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Abstract. We prove a quantitative equidistribution statement for certain

adelic homogeneous subsets in positive characteristic. As an application, we

describe a proof of property (τ) for arithmetic groups in this context.
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1. Introduction

Let X = L/Λ be the quotient of a locally compact group L by a lattice Λ ⊂ L.
Any subgroup M ⊂ L acts on X by left multiplication. A homogeneous measure
on X is, by definition, a probability measure µ that is supported on a single closed
orbit Y = MY gΛ of its stabilizer MY = Stab(µ). A homogeneous set is the support
of a homogeneous measure.

Motivated by problems in number theory, the limiting behavior of a sequence
{µi} of homogeneous measures has been extensively studied. When L is a Lie
group and Stab(µi) is generated by unipotent subgroups, Mozes and Shah [25]
used Ratner’s celebrated measure classification theorems [31] and the Linearization
techniques of Dani and Margulis [7] to obtain a very satisfactory classification
theorem for the limiting measure, see also [12, 15, 9].

More recently, the quantitative aspects of this problem have attracted consider-
able attention. Indeed, in a landmark paper, Einsiedler, Margulis, and Venkatesh [11]
proved an effective equidistribution theorem for homogeneous measures when M
and L are semisimple Lie groups and Λ is a congruence lattice, under some addi-
tional conditions; and in a followup work Einsiedler, Margulis, Venkatesh and the
first named author [10] extended this result to certain adelic periods in the number
field setting.

In this paper, we consider homogeneous measures in positive characteristic set-
ting. Let us fix some notation in order to state our main results. Let F be a
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global function field, and let G be an absolutely almost simple, simply connected
F -group. Throughout the paper, we assume G does not admit non-standard iso-
genies. This condition is always satisfied if char(F ) > 3. More precisely, G admits
non-standard isogenies only in the following cases: if char(F ) = 2 and G is of type
Bn, Cn, (n ≥ 2) or of type F4, another case is if char(F ) = 3 and G is of type G2,
see [27, §1] and references therein.

Put G′ = G×G, and let

H = {(h, h) : h ∈ G} ⊂ G′

be the diagonal embedding of G in G′.
Throughout the paper, Σ denotes the set of all places of F . For each place v ∈ Σ,

let Fv be the completion of F at v, and let AF (or simply A if there is no confusion)
denote the ring of adeles over F .

Let G′ = G′(A) and X = G′/G′(F ). We let mX denote the G′-invariant proba-
bility measure on X. Let i : H→ G′ be the above inclusion. For every g ∈ G′,

Yg := gi
(
H(A)/H(F )

)
is a closed orbit in X equipped with a probability measure µg which is invariant
under Hg := gH(A)g−1. Throughout the paper, we drop i from the notation and
simply write Yg = gH(A)/H(F ).

We will use the following notion of complexity which was introduced and studied
in [10]. Let Ω0 ⊂ G′ be a compact open subgroup. Given (Yg, µg) as above, define

(1) vol(Yg) = mg(Ω0 ∩Hg)
−1

where mg denotes a Haar measure on Hg which projects to µg. Note that a different
choice of Ω0 only changes the above function by a multiplicative constant, see [10,
§2.3] for a proof.

The following is the main theorem of this paper.

Theorem 1.1. There exists κ > 0 so that the following holds. Let g ∈ G′, and let
(Yg, µg) be as above. Then∣∣∣∣∣

∫
Yg

f dµg −
∫
f dmX

∣∣∣∣∣� vol(Yg)
−κS(f), f ∈ C∞c (X),

where S(f) denotes a certain adelic Sobolev norm, and the implied multiplicative
constant depends on X. The exponent κ depends only on the type of G and F . If
X is compact, then κ depends only on the type of G.

Similar to the proofs in [11, 10], our proof relies on uniform spectral gap. How-
ever, our treatment deviates from loc. cit. in that instead of using effective ergodic
theorems for the action of unipotent subgroups, we use averages over expanding
pieces of root subgroups, see §7.2. This idea (which is due to Margulis, see [24])
makes the analysis in the case at hand more transparent. We also use the work of
Prasad [29]; albeit our application here is less intricate than in [10], in particular,
our treatment does not rely on [2], as H ⊂ G′ is simply connected and embedded.

As it was mentioned our proof relies on uniform spectral gap. However, it also
allows us to give an independent proof of property (τ) in all cases except for groups
of type A1. That is, if we assume property (τ) for groups of type A1, Drinfeld [8],
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and use the uniform estimates on decay of matrix coefficients for groups with Kazh-
dan’s property (T ), Oh [26], we can deduce property (τ) in all other cases as well
as our theorem.

In the number field setting, the proof of property (τ) has a long history and was
completed thanks to several deep contributions, see [17, 26, 32, 16, 4, 5, 14]. In the
positive characteristic setting, the existing literature is far less satisfactory beyond
groups with property (T ), the aforementioned work of Drinfeld [8], and the work of
Lafforgue [21, 22]. However, the statement itself is agreed upon by the experts. We
hope the following theorem will contribute to filling this lacuna in the literature.

Theorem 1.2 (Property τ). Let the notation and assumptions be as above, in
particular, we assume that G does not admit non-standard isogenies.

Let v ∈ Σ be such that G is isotropic over Fv. Then L2
0(G(A)/G(F )), the

orthogonal complement of G(A)-invariant functions, is isolated from the trivial
representation as a representation of G(Fv). Moreover, this isolation (spectral gap)
is independent of the F -form of G.

Acknowledgment. We would like to thank H. Oh for her interest in this project
and also for several helpful discussions. We are particularly grateful to her for com-
munications regarding [26]. We would also like to thank G. Prasad, I. Rapinchuk,
and A. Salehi Golsefidy for helpful discussions.

2. Notation and preliminaries

Let F be a global function field. Let Σ be the set of places on F , and let A be
the ring of adeles over F . For each place v ∈ Σ, let Fv be the completion of F at
v. Let ov be the ring of v-integers in Fv; kv denotes the residue field of ov and $v

is a uniformizer of ov. We will denote by |x|v the absolute value on Fv. Note that
ov is the maximal compact subring of Fv. Let Bv(a, r) = {b ∈ Fv : |a− b|v ≤ r}.

As in the introduction, let G be an absolutely almost simple, simply connected
F -group which does not admit non-standard isogenies. This condition is always
satisfied if char(F ) > 3. More precisely, G admits non-standard isogenies only if
char(F ) = 3 and G is of type G2 or char(F ) = 2 and G is of type Bn, Cn, (n ≥ 2)
or of type F4, see [27, §1] and references therein.

Put G′ = G×G. Let

H = {(h, h) : h ∈ G} ⊂ G′

be the diagonal embedding of G in G′. We also write G1 = G × {1} and G2 =
{1}×G. For every group L, we put L = L(A). We will often simplify the notation
and denote G1 simply by G, but G2 will always be denoted as G2.

Abusing the notation slightly, for every g ∈ G′ and a subset B ⊂ G, we let

∆g(B) = g{(g, g) : (g, 1) ∈ B}g−1.

We adapt a similar notation for subsets of G(Fv) for all v ∈ Σ.
For i = 1, 2, let πi denote the projection from G′ onto the i-th component.

Denote by ι1 : G→ G′ the map g 7→ (g, 1) and ι2 is the map g 7→ (1, g). For every
v ∈ Σ, we let πv : G′ → G′(Fv) denote the natural projection, and ιv : G′(Fv)→ G′

denotes the natural embedding in the v-th place. Put πiv := πi ◦πv and ιiv = ιv ◦ ιi.
For L = Gi, G′, H and every v ∈ Σ, let Lv = ιv(L(Fv)). Given g = (gv) ∈ G′

and w ∈ Σ, we will let
gw = ιw ◦ πw(g).
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That is, gww = gw and gwv = 1 for all v 6= w.
Let ρ : G→ SLN be an embedding defined over F . For any v ∈ Σ, let

Kv = ι1v
(
ρ−1(SLN (ov))

)
⊂ Gv

and let K ⊂ G denote the product of Kv for all v. For m ≥ 1, let

(2) Kv[m] := ker(Kv → SLN (ov/$
m
v ov));

note that Kv = Kv. Let

K ′v := {(g1, g2) : (gi, 1) ∈ Kv}.
Define K ′ and K ′v[m] accordingly. We choose Ω0 in (1) to be K ′. For any L ⊂ Kv,
v ∈ Σ, and m ≥ 0 we defined L[m] := L ∩K[m].

For any subspace h ⊂ gw we write h[0] for the preimage of the ow-integral N×N
matrices under the restriction of the differential Dρ : g→ slN to h. More generally,
we write h[m] for the preimage of the matrices all of whose entries have valuation
at least m.

Recall that X = G′/G′(F ) and Yg = gH/H(F ) where g ∈ G′. The homogeneous
set Yg is equipped with the Hg = gHg−1-invariant probability measure µg.

Lemma 2.1. We have Stab(µg) = Hg ·C(F ), where C denotes the center of G′.

Proof. By virtue of [10, Lemma 2.2], we have

Stab(µg) = gHN(F )g−1

where N denotes the normalizer of H in G′. Since H = {(h, h) : h ∈ G} and G is
absolutely, almost simple, we conclude that N = H ·C which implies the claim. �

Lemma 2.2. For every g ∈ G′, there exists some ĝ ∈ G2 so that Yg = Yĝ.

Proof. Let g = (g(1), g(2)), then

Yg =
{(
g(1), g(2)

)
(h, h) : h ∈ G(A)

}
=
{(
g(1)h, g(2)(g(1)

)−1
g(1)h

)
: h ∈ G(A)

}
=
{

(h, g(2)(g(1))−1h) : h ∈ G(A)
}
.

The claim thus holds with ĝ =
(
1, (g(2)(g(1))−1)v

)
. �

In view of this lemma, from this point until the end of the paper, we will always
assume g ∈ G2.

2.1. Properties of a split Lie algebra. Let g be the Lie algebra of G and for
any v ∈ Σ, let gv := Lie(G)⊗ Fv. We fix w such that G is Fw-split. In particular,
Gw is a Chevalley group (see [35, §3.4.2]). Let Φ be the set of roots for Gw. Let
pw := char(kw).

Let a be a maximal split torus of gw. Then, g can be decomposed as g =
g0 ⊕

⊕
λ∈Φ gλ, where for any λ ∈ a∗

(3) gλ := {v ∈ g : ∀a ∈ a, ad(a)v = λ(a)v},
and Φ ⊂ a∗ is the set of roots for gw, i.e., the set of non-zero characters for which
(3) is non-empty (see [33, §2.6]).

For any λ ∈ Φ, there exists a one-dimensional Lie algebra gλ ⊂ g, and a one-
dimensional unipotent subgroup Uλ = {uλ(r)} ⊂ Gw such that gλ is the Lie algebra
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of Uλ (see [3, §2.3]). Set Lλ = 〈Uλ, U−λ〉. Then, for any t we can also denote by
aλ(t) the unique diagonal element in Lλ such that

aλ(t)uλ(1)aλ(t−1) = u(t2).

Fix two opposite Borel subgroups B and B− in Gw. Denote by U and U− the
unipotent radicals of B and B−, respectively, and by A = B ∩B− a maximal split
torus of Gw. For every nonnegative integer m, let

Um = U ∩Kw[m], U−m = U− ∩Kw[m], and Am = A ∩Kw[m].

Then, according to [34, §3.1.1] for any m ∈ N, we have

(4) Kw[m] = U−mAmUm.

Fix an ordering λ1, . . . , λd on Φ+ once and for all; we use the ordering −λ1, . . . ,−λd
on Φ−. In view of [34, §3.1.1] again, the product map from

∏d
i=1 U±λi [m] to U±[m]

is a bijection. For every λ ∈ Φ and every g ∈ U±[1], we define gλ to be the λ-
coordinate of g in this identification. Using (4), we can define gλ for any λ ∈ Φ and
g = u−au+ ∈ Kw[1] by taking gλ = u±λ .

For every non-negative integer m, we also define

A−m = {a ∈ A : aU2ma
−1 ⊂ U0 and a−1U−2ma ⊂ U

−
0 }.

Lemma 2.3. There exists some m0 ∈ N (depending only on the dimension of G)
such that the following holds. For every g ∈ Kw[2m0 + 1], there exists λ ∈ Φ, so
that∣∣{g′ ∈ KwA−m0

Kw : ‖(g′gg′−1)λ − I‖ ≥ q−m0
w ‖g′gg′−1 − I‖

}∣∣ ≥ q−3m0 dimG
w .

Proof. We first note that for all m ∈ N, all g′ ∈ KwA−mKw and all g ∈ Kw[2m+1],
we have

g′gg′−1 ∈ Kw[1].

Therefore (g′gg′−1)λ is defined.
Let us begin with the following claim: one can assume

(5) ‖gλ − I‖ ≥ q−cw ‖g − I‖ for some λ ∈ Φ

where c ∈ N depends only on dimG.
To see (5), note that since g ∈ Kw[1], we can write g = g−g0g+ where g0 ∈ A1,

g ∈ U1 and g− ∈ U−1 . Suppose now that (5) fails with c = 1, then ‖g0 − I‖ >
‖g± − I‖. Let λ ∈ Φ be a simple root so that |λ(g0)| is maximal. The map

r 7→
(
uλ(r)guλ(−r)

)
λ

is a rational function f1(r)
f2(r) so that coefficients of fi are bounded by � ‖g − I‖ and

|f2(r)−1| ≤ 1/2 for all |r|w ≤ 1. Therefore, there exists some r ∈ Fw with |r|w = 1
so that if we put ĝ = uλ(r)guλ(−r), then

‖ĝλ − I‖ � ‖ĝ − I‖.
Now suppose the claim is proved for ĝ. For β > 0 and ? ∈ G put

Eβ(?) = {g′ ∈ KwA−m0Kw : ‖(g′?̂g′−1)λ − I‖ ≥ β‖g′ ? g′−1 − I‖
}
.

Then,

Eβ(ĝ)uλ(r) ⊂ Eβ(g) and |Eβ(ĝ)uλ(r)| = |Eβ(ĝ)| ≥ β3 dimG.
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We thus assume that (5) is satisfied, and will show the lemma holds with λ and
m0 = c + 1. For simplicity in the notation, let us assume λ ∈ Φ+, the argument
when λ ∈ Φ− is similar. Put g̃ = aλ($−c−1

w )gaλ($c+1
w ). Then g̃ ∈ Kw[1]. Using

(4) and the decomposition of U1 into one-dimensional unipotent subgroups, we can
write

g = g−g0h1uλ(s′)h2, h1, h2 ∈ U1.

We now want to look at the decomposition of g̃ into a diagonal element and elements
of the one dimensional unipotent groups. Conjugation by aλ($−c−1

w ) expend uλ(s′)
by q2c+2

w , and for each other root σ 6= λ, it expand gσ by at most qc+1
w . we conclude

from (5) that s = q2c+2
w s′ satisfies uλ(s) = g̃λ. Moreover, for k such that |s|w = q−k,

we have
q−c−1
w ≤ |s|w = q−kw ≤ q2c+2

w q−2m−1
w = q−1

w ,

and g̃0 ∈ Kw[k + 1], g̃σ ∈ Kw[k + 1] for all σ 6= λ.
Since Kw[k + 1] is a normal subgroup of Kw, we have g̃ = hũλ(s) where h ∈

Kw[k + 1]. Moreover, for every g2 ∈ Kw[k + 1], we have

g2g̃g
−1
2 = h′′uλ(s)

where h′′ ∈ Kw[k + 1].
Altogether, there is some

g1 ∈ KwA−c−1Kw = KwA−m0Kw

so that for every g2 ∈ Kw[m0 + 1] we have g2g1gg
−1
1 g−1

2 ∈ Kw[1] and

‖(g2g1gg
−1
1 g−1

2 )λ − I‖ ≥ q−m0
w ‖g − I‖.

The proof is complete. �

3. Construction of a good place

Recall that Yg = gH(A)/H(F ), where g = (1, (gv)). In this section we show the
existence of a place w where the group

Hg,w = ∆g(Gw) = gHwg
−1

has controlled geometry.
Recall the definition of Kv and K ′v from §2. For every v ∈ Σ, let

(6) Kv,Yg := Hg,v ∩K ′v = gHvg
−1 ∩K ′v = ∆g(Kv) ∩K ′v.

In this section, we will simply write Y for Yg, and denote Kv,Yg by Kv,Y .

The following is the main result of this section.

Proposition 3.1 (Existence of a good place). There exists a place w of F such
that

(1) G is split over Fw.
(2) πw(K ′w) and πw(Kw,Y ) are hyperspecial subgroup of G′(Fw) and πw(Hg),

respectively,
(3) gw ∈ K ′w, see §2 for the notation.
(4) qw � log(volY ))2 where the implied constant depends on G.

Let us begin by recalling some standard facts from Bruhat-Tits theory.
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3.1. Bruhat-Tits theory. Let G, F as in our setting (see §2), and let v ∈ Σ.
Then

(1) For any point x in the Bruhat-Tits building of G(Fv), there exists a smooth

affine group scheme G
(x)
v over ov, unique up to isomorphism, such that: its

generic fiber is G(Fv), and the compact open subgroup G
(x)
v (ov) is the

stabilizer of x in G(Fv), see [34, 3.4.1].

(2) If G is split over Fv and x is a special point, then the group scheme G
(x)
v is

a Chevalley group scheme with generic fiber G, see [34, 3.4.2].

(3) redv : G
(x)
v (ov) → Gv

(x)(kv), the reduction mod $v map, is surjective,
which follows from the smoothness above, see [34, 3.4.4].

(4) Gv
(x) is connected and semisimple if and only if x is a hyperspecial point.

Stabilizers of hyperspecial points in G(Fv) will be called hyperspecial sub-
groups, see [34, 3.8.1] and [30, 2.5].

If G is quasi-split over Fv, and splits over F̂v (the maximal unramified extension
of Fv), then hyperspecial vertices exist; and they are compact open subgroups with
maximal volume. Moreover a theorem of Steinberg implies that G is quasi-split

over F̂v for all v, see [34, 1.10.4].
It is known that for almost all v, the groups Kv are hyperspecial, see [34, 3.9.1]

(and §2 for the definition of Kv). We also recall that: for almost all v the group G
is quasi-split over Fv, see [36, Thm. 6.7].

3.2. Adelic volumes and Tamagawa number. Fix an algebraic volume form ω
on G defined over F . The form ω determines a Haar measure on each vector space
gv := Lie(G)⊗ Fv which also gives rise to a normalization of the Haar measure on
G(Fv). We denote both these measures by |ωv|, and denote by |ωA| the product
measure on G(AF ). Then

(7) |ωA|(G(AF ))/G(F )) = D
1
2 dimG

F τ(G),

where τ(G) is the Tamagawa number of G, and DF is the discriminant of F . In the
case at hand G is simply connected, it was recently proved that τ(G) = 1, see [6,
§1.3].

3.3. The quasisplit form. The volume formula (7) relates the Haar measure on
Y to the algebraic volume form ω (and the field F ). However, the volume of our
homogeneous set Y as a subset of X depends heavily on the amount of distortion
coming from g.

Following [30, Sect. 0.4], we let G denote a simply connected algebraic group
defined and quasi-split over F which is an inner form of G. Let L be the field
associated1 to G as in [30, Sect. 0.2], it has degree [L : F ] ≤ 3. We note that G
should be thought of as the least distorted version of G.

Let ω0 be a differential form on G corresponding to ω. This can be described as
follows: Let ϕ : G → G be an isomorphism defined over some Galois extension of
F . We choose ω0 so that ω′ = ϕ∗(ω0), it is defined over F . It is shown in [30, Sect.

1In most cases L is the splitting field of G except in the case where G is a triality form of 6D4

where it is a degree 3 subfield of the degree 6 Galois splitting field with Galois group S3. Note

that there are three such subfields which are all Galois-conjugate.
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2.0–2.1] that, up to a root of unity of order at most 3, this is independent of the
choice of ϕ.

As was done in [30], we now introduce local normalizing parameters cv which
scale the volume form ω0 to a more canonical volume form on G(Fv).

For every place v ∈ Σ, choose an ov-structure on G, i.e., a smooth affine group
scheme over ov with generic fiber G as in [30, Sect. 1.2].

Let {Pv ⊂ G(Fv)} denote a coherent collection of parahoric subgroups with
“maximal volume”, see [30, Sect. 1.2] for an explicit description. Let us recall that
by a coherent collection we mean that

∏
v∈Σ Pv is a compact open subgroup of

G(AF ). Note that any F -embedding of G into GLN gives rise to a coherent family
of compact open subgroups of G(AF ) which at almost all places satisfies the above
requirements on Pv, see §3.1. At the other places we may choose Pv as above
and then use (1) in §3.1 to define the ov-structure on G(Fv). Let us also remark
that maximality of the volume implies that the corresponding parahoric is either
hyperspecial (if G splits over an unramified extension) or special with maximum
volume (otherwise).

This allows us, in particular, to speak of “reduction modulo $v”. For every place
v of F , we let Mv denote the reductive quotient of redv(Pv); this is a reductive
group over the residue field.

Let rv ∈ Fv be so that rvω
0
v is a form of maximal degree, defined over ov, whose

reduction mod $v is non-zero, and let cv = |rv|v.

3.4. Product formula. Let us use the abbreviation DL/F = DLD
−[L:F ]
F for the

norm of the relative discriminant of L/F , see [30, Thm. A]. It is shown in [30, Thm.
1.6] that

(8)
∏
v∈Σ

cv = D
1
2 s(G)

L/F ′ ·A,

where A > 0 depends only on G over F̄ and [F : Q], s(G) = 0 when G splits over F
in which case L = F , and s(G) ≥ 5 otherwise; these constants depend only on the
root system of G.

It should be noted that the parameters cv were defined using G and ω0 but will
be used to renormalize ωv on G, and hence on H.

Abusing the notation, we will speak of hyperspecial subgroups of Gw, G′w, and
Hg,w in the remaining parts of this section.

Let Σ′ ⊂ Σ denote the set of places where G is isomorphic to G over Fv and that
Kv is hyperspecial. Then Σ \ Σ′ is finite.

Lemma 3.2. Let v ∈ Σ′. Then

(1) cv|ωv|(Kv,Y ) ≤ 1.
(2) Assume gv 6∈ K ′v. Then

cv|ωv|(Kv,Y ) ≤ 1/2

Proof. In view of the definition of Kv,Y , see (6), we have

(9) Kv,Y = ∆g(Kv) ∩K ′v.
Since v ∈ Σ′, G is isomorphic to G over Fv and we have cv|ωv|(Kv) = 1 which

implies the first claim.
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To see the second claim, first note that if gv does not normalize K ′v, then gv does
not normalize π2

v(Kv), where π2
v : Gv → G(Fv) is the natural projection, see §2. In

particular,
[π2
v(Kv) : π2

v(Kv) ∩ g−1
v π2

v(Kv)gv] ≥ 2.

Now since v ∈ Σ′, we have π2
v(Kv) is a hyperspecial vertex in G(Fv), π

2
v(Kv) equals

its normalizer in G(Fv); this and the above imply part (2) in view of (9).
We recall the argument that π2

v(Kv) equals its own normalizer for the convenience
of the reader; π2

v(Kv) is the stabilizer of a hyperspecial point, xv say. Since gv
normalizes π2

v(Kv), π
2
v(Kv) also stabilizes of gvxv. If gvxv 6= xv, then π2

v(Kv)
stabilizes the geodesic between these two points which is a contradiction. �

3.5. The volume of a homogeneous set. In view of our definition of volume
and taking into account the choice of Ω0, the equation (7) implies that

(10) vol(Y ) = D
1
2 dimG

F

∏
v∈Σ

(|ωv|(Kv,Y ))
−1
,

where |ωv| is as before. This and (8) imply that

(11) vol(Y ) = AD
1
2 s(G)

L/F D
1
2 dimG

F

∏
v∈Σ

(
cv|ωv|(Kv,Y )

)−1

.

Let us note the rather trivial consequence2 vol(Y ) � 1 of (11). Below we will
assume implicitly vol(Y ) ≥ 2 (which we may achieve by replacing Ωv by a smaller
neighborhood at one place in a way that depends only on G).

Proof Proposition 3.1. Recall that Σ′ ⊂ Σ denotes the set of places where G is
isomorphic to G over Fv and that Kv and hence K ′v = {(g1, g2) : (gi, 1) ∈ Kv} is
hyperspecial. Furthermore, if gv ∈ K ′v, then

Kv,Y = ∆g(Kv) ∩K ′v
is hyperspecial in Hg,v.

Now recall from Lemma 3.2 that for all places v ∈ Σ′, we have cv|ωv|(Kv,Y ) ≤ 1.
Moreover, if v ∈ Σ′ but gv 6∈ K ′v, then

(12) cv|ωv|(Kv,Y ) ≤ 1/2.

By Chebotarev density theorem, the set

Σ′′ = {v ∈ Σ′ : G is split over Fv}
has positive density, c > 0 say, which depends only on G.

Let B be a constant depending on G which will be explicated later. Assume
now (for a contradiction) that for every v ∈ Σ′′ with qv ≤ Bc−1 log(vol(Y ))2, we
have cv|ωv|(Kv,Y )−1 ≥ 2.

Recall also that we are assuming vol(Y ) ≥ 2. The above discussion, (11), and
the prime number theorem imply that

vol(Y ) ≥ B′2B log(vol(Y ))2/(logB−log c+2 log log(vol(Y )))

where B′ depends only on G. Now if B �G 1, then

B′2B log(vol(Y ))2/(logB−log c+2 log log(vol(Y ))) > vol(Y ).

2This would also follow trivially from the definition if only we would know that the orbit
intersects a fixed compact subset.
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This contradiction finishes the proof. �

4. Deduction of Theorem 1.2 from Theorem 1.1

In this section, we complete the proof of Theorem 1.2. The proof relies on
Theorem 4.1 below, which in turn is a consequence of Theorem 1.1. It should be
noted, however, that the proof of Theorem 1.1 requires a certain uniform decay
of matrix coefficients for Hg,w where w is a good place, see §7.1. In the setting
of Theorem 4.1, the group Hg,w has Kazhdan’s property (T ), thus the required
uniform rate follows from the work of Oh [26].

As before, we let π1 denote the projection onto the first factor. Throughout this
section, the space G(A)/G(F ) is equipped with the G(A)-invariant probability
measure, we thus drop this measure from the notation.

Theorem 4.1. Assume the absolute rank of G is at least 2. There exists κ1 >
0 which satisfies the following. Let f1, f2 ∈ L2

0(G(A)/G(F )) — the orthogonal
complement of G(A)-invariant functions — be π1(Kv)-finite functions. Then

|〈g.f1, f2〉| ≤ dim〈π1(Kv).f1〉1/2 dim〈π1(Kv).f2〉1/2ΞG(Fv)(g)−κ1 ‖f1‖2 ‖f2‖2 ,
where g ∈ G(Fv), 〈π1(Kv).f〉 is the linear span of π1(Kv).f , and ΞG(Fv) is the
Harish-Chandra spherical function of G(Fv).

Let us first assume Theorem 4.1 and finish the proof of Theorem 1.2.

Proof of Theorem 1.2. First note that the theorem in the case where G is of type
A1 follows from [8]. We may, therefore, assume that the absolute rank of G is at
least 2.

By [23], see also [1, Lemma 3.22], we may restrict ourselves to smooth functions
in L2

0(G(A)/G(F )). Now by [23, Thm. 2 and Cor.], Theorem 1.2 is equivalent
to the existence of a uniform decay rate for matrix coefficients for π1(Kv)-finite
functions in L2

0(G(A)/G(F )) as claimed in Theorem 4.1. �

Proof of Theorem 4.1. Let g = (1, (gu)) ∈ G′ where gv = g and gu = 1 for all
u 6= v.

In view of our definition of the volume of a homogeneous set, there exist positive
constants κ2 and κ3 (depending only on the root system of G(Fv)) such that

‖g‖κ2 � vol(Yg)� ‖g‖κ3 .

Let w be a place obtained by applying Proposition 3.1 to Yg. In particular,

(1) G is split over Fw.
(2) K ′w and Kw,Y are hyperspecial subgroup of Gw and Hw, respectively
(3) qw � log(volYg))

2 where the implied constant depends on G.

Then, by [26, Thm. 1.1], and our assumption that the absolute rank of G is
at least two, the group Gw has property (T ). Therefore, there exists a constant
κ4, (which depends only on the type of G) so that for all Kw-finite functions
f1, f2 ∈ L2

0(G(A)/G(F )) and all hw ∈ Gw, we have

(13) |〈hw.f1, f2〉| � dim〈π1(Kw).f1〉1/2 dim〈π1(Kw).f2〉1/2‖f1‖2‖f2‖2‖hw‖−κ4

where the implicit constant depends on Gw. If char(F ) > 2 this is stated in [26,
Thm. 1.1]. A careful examination of the proof shows that (13) holds when char(F ) =
2 as well, see [26, §4.7].



PROPERTY (τ) IN POSITIVE CHARACTERISTIC 11

Using (13) as an input in the proof of Theorem 1.1, see §7.1, we conclude from
Theorem 1.1 that if f = f1 ⊗ f̄2 with fi ∈ C∞c (G(A)/G(F )) for i = 1, 2, then∣∣∣ ∫

X

f dµYg −
∫
X

f1 ⊗ f̄2 dmX

∣∣∣
=
∣∣∣〈g.f1, f2〉G(A)/G(F ) −

∫
G(A)/G(F )

f1

∫
G(A)/G(F )

f̄2

∣∣∣� ‖g‖−κS(f).

The implied multiplicative constant depends on G(A)/G(F ) and so also on
the F -structure of G. We note however, that thanks to [23], the above upgrades to
a uniform effective bound on the decay of the matrix coefficients as in Theorem 4.1
with κ1 independent of the F -form of G. This implies Theorem 4.1. �

5. Effective generation of a group at a good place

In this section, we fix a good place w and show some useful properties of Gw, see
§3 for the definition and the proof of the existence of a good place. In particular,
G is split over Fw and we can apply the notation and results from §2.1.

Recall that ow is the maximal compact subring of Fw, $w is a uniformizer of
ow, and π1(Kw) = G(ow). For any L > 0 and R ⊂ G, denote by R[L] the set of
elements in R whose entries vanish in ow/$

L
wow. For any L > 0 and r ⊂ g denote

by r[L] the set of elements in r whose entries have valuation at least L.
For every λ ∈ Φ, let Aλ be the scheme theoretic split torus in 〈Uλ, U−λ〉 ∼= SL2

which we realize as a closed Z-subscheme of G. Put

(14) A′λ = ∆g(Aλ) ⊂ Hg

the elements in A′λ will be denoted by a′λ(t). Similarly, put U ′±λ = ∆g(U±λ) ⊂ Hg

and their elements by u′±λ(s).

Note that for every g ∈ Gw, t ∈ F×w , and s ∈ Fw, we have

(15) a′λ(t)ga′λ(t)−1 = aλ(t)gaλ(t)−1 and u′λ(s)gu′λ(−s) = uλ(s)guλ(−s).
For b ∈ Fw and r > 0, let

B(b, r) := {s ∈ Fw : |b− s|w < r} .

Lemma 5.1. There exists an absolute constant κ5 such that the following holds.

(1) Assume that char(F ) > 2. For any λ ∈ Φ and every |s|w = 1, we have

Uλ[κ5] ⊂ {uλ(r2 − s2) : |r|w = 1}.
(2) Assume that char(F ) = 2. Then

{uλ(c2) : |c|w ≤ 1} ⊂ {uλ(r2 − s2) : |r|w = 1}.

Proof. Let us first assume that char(F ) > 2. Let ψs : F 2
w → Fw be defined by

ψs(t, r) = t− (r2 − s2). Then,

∂ψs
∂r

(0, 1) = −2 6= 0.

Hence, by the implicit function theorem (see [20, §4]), there exists 0 < α < 1, such
that for all t ∈ B(0, α2) there exists r ∈ B(s, α) so that ψs(t, r) = 0, i.e., t = r2−s2.
This implies the first claim with κ5 = α2.

If char(F ) = 2, then r2 − s2 = (r − s)2 which implies the claim. �
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Lemma 5.2. Recall that G does not admit any non-standard isogenies. There
exist κ6 and ` ≥ 1 with the following property. Let λ ∈ Φ. Then, there exist
h1, . . . , h` ∈ Hg,w with ‖hi‖ ≤ 1 so that every g ∈ Kw[κ6] can be written as

g = g1g2 · · · g`,
where for any 1 ≤ i ≤ `, gi ∈ hiUλ[0]h−1

i .

Proof. Clearly it suffices to prove this for a fixed λ ∈ Φ. First note that since
G = G1 (see §2) for every h = (h1, h2) ∈ Hg,w, we have

hUλh
−1 = (h1, 1)Uλ(h1, 1)−1 ⊂ Gw and Ad(h)uλ = Ad((h1, 1))uλ ⊂ gw.

Since G is simply connected and does not admit any non-standard isogenies,
there exist h′1, . . . , h

′
dimG ∈ Hg,w so that the Fw-span of {Ad(h′i)uλ} equals gw, see

[27, Prop. 1.11] and references therein. Moreover, since Kw is Zariski dense in Gw,
we can choose h′i so that ‖h′i‖ ≤ 1 for all i.

In consequence, by [3, Prop. 1.16] applied with {h′iUλh′i
−1

: 1 ≤ i ≤ dimG} and
Gw, we conclude that the product map

ϕ :
∏̀
j=1

Uj → Gw

is a separable surjective morphism, where ` is absolute and Uj ∈ {h′iUλh′i
−1

: 1 ≤
i ≤ dimG} for every 1 ≤ j ≤ `.

Thus, by the implicit function theorem (see [20, §3]), there exists κ6 so that

Gw[κ6] ⊂ ϕ
(∏`

j=1 Uj [0]
)

where Uj [0] := h′jUλ[0]h′j
−1

. The proof is complete. �

Remark 5.3. Lemma 5.2 is the only place in the paper where the assumption that
G does not admit non-standard isogenies is used.

We also need the following lemma, which deals with the case that the character-
istic of F equals 2, see Lemma 5.1.

Lemma 5.4. Assume char(F ) = 2 and let τ0 ∈ ow be nonzero. Let λ ∈ Φ. There
exists an absolute constant `′ with the following property. For every r ∈ B(0, 1),

uλ(r) = h1 · · ·h`′
where for all 1 ≤ i ≤ `′, either hi ∈ {uλ(τ0α

2) : |τ0α2| ≤ |τ0|−1} or hi ∈ Hg,w with
‖hi‖ ≤ 1.

Proof. We give a hands on proof based on direct computations. Let us begin with
the following observation: Let ϕλ : SL2 → 〈Uλ, U−λ〉 be the natural isomorphism
which maps the upper (resp. lower) triangular unipotent subgroup of SL2 to Uλ
(resp. U−λ). There exist 0 < κ7 < 1 and h1, h2, h3 ∈ Hg,w with ‖hi‖ ≤ 1 so that
every element

h ∈ ϕλ
((

τ0 0
0 1

)
SL2(o2

w[κ7])

(
τ−1
0 0
0 1

))
=: L′λ,τ0 [κ7]

can be written as a product

(16) h = h1 · · ·h6

where for every 1 ≤ j ≤ 6, hj ∈ hi{uλ(τ0α
2) : |τ0α2| ≤ 1}h−1

i for some 1 ≤ i ≤ 3.
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This is a special case of Lemma 5.2, applied with SL2 over F 2
w and the root

subgroup {uλ(r) : r ∈ F 2
w}.

We now turn to the proof of the lemma. Let |a|, |c| ≤ κ7 and put r′ = r
1+a4 , then(

r′ 1
1 0

)(
a2 0

τ−1
0 c2 a−2

)(
0 1
1 r′

)
=

(
a−2 r′a2 + r′a−2 + τ−1

0 c2

0 a2

)
.

This implies that

∆g

(
ϕλ

((
r′ 1
1 0

)))
ϕλ

((
a2 0

τ−1
0 c2 a−2

))
∆g

(
ϕλ

((
0 1
1 r′

)))
=

ϕλ

((
a−2 r′a2 + r′a−2 + τ−1

0 c2

0 a2

))
.

Now, we have(
a2 0
0 a−2

)(
a−2 r′a2 + r′a−2 + τ−1

0 c2

0 a2

)(
1 τ0(τ−1

0 ac)2

0 1

)
=

(
1 r′(1 + a4)
0 1

)
;

applying ϕλ, we conclude that

ϕλ

((
a2 0
0 a−2

))
ϕλ

((
a−2 r′a2 + r′a−2 + τ−1

0 c2

0 a2

))
uλ
(
τ0(τ−1

0 ac)2
)

= uλ(r),

where we also used r = (1 + a4)r′.
The claim follows from these computations and (16). �

Lemma 5.5. There exist C1 so that the following holds. Let m1 ∈ N, m ≥ 3m1,
and λ ∈ Φ. Let g ∈ Kw[m] satisfy ‖gλ − I‖ ≥ q−m1

w ‖g− I‖. Let mg ≥ m be so that

g ∈ Kw[mg] \Kw[mg + 1]. For every qm1
w ≤ |t|w ≤ q

(mg−m1)/2
w , and all |s|w ≤ 1,

we have∥∥∥a′λ(t)u′λ(s)gu′λ(−s)a′λ(t−1)− aλ(t)gλaλ(t−1)
∥∥∥ ≤ C1q

m1
w max{|s|w, |t|−1

w }.

If we further assume that |t|w = q
(mg−m1)/2
w ≥ C1q

2m1+3
w and |s|w ≤ C1

−1q−2m1−3
w ,

‖a′λ(t)u′λ(s)gu′λ(−s)a′λ(t−1)− I‖ ≥ q−m1−2
w ,

where the implied constant is absolute.

Proof. First note that in view of (15), we may replace a′λ and u′λ with aλ and uλ,
respectively.

The proof is based on the following observation: let g ∈ Kw[m′] for some m′ ≥ 1,
then for all s ∈ BF (0, 1) we have

uλ(s)guλ(−s) = gh(s, g)

where ‖h(s, g)‖ � ‖g − I‖|s|w and the implied constant is absolute.
Let g and t be as in the statement, and let s ∈ Bw(0, 1). Conjugating the above

with aλ(t), we conclude that

(17) aλ(t)uλ(s)guλ(−s)aλ(t−1) = aλ(t)gaλ(t−1)ht(s, g)

where where ht(s, g) = aλ(t)h(s, g)aλ(t−1), hence,

‖ht(s, g)− I‖ � qmgw ‖g − I‖|s|w � |s|w
for an absolute implied constant.
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Recall the condition ‖gλ−I‖ ≥ q−m1
w ‖g−I‖. Moreover, note that the conjugation

by aλ(t) has weight 2 for Uλ and weight ≤ 1 otherwise. We thus conclude that

‖aλ(t)gaλ(t−1)− aλ(t)gλaλ(t−1)‖ ≤ qm1
w |t|−1

w

This and (17) finish the proof of the first claim.
To see the second claim first note that aλ(t)gλaλ(t−1) = uλ(τ) where |τ | ≥

q−m1−2
w ; moreover, if |t|w = q

(mg−m1)/2
w ≥ C1q

2m1+3
w and |s|w ≤ C1

−1q−2m1−3
w ,

then
C1q

m1
w max{|s|w, |t|−1

w } ≤ q−m1−3
w .

The second claim thus follows from the first claim and the above. �

Recall from §3 that we fixed a Haar measure
∏
cv|ωv| on Hg, and in particular,

cw|ωw| on Hg,w. Unless otherwise is stated explicitly, cw|ωw| is the measures of
reference on Hg,w throughout the paper.

Lemma 5.6. Let m0 be as in Lemma 2.3. Let m ≥ 6m0 + 1. For i = 1, 2, let

Ei ⊂ KwA−m0
Kw

be two subsets so that |KwA−m0
Kw \ Ei| ≤ q−4m0 dimG

w .
Then for every g′ ∈ K ′w[m], there exist αi ∈ ∆g(Ei) and λ ∈ Φ so that

α2g
′α−1

1 = g ∈ Kw[m− 2m0] ⊂ Gw × {1}
‖gλ − I‖ � ‖g − I‖ where the implied constant depends only on dimG.

Proof. Let us write g′ = hĝ for some h ∈ Hg,w ∩K ′w[m] and ĝ ∈ Kw[m] = Gw ∩
K ′w[m]. If α ∈ ∆g(KwA−m0

Kw), then

g′α−1 = (hα−1)αĝα−1.

Note that since ĝ ∈ Kw[m], for all α as above we have αĝα−1 ∈ Kw[m− 2m0]. We
will find α1, α2 ∈ ∆g(Ei) so that α2g

′α−1
1 = α1ĝα

−1
1 .

Since ĝ ∈ Kw[m] ⊂ Kw[2m0 + 1], in view of Lemma 2.3, there exists λ ∈ Φ so
that

|Eĝ| ≥ q−3m0 dimG
w

where Eĝ =
{
y ∈ KwA−m0Kw : ‖(yĝy−1)λ − I‖ ≥ q−m0

w ‖yĝy−1 − I‖
}

.
Since h ∈ K ′w ∩Hg,w, we have

h.∆g(KwA−m0
Kw) = ∆g(KwA−m0

Kw).

In particular, the map f : ∆g(E1) → ∆g(KwA−m0Kw) defined by α 7→ hα−1 is
measure-preserving.

Altogether, and in view of our assumption on the relative measures of E1 and
E2, we may choose α1 ∈ ∆g(E1) ∩ ∆g(Eĝ) with α2 = f(α1)−1 ∈ ∆g(E2). The
lemma follows. �

6. Non-divergence of unipotent orbits

In this section we show that when X is not compact, the cusps have small
measure with respect to µg. We follow the proof of [11, Lemma 3.6.1], which relies
on the non-divergence of unipotent flows.
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Let F be a finite field such that F is a finite separable extension of F̃ := F(T ),
the field of rational functions in one variable over F, see e.g. [37, Ch. III]. Let

G̃ = ResF/F̃ (G′). Then G̃ is a semisimple F̃ -group and

G̃(AF̃ )/G̃(F̃ ) = G′(AF )/G′(F ).

Fix a good place w ∈ Σ, and let w̃ be a place of F̃ so that w|w̃. We note that

since w is a good place for G′, the group G̃ is isotropic over F̃w̃ (however, it need
not be split).

Let K ′(w̃) :=
∏
v-w̃K

′
v. Since G is simply connected, it follows from strong

approximation (see [28]) that one can write

G′(A) = K ′(w̃)
(∏

v|w̃Gv

)
G′(F ) = K ′(w̃)G̃(F̃w̃)G̃(F̃ ).

Let Γ = G̃(F̃ )∩K ′(w̃) and G̃w̃ = G̃(F̃w̃); note that Γ is a congruence subgroup of

G̃w̃. The above implies that

K ′(w̃)\G′(A)/G′(F ) ∼= G̃w̃/Γ.

Let O be the ring of w̃-integers in F̃ ; note that O is a PID. Let g̃ = Lie(G̃w̃),
and let g̃O be an O-lattice in the g̃ with the property that [g̃O, g̃O] ⊂ g̃O. As it is
done in [11], for any x ∈ X, we set

ht(x) = sup
{
‖Ad(g)u‖−1

: x = gΓ, g ∈ G̃w̃, u ∈ g̃O \ {0}
}
,

and
S(R) := {x ∈ X : ht(x) ≤ R}.

Lemma 6.1. For every m ∈ N, let

Q′m :=
{(

(g1
v), (g2

v)
)
∈ K ′ : (g1

w, g
2
w) ∈ πw(K ′w[m])

}
.

There exists κ8 so that for all x ∈ X with m ≤ ht(x)−κ8 , the map g 7→ gx is
injective on Q′m.

Proof. Fix some m ∈ N and assume that g1x = g2x for g1, g2 ∈ Q′m. Fix g̃ ∈ G̃w̃ =

G̃(F̃w̃) such that the projection to the w̃ place of x is g̃Γ. Then, g1,w̃g̃Γ = g2,w̃g̃Γ,

and so g−1
2,w̃g1,w̃ fixes Lx := Ad(g)g̃O. Note that Lx is an O-lattice in g̃. By the

definition of the height, for all u ∈ Lx we have ‖u‖ ≥ ht(x)−1.
Since the covolume of Lx is independent of x (and equals the covolume of g̃O),

by lattice reduction theory, one can find a basis u1, . . . ,ud (where d ≤ 2N2) of Lx
such that ‖ui‖ � ht(x)d, see [18, Thm. 1.2] and references therein.

Thus, by choosing the constants m,κ8 sufficiently large, we get

‖g−1
2,w̃g1,w̃ui − ui‖ < ht(x)−1 for all 1 ≤ i ≤ d.

In that case, the vector g−1
2,w̃g1,w̃ fixing the lattice Lx setwise implies that it is, in

fact, fixing Lx pointwise. Thus, g−1
2,w̃g1,w̃ belongs to the center of G̃w̃. Let g′ ∈ G′ be

so that x = g′G′(F ). Then, we have g−1
2 g1 = g′γg′−1 where γ = (γ1, γ2) ∈ G′(F )

and γi embeds diagonally in G(A). Now since g−1
2,wg1,w is central, we conclude that

(γ1
w, γ

2
w) is central, which is impossible if m is big enough. �

Proposition 6.2 (Non-divergence estimate). There are positive constants κ9 and

κ10, depending on N and [F : F̃ ], so that for any g ∈ G′ we have

µg (X \S(R))� pκ9
w R

−κ10 ,
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recall that pw = char(kw).

Proof. The proof is similar to that of [11, Lemma 3.6.1] (see [11, App. B]) where
one replaces the use of the non-divergence result by Kleinbock and Margulis [19]
with Ghosh [13]. We will go over the main steps of the proof presented in [11,
App. B] to explicate the differences.

Since O is a PID, discrete O-submodules of g̃ are free, see [13, Lemma 4.1].
Following [13, §4], for a discrete O-module ∆ = ⊕`i=1Oui, we denote ‖∆‖ = ‖u1 ∧
· · ·∧u`‖v. Then, ‖∆‖ is a “norm like” function in the language of [13] that plays the
role of the covolume of ∆ in the proof (see the proof of Lemma 4.3 and properties
N1-N3 in [13]). We refer to ∆ as an O-arithmetic lattice in

V = ⊕`i=1F̃w̃ui ⊂ g̃.

Let h ∈ G̃w̃. A subspace V ⊂ g̃ is called h-rational if V ∩ Adh g̃O is an O-
arithmetic lattice in V ; we let ‖V ‖h = ‖V ∩Adh g̃O‖. The first step is to show that
for any h there are no h-rational subspaces which are Hw invariant of low norm.

Let U = {u(t)} be a one parameter F̃w̃-unipotent subgroup of Hw, and use
Adρ̃(u(t)) in the definition of h(t) in the Proof of [11, Lemma 3.6.1], i.e. h(t) =

Adρ̃(u(t)) |V ∈ SL(V ), where V is an h-rational space for some h ∈ G̃w̃.
Now, one can follow the arguments in [11, Proof of Lemma 3.6.1] using the above

notations, Lemma 6.1, [13, Thm. 5.2], and [13, Property N2] to show that there
exist positive constants c, κ9 such that for any x ∈ πv(HgΓ)

(18) there is no x-rational, Hw-invariant proper subspace of norm ≤ cp−κ9

w̃ ,

where c is an absolute constant and κ9 depends only on dimG.
Put ξ = cp−κ9

w̃ . Since the number of x-rational proper subspaces of norm at
most ξ is finite and U ⊂ Hw, a.e. h ∈ Hw has the property that hUh−1 does not
leave invariant any proper x-rational subspace of norm ≤ ξ. Alternatively, we may
also conclude for a.e. h ∈ Hw ∩K ′v that U does not leave any proper hx-rational
subspace of norm ≤ ξ invariant.

Since µg is H-invariant and H-ergodic, by Mautner phenomenon µg is also U -
ergodic. This also implies that the U -orbit of hx equidistributes with respect to
µg for a.e. h. We choose h ∈ Hw ∩Kv so that both of the above properties hold
for x′ = hx.

Let h′ be such that x′ = h′Γw̃. Then, for any h′Γw̃-rational subspace V , if we
let

ψV (t) :=
∥∥∥Ad−1

u(t) V
∥∥∥
u(t)−1h′

=
∥∥∥Ad−1

u(t)(V ∩Adh′ g̃O)
∥∥∥ ,

then either ψV is unbounded or equals a constant ≥ ξ. Thus, by [13, Thm 4.4] there
exists a positive constant κ11 so that

µg({t : |t|w̃ ≤ r, x′u(t) /∈ S(ε−1)})� pκ11

w̃ ( εξ )αµg({t : |t|w̃ ≤ r}),
for all large enough r and ε > 0, where α = κ10 only depends on the degree of the
polynomials appearing in the matrix entries for the elements of the one-parameter
unipotent subgroup U . The lemma now follows as the U -orbit equidistributes with
respect to µg. �
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7. Invariant subgroups for the measure µ

Recall that µ is an Hg-invariant measure on Yg = gH(A)/H(F ). In this section,
we will use tools from homogeneous dynamics combined with algebraic properties of
good places which have been established in previous sections to prove Theorem 1.1.
When X is not compact, the proof will also use the non-divergence result proved
in Lemma 6.2.

7.1. Adelic Sobolev norms. Let C∞(X) denote the space of functions which are
invariant by a compact open subgroup of G(A). We follow [10, App. A] to define
Sobolev norms on C∞(X), and present some of its properties.

First, we define a system of projections prv[m] for any unitary G(Fv)-representation
for each place v such that

∑
m≥0 prv[m] = 1. For any v ∈ Σ, let Avv[m] be the

projection on Kv[m]-invariant vectors — this is simply given by averaging over the
compact open subgroup Kv[m] equipped with the probability Haar measure. Put
prv[0] := Avv[0] and prv[m] := Avv[m]−Avv[m− 1] for m ≥ 1.

LetM be the set of functions mapping Σ to the non-negative integers, such that
almost every v is mapped to zero. For any m ∈M let

‖m‖ :=
∏
v

qmvv , and pr[m] :=
∏
v

prv[mv].

Then pr[m] acts on any unitary G(A)-representation, and
∑
m pr[m]f = f for any

f ∈ C∞(X). Moreover, for any f ∈ C∞(X) and m ∈ M, the function pr[m]f is
invariant under Km :=

∏
vKv[mv].

Given an integer d ≥ 0 we define a degree d Sobolev norm by

(19) Sd(f)2 :=
∑
m

‖m‖d‖pr[m](1 + ht(x))df(x)‖22,

where ht(·) is as defined in §6. For a compactly supported smooth function on X
any of these Sobolev norms is finite. It is also easy to see that

(20) Sd(f) ≤ Sd′(f) if d < d′.

We claim that in a similar way to [10, App. A], we have the following:

S0. For any d, Sd is a pre-Hilbert norm on C∞c (X).

S1. There exists d0, depending on N , and [F : F̃ ] (see §6 for the definition of F̃ )
such that for all d ≥ d0, we have ‖f‖L∞ �d Sd(f).

S2. Given d0, there are d > d′ > d0 and an orthonormal basis {ek} of the
completion of C∞c (X) with respect to Sd which is orthogonal with respect
to Sd′ such that∑

k Sd′(ek)2 <∞ and
∑
k
Sd0 (ek)2

Sd′ (ek)2 <∞.

S3. Let g ∈ G(A) and f ∈ C∞c (X). We write g.f for the action of g on f , and
‖g‖ =

∏
v∈Σ ‖gv‖. Then, for every d ≥ 0

Sd(g.f)� ‖g‖4NdSd(f),

where the implied constant is absolute. If in addition g ∈ K, then we
have Sd(g.f) = Sd(f).

Now let us fix a good place w. Note that for every λ ∈ Φ, we have ‖u′λ(s)‖ ≤
(1 + |s|w)N for all s ∈ Fw.
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S4. For any d ≥ d0, any r ≥ 0, any g ∈ Kw[r], and any f ∈ C∞c (X), we have

‖g.f − f‖∞ ≤ q−rw Sd(f).

S5. There exist d0,M , which depend only on N , so that the following holds.
For every L, let AvL be the operation of averaging over Kw[L]. Let λ ∈ Φ
and s ∈ Fw. Put Ts = AvL ? δu′λ(s) ? AvL where ? denotes convolution of

operators. For all x ∈ X, all f ∈ C∞c (X), and d ≥ d0 we have∣∣∣Tsf(x)−
∫
f dmX

∣∣∣� q(d+2)L
w ht(x)d‖Ts‖2,0Sd(f),

where ‖Ts‖2,0 denotes the operator norm of Ts on L2
0(X,mX). Moreover,

we have

(21) ‖Ts‖2,0 � (1 + |s|w)−1/2Mq2dL
w

S6. There exist d0,M , which depend only on N , so that for all d ≥ d0 and all
λ ∈ Φ, we have

(22)
∣∣∣〈uλ(s)f1, f2〉L2(µ) −

∫
f1 dµ

∫
f̄2 dµ

∣∣∣� (1 + |s|w)−1/2MSd(f1)Sd(f2).

Indeed, the above properties can be shown arguing in a similar way to [10,
App. A4]. We only present a brief guided tour of the proof, and the implied changes
in the statements. In the proof of property S1., Lemma 6.1 replaces [10, Lemma

7.2], and so the implied constant only depends on N and [F : F̃ ]. In the proof of
property S3., for any place v and g ∈ Gv, the inequality

ht(gx)� ‖g‖2N ht(x)

follows from the definition of ht(x) (see §6), and so (except possibly a different
power in the result) the proof is the same. Properties S5. and S6. follow from
1/M -temperedness (see [23, Thm. 2]) of the natural representation of G(Fw) on
L2

0(X,mX) and L2
0(X,µ), respectively. In the case where G is type A1, this follows

from property (τ), [8]. In all other cases, G has absolute rank at least 2, and w is
so that G is Fw-split (see §3). Therefore, G(Fw) has property (T ) and the desired
1/M -temperedness follows from [26].

7.2. Generic points. Let λ ∈ Φ. Let n ∈ N. For any x ∈ X and t = $−nw , define

(23) Dnf(x) := qnw

∫
B(0,q−nw )

f(a′λ(t)u′λ(s)x) ds−
∫
X

f dµ;

see the beginning of §5, more specifically (14), for the definition of a′λ(t) and u′λ(s).
In particular, we have a′λ(t), u′λ(s) ∈ Hg,w ⊂ Hg for all t, s, λ. Therefore, they
preserve the measure µ.

A point x ∈ X is called n0-generic for λ with respect to the Sobolev norm Sd, if
for any integer ` ≥ n0, we have

(24) |D`f(x)| ≤ q−`/8Mw Sd(f)

where M is as in (22).

Proposition 7.1. If d0 is chosen large enough, depending on N , then for all d ≥ d0

the µ-measure of points which are not n0-generic for some λ ∈ Φ with respect to Sd
is � q

−n0/5M
w .
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Proof. Let λ ∈ Φ be arbitrary. For simplicity in the notation, we will write a′(t)
and u′(s) for a′λ(t) and u′λ(s), respectively.

Let ` ≥ n0 be an integer and d0 satisfy (22). Let f be a fixed function in C∞c (X).
Let us write B = B(0, q−`w ). Put

A1 = {(s1, s2) ∈ B ×B : |s1 − s2|w < q−11`/10
w }

and A2 = B ×B \A1.
For (s1, s2) ∈ B ×B, put F (s1, s2) = 〈a′(t)u′(s1 − s2)a′(t−1)f, f〉µ. If (s1, s2) ∈

A2 and |t|w ≥ q`w, then a′(t)u′(s1 − s2)a′(t−1) = u′(τ) with |τ | ≥ q0.9`
w . Hence, for

any (s1, s2) ∈ A2 and |t|w ≥ q`w, by (22) we have∣∣∣F (s1, s2)−
(∫

X

f dµ
)2∣∣∣� q−9`/20M

w Sd0(f)2.

Since the Lebesgue measure of A1 is q−21`/10, using the definition of D`f(x) and
the Fubini’s theorem, now we have∫
X

|D`f(x)|2 dµ = q2`
w

∫
B

∫
B

F (s1, s2) ds1 ds2 −
(∫

X

f dµ
)2

= q2`
w

(∫
A1

F (s1, s2) ds1 ds2 +

∫
A2

F (s1, s2) ds1 ds2

)
−
(∫

X

f dµ
)2

� 3q−9`/20M
w Sd0(f)2

Using Markov’s inequality we arrive at

(25) µ({x ∈ X : |D`f(x)| > ε})� 3ε−2q−9`/20M
w Sd0(f)2.

To conclude, we use property S2. of the Sobolev norms. That is, there are
d > d′ > d0 and an orthonormal basis {ek} of the completion of C∞c (X) with
respect to Sd which is orthogonal with respect to Sd′ so that

(26)
∑
k Sd′(ek)2 <∞ and

∑
k
Sd0 (ek)2

Sd′ (ek)2 <∞.

Put c = (
∑
k Sd′(ek)2)−1/2 and define

(27) X ′ =
⋃

`≥n0,i≥1

{
x ∈ X : |D`ei(x)| ≥ cq−`/8Mw Sd′(ei)

}
.

Using (25) and (26), we have

(28) µ(X ′)� q−n0/5M
w .

Let f ∈ C∞c (X), and write f =
∑
fkek and suppose x 6∈ X ′. Let ` ≥ n0, then

using the triangle inequality for D` we obtain

|D`f(x)| ≤
∑
k

|fk||D`ek(x)| ≤ cq−`/8Mw

∑
k

|fk|Sd′(ek)

≤ cq−`/8Mw

(∑
k

|fk|2
)1/2(∑

k

Sd′(ek)2
)1/2

= q−`/8Mw Sd(f),

where the last inequality follows from the definition of c and since {ei} is an or-
thonormal basis with respect to Sd.

This completes the proof in view of (28) as λ was arbitrary. �
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For the rest of this section, we fix some d ≥ d0 so that Proposition 7.1 holds,
and write S = Sd.

For every m, let Qm =
{

((gv), 1) ∈ K : gw ∈ π1
w(Kw[m])

}
.

Proposition 7.2. There exists κ12 such that for all c ∈ N and all large enough
m ≥ 3c, the following holds. Let g ∈ Qm satisfy gw 6= 1 and

‖gw,λ − I‖ ≥ q−cw ‖gw − I‖.
Let λ ∈ Φ. Suppose y1, y2 ∈ X are two bm/10c-generic points for the measure µ
with respect to S satisfying that y2 = gy1. Then,

|uλ(τ).µ(f)− µ(f)| � q−mκ12
w S(f)

for all τ ∈ B(0, 1) and all f ∈ C∞c (X).

Proof. As in the proof of Proposition 7.1, we write a′(t), u′(s) for a′λ(t), u′λ(s); we
also write a(t), u(s) for aλ(t), uλ(s). Recall from (15) that

a(t)ga(t−1) = a′(t)ga′(t−1) and u(s)gu(−s) = u′(s)gu′(−s).
Let us also recall that a′(t) and u′(s) belong to Hg, hence, they leave µ invariant;

while a(t), u(s) ∈ Gw and we do not have any a priori information regarding there
action on µ.

For all s and t, put

gs,t = a′(t)u′(s)gu′(−s)a′(t−1);

note that gs,t,v = gv for all v 6= w.
Apply Lemma 5.5 with m1 = c, and let m ≥ 3c. Let us write ` = b(mgw − c)/2c

where gw ∈ Kw[mgw ] \Kw[mgw + 1]. Let |t|w = q`w; we will always assume |s|w ≤
|t|−1
w . By Lemma 5.5, we have

(29)
∥∥∥gs,t,w − a(t)gλ,wa(t−1)‖ ≤ C1q

−`+c
w ;

moreover, if |t|w = q`w ≥ C1q
2c+3
w , then

(30) ‖gs,t,w − I‖ ≥ q−c−2
w .

Recall now that yi, i = 1, 2, is bm/10c-generic for µ w.r.t. S. This, together with
our choice of the integer ` ≥ bm/10c, implies that

(31)
∣∣∣q`w ∫

Bw(0,q−`w )

f(a′(t)u′(s)yi) ds−
∫
X

f dµ
∣∣∣ ≤ q−`/8Mw S(f)

for i = 1, 2.
Since y2 = gy1, we get that a′(t)u′(s)y2 = gs,ta

′(t)u′(s)y1. In particular,

f(a′(t)u′(s)y2) = f(gs,ta
′(t)u′(s)y1).

Applying (31) with y2, we thus conclude that

(32)
∣∣∣q`w ∫

Bw(0,q−`w )

f(gs,ta
′(t)u′(s)y1) ds−

∫
X

f dµ
∣∣∣ ≤ q−`/8Mw S(f).

Put ĝ = a(t)g′a(t−1) where g′v = gv for all v 6= w, and g′w = gw,λ. Then (32)
and (29) imply that if m ≥ 5c, then∣∣∣q`w ∫

Bw(0,q−`w )

f
(
ĝa′(t)u′(s)y1

)
ds−

∫
X

f dµ
∣∣∣� q−`/9Mw S(f).
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The above, (31), applied with y1 and ĝ−1.f , and property S3. yield

(33) |ĝ.µ(f)− µ(f)| � q−`/9Mw S(f).

Recall that ‖gw,λ−I‖ ≥ q−cw ‖gw−1‖. Therefore, if we write u(τ0) = a(t)gw,λa(t−1),
then q−c−2

w ≤ |τ0|w ≤ 1.
For every ρ, put ĝρ := a′(ρ)ĝa′(ρ−1). Then ĝv,ρ = ĝv and ĝw,ρ = u(ρ2τ0).

Moreover, we have

(34)
|ĝρ.µ(f)− µ(f)| = |ĝ.µ(a′(ρ−1).f)− µ(a′(ρ−1).f)|

� q−`/9Mw S(a′(ρ−1).f).

where we use the fact that µ is Hg-invariant in the first equality and (33) in the sec-
ond line. In view of property S3., we have S(a′(ρ−1)f)� max{|ρ|4Ndw , |ρ|−4Nd

w }S(f).
This and (34), imply∣∣∣ĝρ.µ(f)− µ(f)

∣∣∣� q−`/9Mw max{|ρ|4Ndw , |ρ|−4Nd
w }S(f).

Recall now that ĝ−1ĝρ = u((ρ2 − 1)τ0). Altogether we cocnlude that∣∣u((ρ2 − 1)τ0).µ(f)− µ(f)
∣∣� q−`/9Mw S(f).

for all |ρ|w = 1. We now consider two cases:

Case 1: char(F ) > 2. Then by Lemma 5.1, B(0, κ5) ⊂ {ρ2 − 1 : |ρ|w = 1}. This
and the fact that |τ0|w ≥ q−c−2

w , imply that∣∣u(τ).µ(f)− µ(f)
∣∣� q−`/9Mw S(f)

for all τ ∈ B(0, q−c−2
w κ5). Using u(ρ2τ) = a′(ρ)u(τ)a′(ρ−1) and arguing as in (34)

again, we conclude that so long as m (and hence `) is large enough,

|u(τ).µ(f)− µ(f)| � q−`/10M
w S(f)

for all τ ∈ B(0, 1); the proof is complete in this case.

Case 2: char(F ) = 2. Then by Lemma 5.1, we have∣∣u(τ).µ(f)− µ(f)
∣∣� q−`/9Mw S(f)

for all τ = τ0α
2 and α ∈ B(0, 1). Using u(ρ2τ) = a′(ρ)u(τ)a′(ρ−1) and arguing as

in (34) again, we conclude that so long as m is large enough,

(35) |u(τ).µ(f)− µ(f)| � q−`/10M
w S(f)

for all τ = τ0α
2 with |τ | ≤ qc+2

w (recall that q−c−2
w ≤ |τ0| ≤ 1).

Now by Lemma 5.4, for every r ∈ B(0, 1)

uλ(r) = h1 · · ·h`′
where `′ is absolute and hi ∈ Hg,w with ‖hi‖ ≤ 1 or hi ∈ {uλ(τ0α

2) : |τ0α2| ≤
|τ0|−1}. This and (35) complete the proof in this case as well. �

Recall that volG′ denotes our fixed Haar measure on G′. Also recall that for
every m, we let

Q′m =
{(

(g1
v), (g2

v)
)
∈ K ′ : (g1

w, g
2
w) ∈ πw(K ′w[m])

}
.
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Lemma 7.3. Assume n is so that

volG′(Q
′
n)−1 ≤ vol(Y )

4(#C(F ))
vol(Y ),

where C denotes the center of G′. There exist points y1, y2 and λ ∈ Φ so that

(1) y1 and y2 are bn/20c-generic for λ and the measure µ w.r.t. S.
(2) y2 = gy1 where g ∈ Qn−m0

\ Stab(µ). Moreover, gw 6= 1 and we have

‖gw,λ − I‖ ≥ q−m0
w ‖gw − I‖,

where m0 is as in Lemma 2.3.

Proof. We may assume vol(Y ) is large enough so that nmaybe chosen with bn/20c ≥
2m0 + 1. Let

Y ′good(R) = S(R) ∩ {y ∈ Y : y is bn/20c-generic}.
Then by Propositions 7.1 and 6.2, if R�qw 1 is large enough, we have

(36) µ(Y ′good(R)) ≥ 1− q−11m0 dimG
w .

Fix one such R for the rest of the argument, and put Y ′good = Y ′good(R).

Let H = ∆g(KwA−m0
Kw). Put

YH = {(h, y) ∈ H× Y ′good : hy ∈ Y ′good}.

Note that for every h ∈ H and all y ∈ Y ′good ∩ h−1Y ′good, we have (h, y) ∈ YH. Since

H ⊂ Hg,w leaves µ invariant, it follows from this observation and (36) that for every
h ∈ H, the fiber {y : (h, y) ∈ YH} has measure ≥ 1 − 2q−11m0 dimG

w . Therefore, by
Fubini’s theorem, there exists a subset Ygood ⊂ Y ′good with

µ(Ygood) ≥ 1− q−5m0 dimG
w

so that if for every y ∈ Ygood we put Hy = {h ∈ H : hy ∈ Y ′good}, then

|H \ Hy| < q−5m0 dimG
w .

Let {Q′n.xi : i ∈ I} be a a disjoint covering of S(R), then #I ≤ volG′(Q
′
n)−1,

moreover, since µ(Ygood) ≥ 0.9, there exists some i0 so that

µ(Q′n.xi0 ∩ Ygood) ≥ 1

2 · (#I)
.

Recall now from Lemma 2.1, that Stab(µ) = H ·C(F ). We now claim that there
exist y′1, y

′
2 ∈ Q′n.xi0 ∩Ygood so that y′2 = g′y′1 for some g′ 6∈ Stab(µ). Assume to the

contrary that for every y, y′ ∈ Q′n.xi0 ∩ Ygood, we have y′ = hy where h ∈ Stab(µ).
Then, since b 7→ bx is injective for all x ∈ S(R) and all b ∈ Q′n, see Lemma 6.1, we
have

µ(Q′n.xi0 ∩ Ygood) ≤ (#C(F )) ·m(Q′n ∩H).

From this we conclude that

volG′(Q
′
n) ≤ (#I)−1 ≤ 2µ(Q′nxi0 ∩ Ygood)

≤ 2 · (#C(F )) ·m(Q′n ∩H) ≤ 2 · (#C(F )) · vol(Y )−1

which contradicts our assumption and proves the claim.
We now use Lemma 5.6 to move g′ to g ∈ Qm−2m0

while keeping points generic;
moreover, we need gw 6= 1 and that ‖gw,λ − I‖ � ‖gw − I‖ for some λ ∈ Φ.
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Let E1, E2 ⊂ KwA−m0
Kw be so that

∆g(Ei) = Hy′i and |KwA−m0
Kw \ Ei| ≤ q−5m0 dimG

w .

For i = 1, 2, let αi ∈ Hy′i and λ ∈ Φ satisfy the conclusion of Lemma 5.6, and put

g := α2g
′α−1

1 . Note that g ∈ Qn−2m0
, since gv = g′v for any v 6= w, and by Lemma

5.6 we have
α2g

′
wα
−1
1 = gw ∈ Kw[n− 2m0] ⊂ Gw × {1}

satisfies ‖gw,λ − I‖ � ‖gw − I‖. Moreover, since αi ∈ Stab(µ) and g′ 6∈ Stab(µ),
we have g 6∈ Stab(µ).

Let yi = αiy
′
i. Since αi ∈ Hy′i , we have yi ∈ Y ′good. Furthermore, since y′2 = g′y′1,

y2 = α2y
′
2 = α2g

′α−1
1 α1y

′
1 = gy1.

It only remains to show that gw 6= 1. Assume to the contrary that gw = 1. Then
for every ` ≥ bn/20c and i = 1, 2, we have∣∣∣q`w ∫

Bw(0,q−`w )

f(a′λ(t)u′λ(s)yi) ds−
∫
X

f dµ
∣∣∣ ≤ q−`/8Mw S(f)

for all f ∈ C∞c (X). Now since gw = 1 and a′λ(t), u′λ(t) ∈ Hg,w ⊂ G′w, we have

a′λ(t)u′λ(s)y2 = a′λ(t)u′λ(s)gy1 = ga′λ(t)u′λ(s)y1

for all t, s. This and the above imply that µ(g−1.f) = µ(f). That is, g ∈ Stab(µ)
which is a contradiction. The proof is complete. �

Corollary 7.4. There exists some κ13 and L so that

|µ(b.f)− µ(f)| � vol(Y )−κ13S(f),

for every b ∈ K ′w[L] and every f ∈ C∞c (X).

Proof. Since K ′w[L] = Kw[L] · (Hg ∩ K ′w[L]) for every L ≥ 0 and Hg leaves µ
invariant, it suffices to find κ13 and L so that the claim holds for all b ∈ Kw[L].

Let n ∈ N be so that

volG′(Q
′
n)−1 ≤ vol(Y )

4(#C(F ))
vol(Y ),

see Lemma 7.3. Then by that lemma, there exist y1, y2 = gy1, and λ ∈ Φ which
are both bn/20c-generic for λ and the measure µ, so that g ∈ Qn−2m0

, gw 6= 1, and

‖gw,λ − I‖ ≥ q−m0
w ‖gw − I‖.

Let m = n−2m0, Assuming n is large enough, we have bm/10c ≥ bn/20c. Apply
Lemma 7.2 with c = m0 and these y1, y2 = gy1, and m. We thus conclude that

(37) |uλ(τ).µ(f)− µ(f)| � q−mκ12
w S(f)

for all τ ∈ B(0, 1) and all f ∈ C∞c (X).
In view of Lemma 5.2, there exist h1, . . . , h` ∈ Hg so that every b ∈ Kw[κ6] may

be written as b = b1 · · · b`, where bi ∈ hiUλ[0]h−1
i for every 1 ≤ i ≤ `.

Since hi ∈ Hg leave the measure µ invariant, and we may choose hi so that
‖hi‖ ≤ 1, the above and (37) imply the claim with L = κ6 and κ13 = ?κ12. �
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Proof of Theorem 1.1. The proof goes along the same lines as the proof of [10,
Thm. 1.5]; we recall the details for the convenience of the reader.

Let f ∈ C∞c (X). Let L be as in Corollary 7.4, and let Av be the operation of
averaging over Kw[L]. Let us also fix some λ ∈ Φ and let δu′λ(s) be the delta mass at

u′λ(s) for some s ∈ Fw. Let Ts = Av ?δu′λ(s) ?Av, where ? denotes the convolution

operation. In view of Corollary 7.4 and the fact that u′λ(s) ∈ Hg leaves µ invariant,
we conclude that

(38) |µ(f)− µ(Tsf)| ≤ vol(Y )−?(S(δu′λ(s) ?Av ∗f) + S(f)).

Therefore,

(39)
|µ(f)−mX(f)| ≤ |µ(Tsf)−mX(f)|+ vol(Y )−?(S(δu′λ(s) ?Av ∗f) + S(f))

≤ |µ(Tsf)−mX(f)|+ vol(Y )−?(1 + |s|w)4dS(f)

where we used S(δu′λ(s) ? Av ∗f ≤ (1 + |s|w)4NdS(f). We now estimate the first
term on the right side of the above. First recall from S5. that∣∣∣Tsf(x)−

∫
f dmX

∣∣∣� q(d+2)L
w ht(x)d‖Ts‖2,0S(f),

where ‖Ts‖2,0 denotes the operator norm of Ts on L2
0(X,mX). Therefore,

|µ(Tsf)−mX(f)| =
∣∣∣∫ Tsf −mX(f) dµ

∣∣∣
≤
∣∣∣∫

S(R)

Tsf −mX(f) dµ
∣∣∣+
∣∣∣∫
X\S(R)

Tsf −mX(f) dµ
∣∣∣

≤ q(d+2)L
w Rd‖Ts‖2,0S(f) + q?wR

−?‖f‖∞

≤
(

(1 + |s|w)−1/2Mq(3d+2)L
w Rd + q?wR

−?
)
S(f),

in the last inequality we used ‖Ts‖2,0 � (1 + |s|w)−1/2Mq2dL
w , see (21).

Optimizing |s|w and R, and using the fact that qw � (log vol(Y ))2, we get the
theorem from the above and (39). �
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