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Abstract. The analogous statement to Oppenheim conjecture over a local
field of positive characteristic is proved. The dynamical argument is most
involved in the case of characteristic 3.

1. Introduction

Let Q be a real non-degenerate indefinite quadratic form in n variables. Further
assumeQ is not proportional to a form with rational coefficients . It was conjectured
by Oppenheim in [O31] that if n ≥ 5 then for any ε > 0 there is x ∈ Zn − {0}
such that |Q(x)| < ε. Later on in 1946 Davenport stated the conjecture for n ≥ 3,
see [DH46]. However the conjecture even in the case n ≥ 3 is usually referred to as
Oppenheim conjecture. Note that if the conjecture is proved for n0 then it holds
for n > n0. Hence it is enough to show this for n = 3. Note also that the conclusion
of the theorem is false for n = 2. Using methods of analytic number theory the
aforementioned conjecture was verified for n ≥ 21 and also for diagonal forms in
five variables, see [DH46, DR59].

The Oppenheim conjecture in its full generality was finally settled affirmatively by
G. A. Margulis in [Mar86]. Margulis actually proved a reformulation of this con-
jecture, in terms of closure of orbits of certain subgroup of SL3(R) on the space of
unimodular lattices. This reformulation (as is well-known) is due to M. S. Raghu-
nathan and indeed is a special case of Raghunathan’s conjecture on the closure of
orbits of unipotent groups. S. G. Dani and G. A. Margulis utilized and general-
ized ideas in Margulis’s proof of Oppenheim conjecture to get partial result in the
direction of Raghunathan’s conjecture, see [DM89, DM90]. Raghunathan’s orbit
closure conjecture was proved by M. Ratner in a series of path breaking papers.
M. Ratner proved Raghunathan’s measure rigidity conjecture conjecture (which
apparently was first formulated by S. G. Dani) and derived the orbit closure from
that, see [R90a, R90a, R91, R92].

Both measure rigidity conjecture and the Oppenheim conjecture can be formulated
over other local fields as well. Indeed A. Borel and G. Prasad in [BP92], following
the same strategy as in Margulis’s proof of Oppenheim conjecture, proved the
analogous statement in the S-arithmetic setting. The measure rigidity and orbit
closure in the case of product of real and p-adic algebaric groups were also proved
by G. A. Margulis and G. Tomanov [MT94] and independently by M. Ratner [R95].

In this paper we prove the analogous statement to Oppenheim conjecture in positive
characteristic case. More precisely let K be a global function field of characteristic
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p 6= 2. Let ν be a place of K and let Oν be the ring of ν-integers in K. Let
Kν = Fq((θ−1)), where q is a power of p. Let o = Fq[[θ−1]] be the valuation ring of
Kν . We have

Theorem 1.1. Let Q be a non-degenerate isotropic quadratic form over Kν in n ≥
3 variables and assume that Q is not a scalar multiple of a form whose coefficients
are in K. Then for any ε > 0 there exists v ∈ On

ν − {0} such that |Q(v)| < ε.

If the Theorem 1.1 holds for n0 then it holds for n ≥ n0 so it is enough to show this
for n = 3. Note also that the conclusion of the theorem is false for n = 2. Our proof
follows closely the same stream line as Margulis’s original proof of the Oppenheim
conjecture. There are several technical difficulties which occur in carrying out the
proof from characteristic zero to our setting which are dealt with in the sequel. The
main difficulty however occurs when Char(K) = 3. It was communicated to us by
K. Mallahi Karai [M06] that he has a proof in the case CharK > 3.

In section 2 we state a theorem about the closure of orbits of certain groups which
is equivalent to Theorem 1.1. The rest of the paper then is devoted to the proof
of Theorem 2.1. We will recall some general properties from topological dynamics
in section 3. In section 4 we will use the polynomial like behavior of the action
of unipotent groups on the space of lattices to construct a “polynomial like” map.
This construction is essential to our proof. Indeed this kind of constructions was
used in Margulis’s proof of Oppenheim conjecture and is a cornerstone in Ratner’s
proof of measure rigidity conjecture, see also [R83]. The proof of Theorem 2.1 then
will be completed in section 5.

Acknowledgements. We would like to thank Professor G. A. Margulis for leading
us into this direction of research and for many enlightening conversations in the
course of our graduate studies and also after graduation to date.

2. Theorem 1.1 and flows on homogeneous spaces

We observed earlier that we need to prove the theorem in the case n = 3. Let
G = SL3(Kν) and Γ = SL3(Oν). We let Ω be the space of free Oν-modules of
determinant one in K3

ν . The space G/Γ can be naturally identified with Ω in the
usual way. For any y = gΓ ∈ Ω = G/Γ we let Gy = {h ∈ G| hy = y} = gΓg−1 be
the stabilizer of y in G. For any quadratic form Q on K3

ν , let HQ be the subgroup
of G consisting of elements which preserve the form Q. We have

Theorem 2.1. If x ∈ G/Γ such that HQx is compact then HQx = HQx.

The reduction of Theorem 1.1 to Theorem 2.1 is well-known. This was first observed
by M. S. Raghunathan. We will reproduce the argument in our case.

First recall that for any closed subgroup P ⊂ G and any y ∈ G/Γ. The quotient
space P/P ∩Gy and the orbit Py are homeomorphic if Py is closed. Consequently
we have P/P ∩Gy is compact if and only if Py is compact.

Let Q be an indefinite non-degenerate quadratic form in 3 variables as in the state-
ment of Theorem 1.1. Assume that the assertion of Theorem 1.1 does not hold.
Thus there exits ε > 0 such that |Q(v)| > ε for any v ∈ O3

ν − {0}. Mahler’s com-
pactness criterion now implies that HQO3

ν is relatively compact in Ω i.e. HQΓ is
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relatively compact in G/Γ. By Theorem 2.1 above we have HQΓ/Γ is compact
hence HQ/HQ ∩ Γ is compact. Consequently HQ ∩ Γ is a lattice in HQ. This in
view of Borel’s density Theorem implies that HQ ∩ Γ is Zariski dense in HQ. Thus
HQ is defined over K, see [B91, Chapter AG]. Hence Q is a scalar multiple of a
form with coefficients in a purely inseparable extension of K. However Q has coef-
ficients in Kν thus Q is scalar multiple of a form with coefficients in K which is a
contradiction.

3. Minimal sets

Let G be an arbitrary second countable locally compact group and let Ω be a
homogeneous space for G. For any closed subgroup F ⊂ G let NG(F ) denote the
normalizer of F in G.

Definition 3.1. Let F be a closed subgroup of G and Y be a closed F -invariant
subset of Ω. The subset Y is called F -minimal if it does not contain any proper
closed F -invariant subset i.e. Fy is dense in Y for any y ∈ Y.

It is a consequence of Zorn’s lemma that any compact F -invariant subset of Ω
contains a compact F -minimal subset. Let F be a closed subgroup of G and Y a
closed F -minimal subset of Ω. Note that if g ∈ NG(F ) such that gY ∩ Y 6= ∅ then
gY = Y.

Lemma 3.2. Let F ⊂ P and F ⊂ P ′ be closed subgroups of G and let Y and Y ′

be closed subsets of Ω and let M ⊂ G. Suppose that

(a) PY = Y and P ′Y ′ = Y ′,
(b) mY ∩ Y ′ 6= ∅ for any m ∈M,
(c) Y is a compact F -minimal subset.

Then hY ⊂ Y ′ for any h ∈ NG(F ) ∩ P ′MP.

Proof. Define S = {g ∈ G| gY ∩ Y ′ 6= ∅}. Since Y and Y ′ are compact S is a
closed subset of G. Note also that P ′MP ⊂ S. Thus we have P ′MP ⊂ S. Let
h ∈ NG(F ) ∩ P ′MP then we have hy = y′ for some y ∈ Y and y′ ∈ Y ′. Since
Fh = hF we have Fhy = hFy ⊂ Y ′. We now take the closure and use the fact that
Y is F -minimal and get hY ⊂ Y ′. ¤
Corollary 3.3. If P = P ′ and Y = Y ′ in the Lemma 3.2, then for every h ∈
NG(F ) ∩ PMP we have hY = Y.

The following is a standard fact from topological dynamics about minimal sets. We
recall the proof for the sake of completeness.

Lemma 3.4. Let F be a closed subgroup of G and let y ∈ Ω be such that Fy is
a compact F -minimal subset of Ω but F/F ∩Gy is not compact (i.e. Fy is not
compact). Then the closure of the subset {g ∈ G − F : gy ∈ Fy} contains the
identity.

Proof. We argue by contradiction. Assume the conclusion of the lemma does not
hold. So we can find a relatively compact neighborhood of the identity, U say, such
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that Fy ∩ U y = (F ∩ U )y. Let us represent F = ∪n≥1Kn where Kn ⊂ Kn+1

are compact subsets of F . Recall that Fy is not compact thus for any n ≥ 1 we
can find zn ∈ Fy such that Knzn ∩ (F ∩ U )y = ∅. Since Knzn ⊂ Fy we have
Knzn ∩ U y = ∅. Let Ψ = ∪nKnzn. The aforementioned properties imply that the
closure of Ψ does not contain y. However if we replace {zn} by a subsequence, if
necessary, we may and will assume zn → z ∈ Y. Note now that Y is F -minimal and
that Fz ⊂ Ψ thus y ∈ Ψ, which is a contradiction. ¤

4. Some preliminary statements

For any µ ∈ Kν−{0} let us denote by Hµ the subgroup of G consisting of elements
which preserve the form Qµ(x) = 2x1x3 − µx2

2. It is easy to see that for any
indefinite non-degenerate quadratic form Q in 3 variables there exists gQ ∈ G and
µQ ∈ Kν −{0} such that HµQ = gQHQg

−1
Q . Hence it suffices to prove Theorem 2.1

for Hµ. We denote H = H1. We prove Theorem 2.1 in the case µ = 1, the proof
for arbitrary µ is identical. Let us fix some notations to be used throughout the
paper. As above let H = H1 and define

d(t) =




t 0 0
0 1 0
0 0 t−1


 , v1(t) =




1 t t2/2
0 1 t
0 0 1




v2(t) =




1 0 t
0 1 0
0 0 1




Let D(t) = {d(t) : t ∈ K×
ν }, V1 = {v1(t) : t ∈ Kν} and V2 = {v2(t) : t ∈ Kν},

more generally if for any subset A ⊂ Knu we let V2(A) = {v2(t) : t ∈ A}. If
f : Kν → Kν is a polynomial map we let V2(f) = V2(Im(f)). Let

V = V1 · V2 =








1 a b
0 1 a
0 0 1


 : a, b ∈ Kν





Note that DV is the normalizer of V1 in G and that DV1 is the intersection of
H with the group of upper triangular matrices. Let W (resp. W−) be the set
of strictly upper triangular (resp. lower triangular) matrices in G, and also let B
(resp. B−) be the set of upper triangular (resp. lower triangular) matrices in G.
For any subgroup A of W which is normalized by d(θ3) we let

Ak = d(θ3)k(W (o) ∩A)d(θ3)−k

The full diagonal group will be denoted by T. We let L = B−W1 where

W1 =








1 0 a
0 1 b
0 0 1


 : a, b ∈ Kν





this is a rational cross-section for V1 in G. Let V −1 , W−
1 , V

−
2 denote the transpose

of V1, W1, V2 respectively.

Let x ∈ Ω be such that Hx is compact and Hx 6= Hx. Fix once and for all a
compact H-minimal subset X of Hx and let Y ⊂ X be a compact V1-minimal
subset.
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Lemma 4.1. Let y ∈ Ω be such that Dy is relatively compact in Ω. Then W ∩Gy =
{e}, therefore U/U ∩Gy is not compact for any non-compact subgroup U of W.

Proof. This is a consequence of the following two facts.

(i) W = {g ∈ G| d(t)g d(t)−1 → e as t→ 0}
(ii) If γ ∈ Gy, γ 6= e and {dn} is a sequence in G such that dnγd

−1
n → e then the

set {dny} is not relatively compact in Ω. ¤

Lemma 4.1 has he following consequence which is a supped up version of Lemma 3.4
in the form which needed for our construction in Lemma 4.4.

Lemma 4.2. The closure of {g ∈ G−DV | gY ∩ Y 6= ∅} contains e.

Proof. Note first that since DV = NG(V1) and Y is V1-minimal we have gY = Y if
g ∈ DV and gY ∩ Y 6= ∅. Thus we have

S = {g ∈ DV | gY ∩ Y 6= ∅} = {g ∈ DV | gY = Y }
Which says S is a closed subgroup of G and indeed V1 ⊂ S. Assume now that
the contrary to the lemma holds. Since Y is S-minimal and compact, in view of
Lemma 3.4 we get S/S ∩Gy is compact. In particular Λ = S∩Gy is a lattice in S.
Since V1 ⊂ S and V1 is normal in DV = (DV2)V1 we may write S = (S∩DV2)V1.
Let S2 = S ∩ DV2. We claim that π(Λ) is discrete where π : S → S/V1 is the
natural projection. Let us assume the claim for a second. Then we get ΛV1 is a
closed subgroup and since Λ is a co-compact lattice in S this implies that Λ∩V1 is
a lattice in V1. Note however that Dy ⊂ X is relatively compact hence in view of
the Lemma 4.1 this is a contradiction and the lemma will be concluded. We now
show the claim. First note that (DV )(o) has a neighborhood of identity which is
a pro-p group. We call this neighborhood (DV )p and let S2p = S2 ∩ (DV )p. We
will show that π(Λ) ∩ π(S2p) = {e}. Assume the contrary then there exists some
λ ∈ Λ such that e 6= π(λ) ∈ π(S2p). Note that V1 has a filtration, say {V1n}, by
pro-p groups which are all normalized by S2p. Hence λ ∈ S2pV1n for some n. This
is a pro-p group. The group generated by 〈λ〉 ⊂ Λ is a discrete subgroup of this
pro-p-group which implies that it is a finite p-group. Write λ = dv, where d ∈ D
and v ∈ V. Note that in view of the Lemma 4.1 we have λ 6∈ V thus d = d(t) 6= e..
Modding out by the normal subgroup V of DV this implies that d has order a
power of p which implies d = e. This contradiction establishes the claim. ¤

We will need a construction from [MT94], see also [Mar86] and [R90a, R83]. As was
mentioned one of the main ingredients in the proof of Theorem 2.1 is the polynomial
like behavior of the way two unipotent orbits diverge from each other. Since one
needs to deal with quasi-affine spaces rather than affine spaces we don not quite get
polynomials but rather certain rational maps which become polynomial if we embed
our quasi-affine space into an affine space. The following definition, from [MT94],
is the precise formulation.

Definition 4.3. (cf. [MT94, Definition 5.3])

(i) Let E be a Kν-algebraic group, F a Kν-algebraic subgroup of E(Kν) and
M a Kν-algebraic variety. A Kν-rational map f :M(Kν) → E(Kν) is called
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F -quasiregular if the map from M(Kν) to V given by x 7→ ρ(f(x)p) is Kν-
regular for every Kν-rational representation ρ : E→ GL(V) and every point
p ∈ V(Kν) such that ρ(F )p = p.

(ii) If E = E(Kν) and W ⊂ E is a split unipotent subgroup then a map
φ : W → E is called strongly W -quasiregular if there exist
(a) a sequence gn ∈ E such that gn → e.
(b) a sequence {αn : W → W } of Kν-regular maps.
(c) a sequence {βn : W → W } of Kν-rational maps.
(d) a Zariski open nonempty subset X ⊂ W
such that φ(u) = limn→∞ αn(u)gnβn(u) and the convergence is uniform on
the compact subsets of X

Note that if φ is strongly W -quasiregular then it indeed is W -quasiregular. Let
ρ : E → GL(Φ) be a Kν-rational representation and let p ∈ Φ be a W -fixed vector.
For any u ∈ X we have

ρ(φ(u))p = lim
n→∞

ρ(αn(u)gn)p.

Identify W with an affine space, as we may, thanks to the fact W is split. The
sequence {ψn : W → Φ, u 7→ ρ(αn(u)gn)p} is a sequence of polynomial maps of
bounded degree and also the family is uniformly bounded on compact sets so it con-
verges to a polynomial map with coefficients in Kν . This says φ is W -quasiregular.

The following is an important application of the polynomial like behavior of the
action of V1 on Ω. Actually later on we will need it for some other subgroup which
share similar features with V1 i.e. split unipotent algebraic subgroups of G after
change of the base field. The proof in the more general setting is the same as it is
clear from the proof given here.

Lemma 4.4. Let {gn} ⊂ G−DV be such that gn → e. Then NG(V1) ∩ V1{gn}V1

contains the image of a non-constant strongly V1-quasiregular map φ. Furthermore
Im(φ) 6⊂ KV1 for any compact subset K ⊂ G.

Proof. Let {gn} ⊂ G−DV be such that gn → e. We define the rational morphisms

φ̃n : V1 → L and ωn : V1 → V1 to be the maps so that v1(t)gn = φ̃n(t)ωn(t) holds
for all v1(t) in a Zariski open dense subset of V1.

By Chevalley’s Theorem there exits a Kν-rational representation ρ : G → GL(Φ)
and q ∈ Φ such that

V1 = {g ∈ G| ρ(g)q = q} and NG(V1) = {g ∈ G| ρ(V1)ρ(g)q = ρ(g)q}
Let B(v) ⊂ ρ(G)q be a bounded neighborhood of q in V. Since on {gn} 6∈ NG(V1)
we have; there exists a sequence of positive integers {r(n)} with r(n) → ∞ such
that V1r(n)gnq 6⊂ B(q) and V1kgnq ⊂ B(q) for all k < r(n), where

V1n = {v1(t) | t ∈ Kν and |t| < q3n}
For any n ∈ N let αn : V1 → V1 be the conjugation by d(θ3)r(n). Define the
Kν-rational maps φn by φn = φ̃n ◦ αn : V1 → L. Let

φ′n = ρL ◦ φn : V1 → Φ
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We have φ′n(t) = αn(v1(t))gnq, thus φ′n : V1 → Φ is a Kν-regular map whose degree
is independent of n. This is to say {φ′n} is a set of polynomial maps of bounded
degree. Using the definition of φ′n we also have {φ′n} is a uniformly bounded family
of polynomials. Thus passing to a subsequence, which we will still denote it by φ′n,
there is a polynomial map φ′ : V1 → Φ such that

φ′(t) = lim
n→∞

φ′n(t) for every t ∈ Kν

Note that φ′(e) = q as gn → e and that φ′ is non-constant since gn 6∈ NG(V1).

Recall that L is a rational cross-section for G/V1 which contains e. Thus L gets
mapped onto a Zariski open dense subset M of Zariski closure of ρ(G)q and that
q ∈ M . Hence we can define a Kν-rational map φ : V1 → L by

φ = ρ−1
L ◦ φ′

The construction above gives φ(e) = e and φ is non-constant.

We now show; the map φ satisfies the conditions of the lemma i.e.

(i) φ is strongly V1-quasiregular
(ii) Im(φ) ⊂ NG(V1).
(iii) Im(φ) 6⊂ KV1 for any compact subset K ⊂ G.

Note that by above construction we have if v1(t) ∈ φ′−1(M ) then

φ(t) = lim
n→∞

φn(t)

and the convergence above is uniform on the compact set of φ′−1(M ). We have

φn(t) = αn(v1(t))gnβn(t) where βn(t) = ωn(αn(v1(t)))−1

Above says for v1(t) ∈ φ′−1(M ) we can write

φ(t) = lim
n→∞

αn(v1(t))gnβn(t),

this establishes (i).

To prove (ii) above recall that NG(V1) = {g ∈ G| V1ρ(g)q = ρ(g)q}. We remarked
above that φ(t) = limn→∞ αn(v1(t))gnβn(t). Let v1(s) ∈ V1 be an arbitrary element
we need to show v1(s)ρ(φ(t))q = ρ(φ(t))q. Note that

ρ(v1(s)αn(v1(t))gn)q = ρ(αn(α−1
n (v1(s))t)gn)q

The result is immediate now if we note that α−1
n (v1(s)) → e as n→∞. This finishes

the proof of (ii) and of the lemma.

To see (iii) note that φ = ρ−1
L ◦ φ′ and φ′ is a non-constant (hence unbounded)

polynomial map. ¤

For later use we need to explicitly determine various polynomials which where
constructed in Lemma 4.4. Let

(1) gn =




a1n a2n a3n

b1n b2n b3n

c1n c2n c3n



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Then we have

v1(t)gn =




a1n + b1nt+ c1n
t2

2 a2n + b2nt+ c2n
t2

2 a3n + b3nt+ c3n
t2

2
b1n + c1nt b2n + c2nt b3n + c3nt

c1n c2n c3n




Write αn(v1(t))gnβn(t) = σn(t)ϑn(t) where σn : V1 → B− and ϑn : V1 → W1 are
Kν-rational morphisms. That is

(2) σn(t) =




σn
11(t) 0 0
σn

21(t) σn
22(t) 0

σn
31(t) σn

32(t) σn
33(t)


 and ϑn(t) =




1 0 ϑn
13(t)

0 1 ϑn
23(t)

0 0 1




Note that our construction above says φ(t) ∈ L ∩ NG(V1) = DV2 so all we need
from above are the maps {σn

11(t)} and {ϑn
13(t)} which are easily calculated. Let

αn(t) = θ3r(n)t. Then

(†) σn
11(t) = a1n + b1nαn(t) + c1n

αn(t)2

2 = a1n + b′1nt+ c′′1n
t2

2

(‡) ϑn
13(t) = 2(v1(αn(t))gn)13(v1(αn(t))gn)11−((v1(αn(t))gn)12)

2

2((v1(αn(t))gn)11)2
= ϑ0n(t)

(σn
11(t))

2 , where ϑ0n

is a degree 4 polynomial.

Passing to the limit we have

(3) φ(t) = d(σ(t)) v2(ϑ0(t)) = d(σ(t)) v2

(
ϑ(t)
σ(t)2

)

where σ(t) is a polynomial of degree at most 2 and ϑ(t) is a polynomial of degree
at most 4. Moreover d(σ(0)) = v2(ϑ0(0)) = e.

In the sequel we need some more properties of the map constructed in Lemma 4.4.
Let us fix some notation. It follows from standard facts in algebraic group theory,
see [B91], that the product map defines an isomorphism between W−×T ×W and
a Zariski open dense subset of G which contains e. In particular there exists an
open neighborhood of the identity in G such that for all g in that neighborhood

g = W−(g)T (g)W (g) = V −1 (g)W−
1 (g)T (g)W1(g)V1(g)

where V −1 (g) ∈ V −1 , W−
1 (g) ∈ W−

1 , T (g) ∈ T, V1(g) ∈ V1, W1(g) ∈ W1, W
−(g) =

V −1 (g)W−
1 (g) and W (g) = W1(g)V1(g). The following lemma follows from a more

general result proved in [MT94, Proposition 6.7] in characteristic zero case. That
proof works in our setting also however our particular case here allows a hands on
proof. We give this proof here for the sake of completeness and refer to [MT94,
Proposition 6.7] for a conceptual proof.

Lemma 4.5. Let {gn} ⊂ W−
1 B − DV be a sequence such that gn → e. Let φ be

the V1-quasiregular map constructed in Lemma 4.4 using {gn}. Then Im(φ) ⊂W.

Proof. The proof of Lemma 4.4 implies that φ(t) = limn αn(v1(t))gnβn(t) for all
t such that v1(t) ∈ (φ′)−1(M ). The calculation following Lemma 4.4 gives φ(t) =
limn σn(t)ϑn(t) for all v1(t) ∈ (φ′)−1(M ) where σn and ϑn are as in (2). As was
mentioned above we need only σn

11 and ϑn
13. Our assumption, gn ∈ W−

1 B, is to
say that in (1) b1n = 0 for all n. This using the above calculations implies that
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σn
11(t) = a1n + c1nt

2/2 and

(4) ϑn
13(t) =

2(a1n + c1n
t2

2 )(a3n + b3nt+ c3n
t2

2 )− (a2n + b2nt+ c2n
t2

2 )2

2(a1n + c1n
t2

2 )2

If we expand (4), we get: in the expression for the nominator the coefficient of t3 is
b3nc1n−b2nc2n and the coefficient of t4 is (2c1nc3n−c22n)/4. Now σ(t) is non-constant
if and only if limn θ

3r(n)c1n 6= 0. However this in view of the fact that gn → e implies
that either limn θ

3r(n)(b3nc1n− b2nc2n) 6= 0 orlimn θ
3r(n)(2c1nc3n− c22n) 6= 0. Either

case implies that {ϑn
13(αn(αn(t))} diverges. This is a contradiction thus φ(t) ⊂ W

for all t such that v1(t) ∈ (φ′)−1(M ). Since this is a Zariski dense subset of V1 the
lemma follows. ¤

Let the notation and conventions be as before. Recall in particular that x ∈ G/Γ
such that Hx is compact and Hx 6= Hx. We fixed X ⊂ Hx an H-minimal subset
and Y ⊂ X a V1-minimal subset.

Proposition 4.6. At least one of the following holds

(i) There exists a non-constant polynomial, σ(t), and a polynomial of degree at
most four, ϑ(t), such that φ(t)Y = Y where φ(t) = d(σ(t))v2

(
ϑ(t)
σ(t)2

)
.

(ii) V2 y ⊂ Hx for some y ∈ Hx.
(iii) Y is V2(f)-invariant, where f(t) = at3 for some a ∈ Kν − {0}.

Proof. Using Lemma 4.2 above we can find {gn} ⊂ G−DV such that gn → e and
that gnY ∩ Y 6= ∅. Applying Lemma 3.3 with P = F = V1, Y = Y and M = {gn}
one has hY = Y for every h ∈ NG(V1) ∩ V1MV1. Note that we are in the situation
of Lemma 4.4, using that lemma and the calculation after loc. cit. in particular (3)
we have; there are polynomials σ(t) of degree at most 2 and ϑ(t) of degree at most
4 such that φ(t)Y = Y, where φ(t) = d(σ(t)) v2

(
ϑ(t)
σ(t)2

)
. We may assume σ(t) is a

constant polynomial else (i) above holds and there is nothing to show.

Thus we may and will assume that σ(t) = σ(0) = 1 for all t ∈ Kν i.e. φ(t) =
v2(ϑ(t)). There are 3 possibilities for ϑ′(t), the derivative ϑ(t);

(a) ϑ′(t) = 0 for all t ∈ Kν . Note that ϑ(t) is a non-constant polynomial of
degree at most 4 hence this can only happen if CharK = 3 (recall that
CharK 6= 2). Since ϑ(0) = 0 this says ϑ(t) = at3 for some nonzero a ∈ Kν ,
which means case (iii) of the proposition holds.

(b) ϑ′(t) is a non-constant polynomial.
(c) ϑ′(t) is constant but it is not zero. This in view of the same considerations

as in (b) implies ϑ(t) = at3 + bt where a, b ∈ Kν and b 6= 0.

We will now show (ii) holds in either cases (b) and (c). The occurrence of these
thanks to the inverse function Theorem implies that the image of ϑ contains some
open set. Since V2(ϑ(t))Y = Y the same holds true for the group generated by
{v2(ϑ(t)) : t ∈ Kν}. Thus we get that there exists some open neighborhood o′ of
the origin such that Y is invariant under V2(o′). Let z ∈ Y. Since X is H-invariant
and V2(o′)z ∈ Y we have d(θ3)nV2(o′)z ⊂ X for any n ∈ N. We have

d(θ3)nV2(o′)z = d(θ3)nV2(o′)d(θ3)−nd(θ3)nz = V2nd(θ3)nz
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Let zn = d(θ3)nz. Since X is compact there is y ∈ X such that zn → y. Note also
that V2n ⊂ V2(n+1) are compact sets and V2 = ∪n≥1V2n. Thus V2 y ⊂ X. ¤

5. Proof of Theorem 2.1

We will prove Theorem 2.1 in this section using the construction in Section 4. We
will first reduce the proof of Theorem 2.1 to the “inseparable” case. The existence
of this inseparable case in some sense is the main difference with the proof in the
characteristic zero case.

Lemma 5.1. If (i) in Proposition 4.6 holds, then there exists y ∈ Hx and a
polynomial f whose derivative is non-constant such that V2(f)y ⊂ Hx.

Proof. We have Y is invariant under

R = 〈d(σ(t)) v2

(
ϑ(t)
σ(t)2

)
: t ∈ Kν〉

where 〈•〉 denotes the group generated by •. Recall also that σ(t) is a non-constant
polynomial.

Recall that Hx is not closed. We claim that for any y ∈ Y the closure of the subset
M = {g ∈ G − H : gy ∈ Hx} contains the identity. Assume the contrary. In
particular since y ∈ Hx we have; the closure of {g ∈ G −H : gy ∈ Hy} does not
contain the identity. Then since y ∈ X and X is H-minimal Lemma 3.4 implies
that Hy is compact. Also note that since y ∈ Hx and e 6∈ M we have y ∈ Hx.
These imply that Hx is closed which is a contradiction.

We now apply Lemma 3.2 with M, Y ′ = Hx, Y, P ′ = H, F = V1 and P = V1.
Hence for any h ∈ NG(V1) ∩ HMV1 we have hY ⊂ Y ′ = Hx. Pick {gn} ⊂ M
such that gn → e. Let us first assume that there exists some subsequence {gni} ⊂
G−HV2. Abusing the notation we continue to denote this subsequence by {gn}. For
n large enough we have gn = V −1 (gn)W−

1 (gn)T (gn)W1(gn)V1(gn). Multiplying on
left by H we may and will assume that V −1 (gn) = e. Thus we have a sequence {gn}
such that gn → e, V −1 (gn) = e and {gn} 6⊂ HV2. We now apply the construction
of Lemma 4.4 with {gn}. We get a non-constant strongly V1-quasiregular map φ1

such that Im(φ1) ⊂ NG(V1) and φ1(s)Y ⊂ Y ′ for all s ∈ Kν .

Recall that gn ∈ W−
1 TW = W−

1 B hence Lemma 4.5 implies that Im(φ1) ⊂ W.
This in view of the fact NG(V1) = DV gives Im(φ1) ⊂ V2 i.e. φ1(s) = v2(ϑ1(s))
and for any s ∈ Kν we have v2(ϑ1(s))Y ⊂ X. Define the polynomial fu(t) =
ϑ1(s)σ2(t) − ϑ(t), where u = v2(ϑ1(s)). Since ϑ1(s) and σ(t) are non-constant
polynomials and deg(σ(t)) ≤ 2, we can find u0 = φ1(s0) such that both fu0 and
also its derivative f ′u0

are non-constant polynomials.

We now turn to the case {gn} ⊂ HV2. Thus there are infinitely many elements
vn = v2(tn) ∈ V2 such that vny ∈ Hx. Thus we may find u0 = v2(tk) for some k
such that fu0(t) = tkσ

2(t)− ϑ(t) and f ′u0
are both non-constant polynomials.

Now apply Lemma 3.2 with M = {u0} which is defined above, Y ′ = Hx, Y, P ′ =
H, F = V1 and P = 〈R, V1〉, the closed group generated by R and V1. According
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to Lemma 3.2 we have hY ⊂ Hx for any h ∈ NG(V1) ∩HMP. Note that for any t
one has

d(σ(t))u0

[
d(σ(t))v2

(
ϑ(t)
σ(t)2

)]−1

= v2(fu0(t)) ∈ HMP

Thus v2(fu0(t))Y ⊂ Hx for any t ∈ Kν . ¤

We make the following elementary observation

Lemma 5.2. Let L be a lattice in Ω and B(t0, r0) an open ball of radius r0 about
t0 in Kν . Then there exists some nonzero v ∈ V2(B(r0, t0))L such that Q(v) = 0.

Proof. Indeed we may and will assume r0 < 1. Let B = B(t0, r0). For any w ∈ K3
ν

and r > 0 let B(w, r) denote the ball of radius r about w in K3
ν . For any u =

(u1, u2, u3) ∈ K3
ν with u3 6= 0 define q(u) = −Q(u)

2u2
3
. Fix some wr = (−t0w3, 0, w3)

with |w3| > max{r/r0, |t0|r/r0}. Then the map q : B(wr, r) → Kν is defined on
B(wr, r) and Im(q) ⊂ B. Since L is a lattice in K3

ν there exists some r = r(L) > 0
such that L∩B(w, r) 6= ∅ for all w ∈ K3

ν . Let wr be given as above corresponding
to this r. Let y ∈ L ∩B(wr, r). Then y3 6= 0 and s = q(y) = −Q(y)

2y2
3
∈ B.

For any u ∈ K3
ν we have

v2(t)u = v2(t)




u1

u2

u3


 =




u1 + tu3

u2

u3




Hence Q(v2(t)u) = 2tu2
3 +Q(u). Thus Q(v2(s)y) = 0. ¤

Corollary 5.3. Theorem 2.1 holds if one of the following holds

(a) CharK > 3
(b) (i) or (ii) in Proposition 4.6 holds.

Proof. Note that if CharK > 3, then case (iii) of Proposition 4.6 above is contained
in case (ii) of that proposition. So we need to show Theorem 2.1 holds if (b) above
holds.

By Lemma 5.2 the corollary is immediate if case (ii) holds and follows from Lemma 5.1
and the inverse function Theorem if case (i) holds. ¤

The inseparable case. The Corollary 5.3 reduces the proof of Theorem 2.1 to
the case where (iii) in Proposition 4.6 holds. In particular from now on we assume
CharK = 3.We keep all the assumptions and the notation as before. Let us fix some
further notation. Define K(3)

ν = {k3| k ∈ Kν}. This is a subfield of Kν and Kν/K
(3)
ν

is a purely inseparable extension of degree 3. For any nonzero element a ∈ Kν we
will let V a

2 = V2(f) where f(t) = at3. The subgroups V a
2 and V a = V1V

a
2 are closed

subgroups of V. They are actually unipotent algebraic groups if we change our base
field to K(3)

ν . To be more precise one needs to use Weil’s restriction of scalars and
replace SL3 by R

Kν/K
(3)
ν

(SL3) then V a is a K(3)
ν -split unipotent algebraic subgroup

of R
Kν/K

(3)
ν

(SL3)(K
(3)
ν ) = G. We will try to avoid these and instead will keep our

calculations explicit and down to earth. If {a, b, c} is a basis for Kν over K(3)
ν , then
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we let prx
yz (resp. prxy

z ) denote the projection onto the space yK(3)
ν + zK

(3)
ν (resp.

zK
(3)
ν ) parallel to xK(3)

ν (resp. xK(3)
ν + yK

(3)
ν ) where x, y, z are distinct elements

in {a, b, c}. For a basis {a, b, c} of Kν over K(3)
ν define

W b,c
1 =








1 0 x
0 1 y
0 0 1


 : x ∈ bK(3)

ν + cK(3)
ν , y ∈ Kν





Lemma 4.2 shows that we can find a sequence {gn} ⊂ G −DV such that gn → e
and gnY ∩ Y 6= ∅. We construct a V1-quasiregular map φ as in Lemma 4.4 using
this sequence {gn}. The calculations following Lemma 4.4 show

(5) φ(t) = d(σ(t)) v2

(
ϑ(t)
σ(t)2

)

Furthermore thanks to Corollary 5.3 we may and will assume that σ is constant
map and ϑ(t) = at3 for some a 6= 0 and V1V

a
2 Y = Y. Extend {a} to a basis {a, b, c}

for Kν over K(3)
ν .

Note that Y is a (minimal) invariant set for V a. We apply Lemma 3.3 with M =
{gn} the same sequence as above, P = V a and F = V1. Hence hY = Y for all
h ∈ NG(V1) ∩ PMP. Write as before

gn =




a1n a2n a3n

b1n b2n b3n

c1n c2n c3n




A simple calculation shows that

NG(V a) ⊂ {g ∈ G : gV1g
−1 ⊂ V a} = DV

For any t, s, a ∈ Kν let va(t, s) = v1(t)v2(as3). Since {gn} ⊂ G−DV and NG(V a) ⊂
DV we get: va(t, s)gn(V a) ⊂ G/V a is a non-constant polynomial map of bounded
degree into some affine space over K(3)

ν , here indeed we are using Chevalley’s The-
orem for the algebraic subgroup V a of G as we mentioned above. Let Ba be some
relatively compact neighborhood of the coset V a in G/V a. Choose ra(n) such that
V a

ra(n)gnV 6⊂ Ba but V a
k gnV ⊂ Ba for all k < ra(n). Denote by αa

n the conjugation

with d(θ3)ra(n) and let σa
n : V a → B−, ϑa

n : V a → W b,c
1 and ϑn : V a → W1 be

Kν-rational morphisms defined by

αn(va(t, s))gnβ
a
n(t, s) = σa

n(t, s)ϑa
n(t, s) and αn(va(t, s))gnβn(t, s) = σn(t, s)ϑn(t, s)

where βa
n(t, s) ∈ V a and βn(t, s) ∈ V1. In coordinates we have

σa
n(t, s) =




σn
11(t, s) 0 0
σn

21(t, s) σn
22(t, s) 0

σn
31(t, s) σn

32(t, s) σn
33(t, s)




ϑa
n(t, s) =




1 0 ϑan
13 (t, s)

0 1 ϑan
23 (t, s)

0 0 1


 and ϑn(t, s) =




1 0 ϑn
13(t, s)

0 1 ϑn
23(t, s)

0 0 1




Define
φa

n(t, s) = αn(va(t, s))gnβ
a
n(t, s) = σa

n(t, s)ϑa
n(t, s)



ISOTROPIC QUADRATIC FORMS IN POSITIVE CHARACTERISTIC 13

Note that this construction fits into the same frame work as in Lemma 4.4. Thus
as in the proof of loc. cit. we may pass to the limit and get a non-constant strongly
V a-quasiregular map φa(t, s) such that Im(φa) ⊂ NG(V a) ⊂ DV. We have

(†a) (σa
n)11(t, s) = a1n+b1nθ

3ra(n)t+c1nθ
6ra(n) t2+2as3

2 = a1n+b
′a
1nt+c

′′a
1n

t2+2as3

2

(‡a) ϑan
13 (t, s) = ϑn(t,s)a

((σa
n)11(t,s))3

, where ϑn(t, s)a is a polynomial.

Passing to the limit we have

φa(t, s) = d(σa(t, s)) v2

(
ϑa(t, s)

(σa(t, s))3

)

We need a more explicit description of ϑn(t, s)a
. Let us recall from (‡) that

ϑn
13(t) =

2(v1(αn(t))gn)13(v1(αn(t))gn)11 − ((v1(αn(t))gn)12)2

2((v1(αn(t))gn)11)2
=

ϑ0n(t)
(σn(t))2

are pre-limit functions for the construction of φ(t) in V1MV1. Similarly we have
ϑn

13(t, s) = ϑ0n(t,s)
(σn(t,s))2 . If we apply the renormalization t = θ3ra(n)t and s3 = θ6ra(n)s3,

we may write

(6) ϑ0n(t) = A0n +A1nt +A3nt2 +A′3nt2/2 +A4nt3/2 +A′4n(t2/2)2

(7)
ϑ0n(t, s) = A0n+A1nt+A3nt2+A′3n(t2/2+as3)+A4nt(t2/2+as3)+A′4n(t2/2+as3)2

In view of these formulas ϑn(t, s)a is

pra
bc{ϑ0n(t, s)(a1n + b

′a
1nt + c

′′a
1n(t2/2 + as3))}

Recall that thanks to Corollary 5.3 in the equation (5) we have σ(t) = 1 for all
t ∈ Kν and ϑ(t) = at3 for some a 6= 0. Thus ϑ(t) = limnA4n(θ3r(n)t)3/2 where
A4n is as in (6).

We claim that there exists some constant b > 0, depending on B chosen in the
proof of Lemma 4.4 and Ba which we chose here, such that ra(n) ≤ b r(n). To see
the claim note that the above paragraph implies that

max
|t|≤1

A4n(θ3r(n)t)3/2 ≥ C = C(B) for all n

thus max|t|,|s|≤1 |A4nθ
9r(n)t(t2/2 + as3)| ≥ C for all n. Also note that for s 6= 0 the

image of the polynomial A4nθ
9r(n)t(t2/2 + as3)), as a polynomial of t, contains an

open neighborhood of 0 thus

lim
n

pra
bc{a1n(A4nθ

9r(n)t(t2/2 + as3))}
is a nontrivial polynomial. This implies the claim.

From this claim and †a we conclude that σa(t, s) = 1 is the constant polynomial.
Hence

φa(t) = v2(ϑa(t, s)) and ϑa(t, s) = lim
n

pra
bc(a1nϑ0n(t, s))

This in view of (7) and the above discussion implies that

ϑa(t, s) = lim
n

pra
bc{a1n(A′3nas

3 +A4nt(t2/2 + as3))}
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There are two possibilities: either limn pra
bc{a1n(A4nt(t2/2 + as3))} = 0 is the

constant polynomial or this limit is non-constant. Let us first assume the later
holds. This in particular implies that limnA4nθ

9ra(n) = A 6= 0. Thus we have

lim
n
a1n(A4nt(t2/2 + as3)) = A(t3/2 + ats3)

On the other hands Im(A(t3/2 + ats3)) contains an open neighborhood of 0 which
then implies that R = aK

(3)
ν + Imϑa(t, s) contains and open subset of Kν . Besides

V2(R)Y = Y hence an argument similar to the proof of Proposition 4.6 implies
that (ii) in loc. cit. holds and Theorem 2.1 follows from Corollary 5.3 in this case.

In view of the above we may and will assume that limn pra
bc{a1n(A4nt(t2/2+as3))} is

constant. This is to say ϑa(t, s) = limn pra
bc(a1nA

′
3na(s

3)) = a′s3 for some non-zero
a′ ∈ bK(3)

ν + cK
(3)
ν .

Thus Y is invariant under V aa′ = V1V
a
2 V

a′
2 and is indeed V1-minimal. We repeat

the construction above one further time i.e. we construct V aa′-quasi regular map.
A simple calculation shows that NG(V aa′) ⊂ DV hence {gn} chosen above can be
used again. We apply Lemma 3.3 withM = {gn} the above sequence, P = V aa′ and
F = V1. In view of that lemma we have hY = Y for any h ∈ NG(V1) ∩ PMP. We
use the notations as above with the obvious modification e.g. φa there is replaced
by φaa′ in here etc. Same argument as above gives: there exists some b′ > 0 such
that raa′(n) ≤ b′ r(n). Hence σaa′(t, s, r) = 1 is constant and

φaa′(t, s, r) = v2(ϑaa′(t, s, r))

Let {a, a′, a′′} be a basis for Kν over K(3)
ν . Define the renormalized variables t =

θ3raa′ (n)t, s3 = θ6raa′ (n)s3 and r3 = θ6raa′ (n)r3. We have

ϑaa′(t, s, r) = lim
n

praa′
a′′ {a1n(A′3n(as3 + a′r3) +A4nt(t2/2 + as3 + a′r3))}

Now either limn praa′
a′′ (a1nA4nt(t2/2+as3+a′r3))) = 0 is constant or a non-constant

polynomial. If the later holds the argument goes through the same lines of the
argument above. If the first holds then

ϑaa′(t, s, r) = lim
n

praa′
a′′ {a1n(A′3n(as3 + a′r3))}

Thus ϑaa′(t, s, r) = a′′(l1s3 + l2r
3) where li ∈ K

(3)
ν and at least one of them is

nonzero. Hence we get Y is invariant under V a′′
2 and since {a, a′, a′′} is a basis for

Kν over K(3)
ν we have V2 = V a

2 V
a′
2 V a′′

2 . This gives V2Y = Y i.e. we are in case (ii)
of Proposition 4.6. Thus Corollary 5.3 finishes the proof.
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