the varieties N(U,H) = {g ∈ G : g−1Ug ⊂ H}
for various subgroups H is defined using polynomial equations. As such, its
behavior may change dramatically under small perturbations. Definition 5.7
behaves in that respect much better.

Moreover, one checks easily that #{H ∈ H : ht(H) ≤ T} � TO(1);
now for a given pair (H, n), the condition in (5.2) is given using continuous
functions. This implies that any x ∈ G(U) is ε-Diophantine for some ε as
above.

Normal subgroups of G are fixed points for the adjoint action of G, and
hence for U . Thus, we need to control the distance from them separately.
For any T > 0, define

σ(T ) = min
{
‖z ∧ vH‖ :

H ∈ H,H C G,
ht(H) ≤ T, {1} 6= H 6= G

}
.
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For every (H, n) ∈ H × N and any C > 0 set

(5.3) `C(H, n) := min
{

ht(H, n)−C , σ
(
ht(H, n)C

)}
.

Let ‖ ‖ be a norm on SLd(R) fixed once and for all. For every g ∈ SLd(R),
in particular, for any g ∈ G let

|g| = max{‖g‖, ‖g−1‖}.

As we discussed after Theorem 5.3, an important property one anticipates
from generic points is that genericity is inherited by many points along
the orbit. The following theorem guarantees this for the notion defined in
Definition 5.7.

5.8. Theorem ([52]). There are constants C and D, depending only on d,
and a constant E depending on d, G, and Γ so that the following holds. Let
F ⊂ H × N be a finite subset. For any g ∈ G, k ≥ 1, and 0 < η < 1/2 at
least one of the following holds.

(1)∣∣∣{t ∈ [−1, 1] :
u(ekt)gΓ 6∈ Xη or

u(ekt)g is not (ηD`C ;F)-Diophantine

}∣∣∣ < Eη1/D.

(2) There exist a nontrivial proper subgroup H0 ∈ H and some n0 ∈ N
with

ht(H0, n0) ≤ Emax{ht(F), |g|η−1}D,
so that the following hold.
(a) For all t ∈ [−1, 1] we have

‖ηH0(u(ekt)g)‖ ≤ Een0 .

(b) For every t ∈ [−1, 1] we have∥∥z ∧ ηH0(u(ek−1t)g)
∥∥ ≤ Ee−k/D max{ht(F), |g|η−1}D.

As was alluded to before the effective notion of a generic point, Defini-
tion 5.7 above, is one of the main innovations in [52]. In addition to this,
the proof of Theorem 5.8 also takes advantage of the role played by the sub-
group L = {g ∈ G : gvH = vH} to control the speed of unipotent orbits –
the distance between U and subgroup L(R) controls the speed of t 7→ utvH.

Note that L is a Q-subgroup of G whose height is controlled by ht(H)O(1) –
it is defined as the stabilizer of the vector vH. However, L may not belong
to the class H. Actually it turns out, one may use the fact that U is a
unipotent group to replace L by a subgroup M ⊂ L in H which already
controls the aforementioned speed.

The general strategy of the proof of Theorem 5.8, however, is again based
on polynomial like behavior of unipotent orbits; and it relies on effectivizing
the approach in [22].
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