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Abstract

In this article, we describe all the possible discrete vertex transi-
tive actions on affine buildings with dimension at least 4 over F a non-
Archimedean local field of characteristic zero. Indeed, we classify all the
maximal such actions. We show that there are exactly eleven family of
such actions and explicitly construct them. Moreover, we show that four
of these families simply transitively act on the vertices. In particular, we
show that there is no such actions if either dimension of the building is
larger than 7, F is not isomorphic to Qp for some prime p, or building
is associated to SLn,D0 where D0 is a non-commutative division algebra.
Along the way we also give a new proof of Siegel-Klingen theorem on the
rationality of certain Dedekind zeta functions and L-functions.1

1 Introduction and statement of the results.

1.1

In the 80s, several mathematicians constructed discrete chamber transitive ac-
tions on the Bruhat-Tits buildings [Ka85, KMW90, Me86, We85]. One of the
reasons that these rare groups are interesting is because of the finite building-
like geometries that they produce. In 1987, a classification of such groups was
announced in [KLT87], in which they show that in the “generic case” the simply
transitive action does not occur. Their approach is more geometric and makes
use of similar results in the finite setting by Seitz [Se73].

In [BP89], Borel and Prasad heavily used arithmetic properties and proved sev-
eral very strong finiteness results. In particular, they show that there are only
finitely many (F,G,Γ) consisting of a non-archimedean local field F of charac-
teristic zero, an absolutely almost simple F -group of absolute rank at least 2,

∗A. S-G. was partially supported by the NSF grant DMS-0635607. Part of the research
conducted while A. S-G. was a Liftoff fellow.

12000 Mathematics Subject Classification 11J83, 11K60

1



and a discrete subgroup Γ of G(F ) which is transitive on the set of the facets
of a given type of the associated Bruhat-Tits building. In their work, they only
wanted to achieve a finiteness result. In particular, if one likes to get a quan-
titative version of their work [Be] or to describe the structure of these finitely
many possibilities for a particular given upper bound [PY08, PY07, Sa], one has
to go through the whole proof and keep track of the estimates or possibilities
of all the parameters. For instance, the relation between simply chamber tran-
sitive actions on the Bruhat-Tits building of an orthogonal group and the class
number had been also observed by Kantor [Ka90]. However R. Scharlau [Sc07]
puts it as an open problem if one can use the class number condition effectively
for a new proof of [KLT87].2

Following works on the discrete chamber transitive actions, the natural question
of existence of simply vertex transitive actions on the Bruhat-Tits building was
considered. In [CMSZ93(I), CMSZ93(II)], the problem of finding and classifying
such actions was studied. Their approach was of geometric nature. They called
a subgroup of PGLm(D), where D is a division algebra over F a local field, an
Ãm−1-group if it acts simply transitively on the vertices of the corresponded
Bruhat-Tits building. In these papers, they mainly focus on the case of m =
3 and the residue field of F of either 2 or 3 elements. To any such group,
they corresponded a presentation, called an Ãm−1-triangle presentation, such
that the Caley graph of the group with respect to this generating set gives
the 1-skeleton of the corresponded building. They essentially classified such
presentations for dimension 2 and q = 2 or 3, and then studied the embedding
problem of such a group into the appropriate linear group. In [CS98], Cartwright
and Steger constructed a family of Ãn-groups for any n ≥ 2 over a positive
characteristic local field. They give a very explicit arithmetic description of
these groups. These groups have been also used in the construction of explicit
Ramanujan complexes in [LSV05].

1.2

In the current work, we would like to classify all the discrete vertex transitive
actions on a Bruhat-Tits building of dimension at least 4 over F a local field
of characteristic zero. We show that in contrast with the positive characteristic
case and the result of [CS98], in this situation, there are only finitely many of
such actions. It is worth mentioning that by Tits’ classification of buildings [T74,
T86], any irreducible affine building of dimension at least 4 is a Bruhat-Tits
building associated to (F,G0) a pair of a non-Archimedean local field and a
simply connected, almost simple F -group. In particular, group of isometries
of the building is the group of automorphisms of G(F ), which consists of the
F -points of the adjoint form and the Galois action.

2By the extend of the results of [PY08, PY07], or the current work, it should not be hard
to show that the mentioned question has an affirmative answer.
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Theorem A [Construction]. All the following lattices act transitively on the
vertices of the corresponded Bruhat-Tits buildings. Either

Γ = NPGLm(Qp0 )(Ad({g ∈ SLm(Ol[1/p0])| ρ(g)(h′) = h′})),

where l = Q[
√
−al] is a complex quadratic extension of Q, p0 = p0 · p0 splits

over l, Ol is the ring of integers of l, g∗ is the conjugate transpose of g, and
ρ(g)(h′) = gh′g∗, h′ = q · q∗, and these parameters are given as follows.

m al p0 q

8 3 1(mod 3)


I2

I2
Y1 I2

Y1 I2

 diag( 1
2
√
−3
I4, 2I4)

7 3 1(mod 3)

 1
v I3
w Y2 I3

 diag( 1√
−3
, 1

2 ,
1

2
√
−3
I2, 2I3)

6 1 1(mod 4)

 I2
1
2I2
1
2Y3 (1− i)I2


5 3 1(mod 3)

 1
1
2I2
β
2 I2 2I2


5 3 1(mod 3)

 1
I2
Y1 I2

 diag(1, 1
2
√
−3
I2, 2I2)

5 3 1(mod 3)

 1
I2
Y4 I2

 diag(1, 1
2
√
−3
, 1

2 , 2I2)

5 1 1(mod 4)

 1
1
2I2
1
2Y3 (1− i)I2



α = 10− 3
√
−3, β = −2 +

√
−3, v = −4

 1
0
0

 , w = αv, Y1 =
[
α −4
4 α

]
,

Y2 =

 α
−α −4
4 −α

 , Y3 =
[
−2 + i 1 + i
−1 + i −2− i

]
, Y4 =

[
β
4 β

]
.

or let l = Q[
√
−7], p0 = 1+

√
−7

2 , D an l-central division algebra such that

i) invp0(D) = −invp0
(D) = 1

5 or 2
5 ,

ii) invp(D) = 0 otherwise,
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where invp(D) is the local Hasse invariants of D, τ an involution of second kind
on D, and G the unique simply connected, absolutely almost simple, unitary
group associated to (D, 1, τ), {Pp} a coherent family of parahoric subgroups of
G(Qp) such that Pp is hyper-special for all p except for p = 2, 7, P2 = G(Q2),
P7 a special parahoric, p0 an odd prime which is congruence to 1, 2, or 4 modulo
7,

Λ = G(Q) ∩
∏
p 6=p0

Pp, and Γ = NPGL5(Qp0 )(Λ).

Furthermore in the second case, Γ simply transitively acts on the vertices of the
associated Bruhat-Tits building.

Overall we give 11 new families of maximal discrete vertex-transitive actions
on Bruhat-Tits buildings of dimension at least 4. Four of these families simply
transitively act on the vertices. In the next theorem, we prove that these are
the only possible such actions, up to isomorphism.

Theorem B [Classification]. Let B be an irreducible affine building of di-
mension at least 4. Assume that there is a discrete vertex transitive action
on B. Then B is a Bruhat-Tits building associated with a pair (F,G0) of a
non-Archimedean local field and a simply connected, absolutely almost simple
F -group of type A. If F is of characteristic zero, then

i) F is isomorphic to Qp0 for an odd prime p0 which is congruence to either
1 modulo 4, 1 modulo 3, or 1,2, or 4 modulo 7.

ii) G0 is F -isomorphic to SLm, where m is either 5, 6, 7 or 8.

Furthermore any such action arises from a lattice which is a subgroup of one of
the lattices described in theorem A.

1.3 Structure of the paper.

In the second section, we shall fix some of the needed notations, and review Tits’
indices of groups of absolute type A. In the third section, we will use Margulis’
arithmeticity, describe the possible global structure of a lattice in PGLm(D0),
and recall part of Rohlfs’ maximality criteria in our setting. The fourth section is
devoted to giving a good upper-bound on the index of a “principle congruence
subgroup” in a desired maximal lattice, and description of the action on the
local Dynkin diagrams along the way. In the fifth section, we evaluate co-
volume of the “principle congruence subgroup” of the desired maximal lattices,
volume of maximal parahorics, and conclude all the needed inequalities which
are responsible for most of the results of this paper. In the sixth section, we
prove that the global structure is defined over Q, and as a consequence there
is no Galois group in the group of isometries of the building. In the seventh
section coupled with appendices A and B, we will use different information
on the Dedekind zeta and L-functions to find all the possible l’s the quadratic
complex extensions of Q over which the quasi-split inner form of G splits. By the
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end of section eight, using classification of hermitian forms over global number
fields and over division algebras, Witt ring of Q, and Brauer-Hasse-Noether
theorem, we will describe all the possible global arithmetic structures of the
desired maximal lattices. In the ninth section, we provide more information
on the structure of the desired maximal lattices by giving the possible type of
related parahorics. In section ten, we will translate our data from the adjoint
form to the simply-connected setting and calculate the number of elements of
the stabilizer of a vertex in the desired maximal lattices. In the last section,
first we show that if we choose two different set of coherent parahorics whose
types are the same up to an automorphism of local Dynkin diagrams, we end up
with the same lattices up to isomorphism. Then we describe new simply vertex
transitive actions on the building of SL5(Qp0). At the end, we will describe a
lattice in Cm, number of whose symmetries which fix the origin is tightly related
to the number of stabilizer of a vertex in the building which we have already
computed in section ten. Then using MAGMA, we will compute the number of
symmetries of such lattices. Appendix C is devoted to providing a new proof of
Siegel-Klingen theorem on rationality of certain Dedekind zeta and L-function
values, using co-volume of lattices in SLm(F ), which in part gives an upper
bound on the denominator of product of values of certain Dedekind zeta and
L-functions. Such a bound is needed to get the exact value of this product using
a software.

1.4

Acknowledgments. We are in debt to Professor G. Prasad for sending us the
preprints of his works with Professor S-K. Yeung, and special thanks to him
for reading the first draft of this work and pointing out some of the mistakes.
We would like to thank Professor G. A. Margulis, Professor G. Prasad, and
P. Sarnak for their interest in our work and their encouragement. The second
author would like to thank Professor A. Lubotzky for introducing this problem
to him. He also would like to thank Professor A. Rapinchuk for pointing out
some of the important references and Professor J. Conway for discussions about
the symmetries of lattices in Euclidean spaces.

2 Notation, conventions and preliminaries.

2.1

For a given number field k, let V (k) (resp. V∞(k), Vf (k)) be the set of places
(resp. Archimedean places, non-Archimedean places) of k. For a given place p,
let kp denote the completion of k with respect to p. If p is a non-Archimedean
place, let Op be the valuation ring of kp, πp a uniformizer, and fp the residue
field. Moreover | · |p is normalized such that |πp|p = (#fp)−1 . Let Ak be the
adele ring of k. For S a finite set of places of k, let Ak,S be the projection of
Ak onto the places outside of S. Ok denotes the ring of integers of k. hk is the
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class number of k, and Dk denotes the absolute value of the discriminant of k.
For a given local field F , let F̂ be the maximal unramified extension of F , OF
the valuation ring of F , πF a uniformizer, and fF the residue field.

2.2

We assume that reader is fairly familiar with the Bruhat-Tits theory. All the
theorems or terms of the Bruhat-Tits theory which we use can be found in [T79].
Let H/F be an absolutely almost simple of type A. If H is quasi-split, its local
Dynkin diagram is one of the followings:

(I) The split case
(II) Quasisplit, Even dim,

Split/unramified

(III) Quasisplit, Odd dim,
Split/unramified

(IV) Quasisplit, Odd dim,
Nonsplit/unramified

(V) Quasisplit, Even dim,
Nonsplit/unramified

If H is an inner form and non-split, then as we said in (3.2), H is isomorphic to
SLd,R, where R is an F -central division algebra. In this case, we call H of kind
(VI), and the absolute local Dynkin diagram is a cycle of length ind(R) · d on
which Gal(F̂ /F ) acts through a cyclic group of order d generated by a rotation
of the cycle. The relative diagram is a cycle of length d all vertices of which are
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special but not hyper-special. If H is an outer form and non-quasi-split, then
its local Dynkin diagram is one of the followings:

(VII) Non− quasisplit,
Split/unramified

(VIII) Non− quasisplit,
Nonsplit/unramified

3 Arithmetic structure and maximality.

3.1

Let G0 be an absolutely almost simple F -group, where F is a finite exten-
sion of Qp, and B = B(G0, F ) the associated Bruhat-Tits building. Since there
is transitive action on the vertices of B, G is an inner form of type A [T79].
Thus G0 = SLn,D0 where D0 is a F -central division algebra [PR94, chapter ?].
Tits [T74] proved that for n > 4, the group of combinatorial automorphisms of
B is isomorphic to Ad(G0)(F ) o Aut(F ) = PGLn(D0) o Aut(F ). By a linear
action on B, we mean an action which arises from a subgroup of PGLn(D0).
Any discrete action on B corresponds to Γ̂0 a discrete subgroup of Aut(B).
Since Aut(F ) is a finite group, Γ0 = Γ̂0 ∩ PGLn(D0) is a discrete subgroup
of PGLn(D0) which is of finite index in Γ̂0. In particular, if Γ̂0 is a lattice in
Aut(B), so is Γ0 in PGLn(D0). Consequently any discrete transitive action on
B determines co-compact lattices Γ̂0 and Γ0 in Aut(B) and PGLn(D0), respec-
tively. Let Ad : SLn,D0 → PGLn,D0 be the adjoint map and Γ0 the pre-image
of Γ0 under the adjoint map from SLn(D0) to PGLn(D0).

3.2

In this paper, we will restrict ourselves to the case of n > 4 (Some of the
statements are also valid for 2 ≤ n ≤ 4.) In particular, by Margulis’ arithmetic-
ity [Ma91], Γ0 is an arithmetic subgroup. This means that there is a number
field k, a non-Archimedean place p0, a simply connected absolutely almost sim-
ple k-group G with the following properties:

i) kp0 is isomorphic to F .

ii) G0 is kp0-isomorphic to G, where F is identified with kp0 by means of the
above isomorphism.

iii) There is K a compact subset of G(Ak,S), where S = V∞(k) ∪ {p0}, such
that Λ projection of G(k) ∩K to the p0 factor is commensurable to Γ0.
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Since Γ0 is a co-compact lattice and because of (iii), we further know:

iv) G is k-anisotropic.

v) G is kp-anisotropic, for any p ∈ V∞(k). In particular, k is totally real.

By classification of possible A-forms [PR94, Chapter 2], we know that if G is
an inner form of type A and k-anisotropic, then there is a k-central division
algebra D of index m such that G = SL1,D, where Md(D)⊗k kp0 ' Mn(D0) as
kp0-algebras. Hence for m > 2 there is no inner form of type A which satisfies
both (iv) and (v). If G is an outer form of type A, then there are

i) l a quadratic extension of k such that p0 splits over l, i.e. l⊗kkp0 ' lP⊕lP̄,
and because of the above property (v), l is totally complex,

ii) D an l-central division algebra such that

Md(D)⊗k kp0 ' Mn(D0)⊕Mn(D0),

iii) τ an involution of second kind on D, whose restriction to l is the generator
of the Galois group of l/k,

iv) h a non-degenerate Hermitian form on Dd with respect to τ ,

such that G = SUh. (For the definition of undefined terms, we refer the reader
to [PR94, Chapter 2].) Following [BP89], let G/k be the unique inner form of G
which is k-quasi-split, i.e. G ' SUh0 where h0 is a hermitian form on lind(D)·d,
which is either [

0 I r
2

I r
2

0

]
or

 1 0 0
0 0 I r−1

2

0 I r−1
2

0

 ,
where r = ind(D) · d.

3.3

When p is a finite place, Ad(G)(kp) acts on Dp the local Dynkin diagram. Let
ξp : Ad(G)(kp) → Aut(Dp) be the corresponded homomorphism. The simply
connected group acts trivially on Dp, i.e. Ad(G(kp)) is a subgroup of ker(ξp).
On the other hand, the short exact sequence 1→ µ→ G→ Ad(G)→ 1 gives

1→ µ(k) → G(k) → Ad(G)(k) δ−→ H1(k, µ)
↓ ↓ ↓ ↓

1→ µ(kp) → G(kp) → Ad(G)(kp)
δp−→ H1(kp, µ)

Moreover, when p is a finite place, H1(kp,G) = {1}. Therefore H1(kp,G)
can be identified with Ad(G)(kp)/Ad(G(kp)). In particular, ξp induces a ho-
momorphism from H1(kp, µ) to Aut(Dp). Let us denote it also with ξp, and
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Ξp = Im(ξp).

There is a correspondence between parahoric subgroups of G(kp) up to conju-
gacy and subsets of Dp, called their type. {Pp}p∈Vf (k) a collection of parahoric
subgroups Pp of G(kp) is said to be coherent if

∏
p∈V∞(k) G(kp) ·

∏
p∈Vf (k) Pp is

an open subgroup of G(Ak). Let Vf (k)◦ = Vf (k) \ {p0}, and Pp0 a fixed stan-
dard parahoric subgroup of G(kp0) with maximal volume. Θ = {Θp}p∈Vf (k)◦

collection of types is called a p0-global-type if the standard parahoric subgroups
of type Θp form a coherent collection. A type Θp is called maximal if Dp \ Θp

the complement is an orbit of a subgroup of Ξp. A p0-global-type {Θp}p∈Vf (k)◦

is called maximal if all Θp’s are. For a given type Θp ⊆ Dp, let ΞΘp be the
stabilizer of Θp in Ξp, and H1(kp, µ)Θp the stabilizer of Θp in H1(kp, µ). For
Θ = {Θp}p∈Vf (k)◦ a given p0-global-type, let

δ(Ad(G)(k))◦Θ = δ(Ad(G)(k)) ∩
∏

p∈Vf (k)◦

H1(kp, µ)Θp , and

δ(Ad(G)(k))Θ = δ(Ad(G)(k)) ∩ {1} ·
∏

p∈Vf (k)◦

H1(kp, µ)Θp ,

where {1} is the identity element in H1(kp0 , µ). By virtue of Rohlfs’ maximality
criteria, one can prove the following theorem for Γ0.

Theorem 1. There is {Pp}p∈Vf (k)◦ a coherent collection of parahoric subgroups
Pp of maximal type Θp such that

i) If we set Λ = G(k) ∩
∏

p∈Vf (k)◦ Pp, Γ = NG(kp0 )(Λ), Λ = Ad(Λ), and
Γ = NAd(G)(kp0 )(Λ). Then Γ0 ⊆ Γ & Γ0 ⊆ Γ.

ii) Γ and Γ are lattices in G(kp0) and Ad(G)(kp0), respectively.

iii) Λ = Γ ∩ G(k).

iv) The following sequence is exact

1→ µ(kp0)/µ(k)→ Γ/Λ→ δ(Ad(G)(k))Θ → 1.

where Θ = {Θp}p∈Vf (k)◦ . Moreover

Γ/Λ ' δ(Ad(G)(k))◦Θ.

Proof. See [CR97, R79], or [BP89, Propositions 1.4, 2.9].

4 An upper bound for #Γ/Λ.

4.1

Since G is an inner form of G, their centers are k-isomorphic. Hence the
following sequence is exact

1→ µ→ Rl/k(µm) N−→ µm → 1,
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where µm is the k-group of mth-roots of unity and N is induced by the norm
map. It arises to the following long exact sequence

µm(l)→ µm(k)→ H1(k, µ)→ H1(k,Rl/k(µm))→ H1(k, µm).

Consequently

1→ µm(k)/N(µm(l))→ H1(k, µ)→ ker(l×/(l×)m → k×/(k×)m)→ 1.

Let l0/(l×)m = ker(l×/(l×)m → k×/(k×)m). If m is odd, then µm(k) =
N(µm(l)), and so H1(k, µ) ' l0/(l×)m. Similarly H1(kp, µ) = {1}, for any
p ∈ V∞(k). On the other hand, the following diagram is commutative and the
horizontal sequences are “exact”.

Ad(G)(k) δ−→ H1(k, µ) → H1(k,G)
↓ ↓ ↓'∏

p∈V∞(k) Ad(G)(kp)
(δp)−−→

∏
p∈V∞(k)H

1(kp, µ) →
∏

p∈V∞(k)H
1(kp,G),

(1)
where the vertical correspondence is because of Hasse local-global theorem [PR94].
Thus δ(Ad(G)(k)) = l0/(l×)m.

Now assume m is even. Since l is totally complex, and k is totally real, we have

1→ {±1} → H1(k, µ)→ l0/(l×)m → 1
↓ ↓ ↓

1→ {±1} → H1(kp, µ)→ 1
(2)

for any p ∈ V∞(k). In particular, H1(k, µ) ' {±1} o l0/(l×)m as the first row
splits. On the other hand, G(kp) Ad−−→ Ad(G)(kp) is surjective, for any p ∈ V∞(k).
So the fiber over the trivial element in H1(kp,G) is trivial in H1(kp, µ). Thus
combining with (1) and (2), we again have δ(Ad(G)(k)) ' l0/(l×)m.

4.2

Looking at the local Dynkin diagrams given in (2.2), one can see that Ξp = {1}
except possibly when

i) p splits over l, i.e. l ⊗k kp = lP ⊕ lP̄ where lP and lP̄ are isomorphic to
kp.

ii) m is even, and p is a prime over l, i.e. l ⊗k kp = lp is an unramified field
extension of kp.

iii) m is even, p is a ramified prime over l, and G is quasi-split over kp.

If G splits over k̂p, then since Ξp is a subquotient of Ξ̂p (e.g. see [BP89, Lemma
2.3]) and the later is generated by πp(k̂×p )m, after identifying H1(k̂p, µ) with
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k̂×p /(k̂
×
p )m, one can describe the action of l0/(l×)m on the local Dynkin diagram

in the first and the second cases:
i) Let p be a finite place on k which splits over l. Then G ' SLnp,Dp where Dp

is a kp-central division algebra and dp · np = m for dp = ind(Dp). If we identify
l0/(l×)m with δ(Ad(G)(k)) via the isomorphism in (4.1), then it acts on Dp via
the following homomorphism to Z/mZ

x(l×)m 7→ dpvP(x) mod m.

ii) Let m be even and p a finite place on k which is also a prime over l. Then
Ξp is a group with two elements generated by ξp(πp

m
2 (l×p )m).

iii) To understand the third case, one can identify Ξp with T(kp)/T 0 ·Ad(T(kp)),
where T is a maximal kp-torus, T its image under the adjoint map, and T 0 =
{t ∈ T(kp)| ∀α ∈ Xkp(T) |α(t)| = 1}, and deduce that πPπP

−1(l×)m acts non-
trivially on Dp and so give rise to the generator of Ξp. If P does not divide 2,
then one can choose a trace less uniformizer πP, and so (−1)(l×)m gives us the
generator.

4.3

For any p ∈ Vf (k), H1(k, µ) acts on Dp via ξp. Let ξ : H1(k, µ)→
∏

p∈Vf (k) Ξp

be the corresponded homomorphism, and ξ◦ : H1(k, µ) →
∏

p∈Vf (k)◦ Ξp. Here
after identifying δ(Ad(G)(k)) with lo/(l×)m via isomorphism given in (4.1), we
describe

lξ/(l×)m = ker(ξ) ∩ δ(Ad(G)(k)) & lξ◦/(l×)m = ker(ξ◦) ∩ δ(Ad(G)(k)).

Let x ∈ l. The fractional ideal generated by x can be written in a unique way
as product of prime ideals∏

P

Pi1P
i2 ·
∏
p

p′
i′ ·
∏
P′′

P′′
i′′
,

where intersection of p = PP, p′, and p′′ = P′′P′′ with Ok are prime ideals,
P 6= P, i.e. p splits over l, and P′′ = P′′, i.e. p′′ is ramified over l. If x is in l0,
then, by definition, Nl/k(x) is in (k×)m, and so m divides i1 + i2, 2i′, and i′′.
Moreover by discussions in (4.2), having this decomposition, we can understand
action of x on the local Dynkin diagrams for primes which are unramified.
Indeed x induces a trivial action on local Dynkin diagrams Dp (resp. Dp′) if
and only if m divides dpi1 (resp. i′). Let

T1 = {p ∈ Vf (k)| p splits/l & G not split/kp},

and T ◦1 = T1 \ {p0}. Let T l1 be a subset of V (l) such that

{P ∈ V (l)| ∃p ∈ T1 : P|p} = T l1 t T l1.
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Then by the above discussion

0→ (lm ∩ l0)/(l×)m → lξ/(l×)m
(vP)

P∈Tl1−−−−−−→ (Z/mZ)#T1 , (3)

where lm = {x ∈ l | ∀P ∈ V (l) : m|vP(x)}. On the other hand, as it is discussed
in [BP89, Proposition 0.12],

1→ Ul/U
m
l → lm/(l×)m → P ∩ Im/Pm → 1,

where I is the group of all fractional ideals, P is the group of principle fractional
ideals, and Ul is the group of units of Ol. By virtue of Dirichlet’s unit theorem,
Nl/k induces an isomorphism between the non-torsion factors of Ul and Uk.
Therefore

#lm ∩ l0/(l×)m ≤ #((lm ∩ l0 ∩ Ul) · Uml )/Uml ·#Cl,m ≤ #µm(l) · hl,m,

where Cl,m is the subgroup of all elements of the class group of l whose order is
a divisor of m, and hl,m = #Cl,m. Combining with (3), we get

#lξ/(l×)m ≤ m#T1 · hl,m ·#µm(l),

and similarly
#lξ◦/(l×)m ≤ m#T◦1 +1 · hl,m ·#µm(l). (4)

Let Θ be as in theorem 1. Then clearly

#δ(Ad(G)(k))◦Θ ≤ #lξ◦/(l×)m ·
∏

p∈V ◦(k)

#ΞΘp .

Hence by (1), (4), and the above inequality,

#Γ/Λ ≤ m#T◦1 +1 · hl,m ·#µm(l) ·
∏

p∈V ◦(k)

#ΞΘp . (5)

5 Volume formula and estimates.

5.1

Throughout this paper, we will use notations and results of [P89] and [BP89].
Here we will recall Prasad’s result and adapt it to our setting. Let {Pp}p∈V ◦(k)

be as in theorem 1. Let G be the unique k-inner form of G which is k-quasi-split.
Let {Pm

p }p∈Vf (k) and {Pp}p∈Vf (k) be coherent families of parahoric subgroups
Pm

p (resp. Pp) of G(kp) (resp. G(kp)), such that, for any p, volume of Pm
p

(resp. Pp) is maximum among all parahoric subgroups of G(kp) (resp. G(kp)).
It describes a unique parahoric subgroup up to an element of Ad(G)(kp) (resp.
Ad(G)(kp)), unless G (resp. G) is of kind (IV). In that case, Pm

p (resp. Pp)
corresponds to the right special vertex in the diagram given in 2.2. (Since
hyper-special parahoric subgroups, if exists, are of maximum volume among the

12



parahoric subgroups [BP89], it is clear that such a coherent collection exits.)
Bruhat-Tits theory associates Gp (resp. Gm

p , Gp) an Op-smooth scheme to each
parahoric Pp (resp. Pm

p ,Pp). Let Gp (resp. G
m

p , Gp) be its (resp. their)
special fiber(s). Let Mp (resp. M

m

p , Mp) be the reductive part of Gp (resp.
G
m

p , Gp). Type of the semisimple part of Mp can be determined by dropping
Θp the vertices corresponded to the type of Pp from the local Dynkin diagram.

5.2

Let vol be the unique Haar measure on G(kp0) such that vol(Pm
p0

) = 1. Then
the main result of [P89] says that

vol(G/Λ) = D
1
2 (m2−1)

k ·
(

Dl

D2
k

) 1
2 s(G)

·

(
m−1∏
i=1

i!
(2π)i+1

)d

· E ,

where d = dimQ k, s(G) = 1
2 (m− 2)(m+ 1) for m even, s(G) = 1

2 (m− 1)(m+ 2)
for m odd, E =

∏
p∈Vf (k) e(Pp), and

e(Pp) =
q

(dim Mp+dimMp)/2
p

#Mp(fp)
.

For almost all p, Pp is a hyper-special parahoric subgroup, in which case, e′(Pp)
equals to the local factor of

Z(l/k,m) = ζk(2) · Ll/k(3) · . . . · ∗(m),

where the last term is either ζk(m) if m is even, or Ll/k(m) if m is odd. Thus

vol(G/Λ) = D
1
2 (m2−1)

k ·
(

Dl

D2
k

) 1
2 s(G)

·

(
m−1∏
i=1

i!
(2π)i+1

)d

·Z(l/k,m)·
∏

e′(Pp), (6)

where e′(Pp) is one for almost all p.

Lemma 2. For any p, e′(Pp) is a rational integer.

Proof. It is clear that if P′p contains Pp, then e′(Pp) is an integral multiple
of e′(P′p). So without loss of generality we can assume that Pp is a maximal
parahoric.

i) p splits over l: The local Dynkin diagram of G (resp. G) over kp is of
type (VI) (resp. I) in 2.2. Hence there is no difference between maximal
parahorics and

e′(Pp) =
m−1∏

dp-i,i=1

(qip − 1).

13



ii) p a prime over l, and G quasi-split over kp: Either G’s local Dynkin
diagram is either of type (II) or (III). In the either case, for some i between
1 and dm/2e,

e′(Pp) =
i′∏
j=1

qj+m−i
′

p − (−1)j+m−i
′

qjp − (−1)j
,

where i′ = 2i− 2.

iii) p a prime over l, and G not quasi-split over kp: In this case, the local
Dynkin diagram of G (resp. G) over kp is of type (VII) (resp. (II)). Hence
for some i between 1 and m/2,

e′(Pp) =
i′∏
j=1

qj+m−i
′

p − (−1)j+m−i
′

qjp − (−1)j
,

where i′ = 2i− 1.

iv) p ramified over l, and G quasi-split over kp: If m is odd, then G/kp is of
type (IV) and for some i

e′(Pp) =

∏m−1
2

j=i (q2j
p − 1)∏m+1

2 −i
j=1 (q2j

p − 1)
.

If m is even, then G/kp is of type (V) and for some i

e′(Pp) =

∏m
2
j=i(q

2j
p − 1)∏m

2 −i+1
j=1 (q2j

p − 1)
· (q

m
2 −i+1

p + 1).

v) p ramified over l, and G not quasi-split over kp: In this case, m is even
and G (resp. G) over kp is of type (VIII) (resp. (V)). Hence for some i

e′(Pp) =

∏m
2
j=i(q

2j
p − 1)∏m

2 −i+1
j=1 (q2j

p − 1)
· (q

m
2 −i+1

p − 1).

To finish proof of the lemma, it is enough to note that for any non-negative
integers i and i′

Qi,i′(x, y) =
i′∏
j=1

xj+i − yj+i

xj − yj

is an integral polynomial in two variables x and y (since
∏i′

j=1
xj+i−1
xj−1 ∈ Z[x].)
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Lemma 3. In the above setting,

R(l/k,m) = D
1
2 (m2−1)

k ·
(
Dl

D2
k

) 1
2 s(G)

·

(
m−1∏
i=1

i!
(2π)i+1

)d
· Z(l/k,m) =

cm
2d(m−1)

ζk(−1) · Ll/k(−2) · . . . · ∗(1−m),

where cm is equal to 1 (resp. (−1)m/2) if m is odd (resp. even), and the last
term is either ζk(1−m) if m is even, or Ll/k(1−m) if m is odd.

Proof. When m is odd, this is observed in [PY08]. One can verify it by induction
onm, using functional equations of the Dedekind zeta functions and L-functions.

Corollary 4. vol(G/Λ) is an integral multiple of R(l/k,m).

Proof. This is a consequence of equation (6), lemma 2, and lemma 3.

5.3

Let K̂ (resp. K, K) be the stabilizer of a vertex in Aut(B) (resp. PGLn(D0),
SLn(D0)). Then K̂ = K o Aut(F ), K ' PGLn(OD0), and K ' SLn(OD0). Let
v̂ol (resp. vol, vol) be a Haar measure on Aut(B) (resp. PGLn(D0), SLn(D0))
such that v̂ol(K̂) = 1 (resp. vol(K) = 1, vol(K) = 1). Since Γ̂0 transitively acts
on the vertices of B

v̂ol(Aut(B)/Γ̂0) =
1

#Γ̂0 ∩ K̂
.

Hence,

vol(PGLn(D0)/Γ0) =
#Γ̂0/Γ0

#Γ̂0 ∩ K̂
&

vol(G/Λ) =
#Γ̂0/Γ0

#Γ̂0 ∩ K̂
· #K/Ad(K)

#PGLn(D0)/PSLn(D0)
· 1

#µ(k)
· #Γ/Λ

#Γ/Γ0

=
#Γ̂0/Γ0

#Γ̂0 ∩ K̂
· 1
n
· 1

#µ(k)
· #Γ/Λ

#Γ/Γ0

. (7)

Corollary 5. If (l, k) is an admissible pair of number fields, then any prime
factor of the numerator of R(l/k,m) is either a prime factor of #Γ̂0/Γ0 (and
consequently #Aut(F )), or m.

Proof. This is a direct consequence of theorem 3.3, corollary 4, and equation (7).
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From equations (6) and (7), we further get #bΓ0/Γ0

#µ(k)·#Γ/Γ0·#bΓ0∩ bK is equal to

n

#Γ0/Λ
·D

1
2 (m2−1)

k ·
(
Dl

D2
k

) 1
2 s(G)

·

(
m−1∏
i=1

i!
(2π)i+1

)d
· Z(l/k,m) · E ′,

where E ′ =
∏
e′(Pp).

Corollary 6 (Main Inequality). In the above setting

#Γ̂0/Γ0 ≥
n · e′(Pp0)

m
· E ′′◦ · B(G) · V dm

hl,m ·#µm(l)
· Z(l/k,m),

where B(G) = D
1
2 (m2−1)

k ·
(
Dl
D2
k

) 1
2 s(G)

, Vm =
∏m−1
i=1

i!
(2π)i+1 , and

E ′′◦ =

∏
p6=p0

e′(Pp)

m#T◦1 ·
∏

p∈V ◦(k) #ΞΘp

.

In particular, if dimQ k = d, we can take d as an upper bound.

Proof. From equations (6) and (7), we get

#Γ̂0/Γ0

#µ(k) ·#Γ/Γ0 ·#Γ̂0 ∩ K̂
=

n

#Γ0/Λ
·B(G) · V dm · Z(l/k,m) · E ′,

Hence, by inequality (5), we get the claimed. To complete the proof, it is enough
to note that Γ̂0/Γ0 can be embedded into Aut(F ) = Aut(kp0), and so it has at
most d elements.

Lemma 7. Both n·e′(Pp0 )

m and E ′′◦ are at least 1, when m > 4.

Proof. Let us start with the first factor. If D0 is commutative, i.e. D0 = F ,
then clearly the first factor is 1 and there is nothing to discuss. If not, then
as discussed in the proof of lemma 2, e′(Pp0) =

∏m−1
dp0 -i,i=1(qip − 1). To see why

both of the factors are at least 1, it is enough to note that 2m−1 − 1 > m2/2,
when m > 4, and use the formula for e′(Pp) given in lemma 2.

Lemma 8. Z(l/k,m) > Z(m) > 1, where

Z(m) =


∏m−1

2
i=1 ζ(2di)

1
2 2 - m

∏m
2 −1
i=1 ζ(2di)

1
2 · ζ(dm) 2|m

Proof. This is a direct consequence of [PY08, lemma 1].
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Corollary 9 (The First Estimate). In the above setting, we have

f(m, d, d̂, s) =
[
(d̂ · 50(s− 1)s ·m)1/d · h(s)

Vm

] 2
m2−1−2s

≥ D1/d
k ,

where d̂ = #Γ̂0/Γ0, h(s) = Γ(s)ζ(s)2

e0.1(2π)s and s > 1.

Proof. Using Brauer-Siegel theorem and a result of Zimmert [Z81], Prasad and
Yeung [PY08] get the following inequality for the class number of l

1
hl
≥ 1

50s(s− 1)
· 1
h(s)d

· 1

D
s/2
l

. (8)

Let d̂ = #Γ̂0/Γ0. By lemmas 7 and 8, and inequality (8), we have

d̂ ≥ B(G) · V dm
hl,m ·#µm(l)

≥
D

1
2 (m2−1)

k ·
(
Dl
D2
k

) 1
2 s(G)

· V dm

50s(s− 1) ·m · h(s)d ·Ds/2
l

≥
D

1
2 (m2−1−2s)

k · V dm
50s(s− 1) ·m · h(s)d

,

which finishes the proof. (Here we used the fact that Dl ≥ D2
k.)

Corollary 10 (The Second Estimate). With the same notations as before, we
have [

d̂ · 50s(s− 1) ·m
Z(m)

·
(
h(s)
Vm

)d
·Ds(G)− 1

2 (m2−1)

k

] 2
s(G)−s

≥ Dl

Proof. It is a corollary of Main Inequality, lemma 8, and inequality (8).

When we have a candidate for an admissible pair (k, l), we check the following
inequality, which follows from the Main Inequality, lemma 7, and lemma 8.

Corollary 11 ((k, l)-Checker). d̂ ≥ B(G)·V dm
hl,m·#µm(l) .

6 k = Q.

6.1

Prasad and Yeung [PY08, Proposition 2] showed that if k is a totally real
number field of degree d 6= 1. Then we get the following bounds on D

1/d
k .

d ≥ 2 3 4 5
D

1/d
k ≥ 2.23 3.65 5.18 6.8

(9)

At this point, we apply The First Estimate to get an upper bound on D1/d
k and

apply the above mentioned result.
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Lemma 12. If k is an admissible number field of degree d, then we have the
following.

m ≥ 13 9 6 5
d ≤ 1 2 3 4

In particular, for m ≥ 13, k = Q.

Proof. f(m, d, d̂, s) is clearly increasing in d̂ for s less than (m2−1)/2, and so it
is at most f(m, d, d, s). On the other hand, f(m, d, d, s) is at most f(m, e, e, s),
for any m, d, and s < (m2 − 1)/2, and it is decreasing in d for d > e. It is also
decreasing in m, for m > 19, since (i− 1)! > (2π)i for i ≥ 19.

By the above discussion and calculating f(n, e, e, 3) for n between 19 and 13,
we get an upper bound 2.16 for D1/d

k . Therefore by table 9, we get that d = 1,
and thus k = Q.

m 19 18 17 16 15 14 13
f(m, e, e, 3) 1.47 1.55 1.64 1.75 1.87 2.00 2.16

The rest of the claim also follows by similar argument and calculating appro-
priate f(m, d, d, s). Here are the needed f(m, d, d, s) values.

m 12 11 10 9
f(m, 3, 3, 3) 2.34 2.57 2.85 3.21

,
m 8 7 6

f(m, 4, 4, 2) 3.62 4.24 5.17
.

The last needed value is f(5, 5, 5, 2) = 6.58.

6.2

Let d = 2 and m between 9 and 13. We can calculate f(m, 2, 2, 2.5) to get an
upper bound on Dk.

m 12 11 10 9
Dk ≤ 5 6 8 10
Dk 5 5 5, 8 5, 8

For each of the above possible discriminant, we will apply The Second Estimate,
and we get the following upper bounds for Dl, which are impossible as the
smallest Dl for l a totally complex quartic is 117. (We set s=2.5)

Dk \m 12 11 10 9
5 34 45 85 103
8 75 113

Corollary 13. For m ≥ 9, k = Q.
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6.3

Let d = 3. Again, we calculate f(m, 3, 3, 2.5) to get an upper bound for Dk, and
then use the list of cubic fields [1, t33.001]to write the possible discriminants.

m 8 7 6 5
Dk ≤ 49 81 154 389
Dk 49 49, 81 49, 81, 148 49, 81, 148, 169, 229, 257, 316, 321, 361

As before, for each of the above possible Dk, we apply The Second Estimate
(for s=2), and get the following upper bounds for Dl and δl/k = Dl/D

2
k.

Dk \m 8 7 6 5
49 (2589, 1) (6009, 2) (46276, 19) (70236, 29)
81 (6779, 1) (34516, 5) (83047, 12)
148 (24284, 1) (101528, 4)
169 (106119, 3)
229 (117429, 2)
257 (122033, 1)
316 (130736, 1)
321 (131422, 1)
361 (136668, 1)

To get more information, we appeal to the table of totally complex number fields
of degree 6 [3, t60.001], and observe that because of the above restrictions,

(m,Dk, δl/k) ∈ {(5, 49, 7), (5, 81, 3), (5, 148, 4), (6, 49, 7), (6, 81, 3)}.

Furthermore there is a unique number field with Dl = −492 × 7, which is
l = Q(ζ7) where ζ7 is a primitive 7th root of unity, hl = 1, and the group of
roots of unity in l has 14 elements. Using these data, we can use (k, l)-Checker,
to see that this pair is not possible for m = 6, and for m = 5, as it has been
computed in [PY08, Proof of theorem 1], the numerator of R(l/k, 5) has a prime
factor other than 3 and 5. Hence it is not an admissible pair, by corollary 5.

Similarly there is a unique number field with Dl = −812× 3, which is l = Q(ζ9)
where ζ9 is a primitive 9th root of unity, hl = 1, and the group of roots of unity
in l has 18 elements. Again by (k, l)-Checker, we can see that this pair is not
acceptable for m = 6. For m = 5, we once more refer to [PY08] for the compu-
tation of value of R(l/k, 5), and notice that its numerator is not a product of a
power of 3 and a power of 5. Therefore, by corollary 5, it is not an admissible
pair.

Once more, looking at the table, we see that there is a unique totally complex
number field with Dl = −1482× 4. Moreover its class number is 1, and it has 4
roots of unity. (k, l)-Checker says that such a pair is not admissible for m = 5.
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6.4

Let d = 4. Then by the discussion in 6.1, the only possible value for m is 5.
To get an upper bound for Dk, we again use The First Estimate. Calculating
f(5, 4, 4, 2.5) gives us that Dk ≤ 2222. Looking at the table of totally real
quartic number fields [2, t44.001], we see that there are exactly 6 fields with
this property. Here are their discriminants.

Dk ∈ {725, 1125, 1600, 1957, 2000, 2048}.

Again by The Second Estimate (for s = 2.5), we get the following bounds for
δl/k.

Dk 725 1125 1600 2000 2048
δl/k ≤ 6 2 1 1 1

Prasad and Yeung [PY08] used the database in [4] and find out that the class
number of any totally complex octic number field with discriminant less than
5000000 is 1. Now, applying (k, l)-Checker with hl,m = 1 and m instead of
#µm(l), we get that the only possibility is (Dk, δl/k) = (725, 1). However the
minimum Dl for l a totally complex octic number field is 1257728, which is
larger than 7252. Hence d is not 4.

6.5

Let d = 2 and m between 5 and 8. As always, using The First Estimate, we get
an upper bound for Dk (for s = 2).

m 8 7 6 5
Dk ≤ 14 20 32 63

Hence we have that

Dk ∈ {5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 52, 53, 56, 57, 60, 61}.

By The Second Estimate, for a given Dk, we get an upper bound for δl/k (Let
s = 2).

m \Dk ≥ 44 41 ≥ · ≥ 33 29 28 24 21 17 13 12 8 5
5 1 2 3 3 5 6 8 13 15 31 68
6 1 1 2 3 5 10 13 38 129
7 1 2 2 5 12
8 1 1 4 12

Looking at the table of totally complex quartic number fields, we can see what
the possible (Dl, hl, rl) are, where hl is the class number of l, and rl is the
number of roots of unity in l. In particular, we observe that for all such number
fields hl ≤ 2. Then we apply a variation of (k, l)-Checker to get an upper bound
for δk/l. Namely we apply(

d̂ · hl,m ·#µm(l)

D
1
2 (m2−1)

k · V dm

) 2
s(G)

≥ δl/k, (10)
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for 2 (resp. m, d) instead of hl,m (resp. #µm(l), d̂), and we will get the following
bounds for δl/k.

m \Dk ≥ 37 33 29 28 24 21 17 13 12 8 5
5 0.9 1 1 1 2 2 3 5 6 13 30
6 0.64 0.7 1 1 2 4 5 15 51
7 1 1 1 3 9
8 1 1 3 9

Further looking at the mentioned table, we will see that the class number of all
of the remaining fields is one. Applying inequality (10) for the second time, we
will have the following modification of the upper bounds for δl/k.

m \Dk 33 29 28 24 21 17 13 12 8 5
5 1 1 1 1 2 3 5 6 12 27
6 0.93 1 2 4 5 14 46
7 0.99 1 1 3 8
8 0.97 1 2 8

Now looking at the table, we have a relatively small list of possibilities. Thus
we can use (k, l)-Checker with hl = 1 and the right value of #µm(l), and overall
we get the following possibilities for δl/k.

m \Dk 5 8 12 21 24 28
5 5, 9, 16 4, 5, 8, 9 1, 3, 4 1 1 1
6 5, 9, 16 4, 5, 8, 9 1, 3, 4 1
7 5 1
8 5 1

By the discussion in [PY08, Proof of theorem 1] and the above table, we get
the following possibilities for (l, k). (These are the only possible pairs with the
above prescribed discriminants and l containing k.)

C1 : k = Q(
√

7), l = Q(
√
−1,
√

7)
C2 : k = Q(

√
6), l = Q(

√
−3,
√

6)
C3 : k = Q(

√
21), l = Q(

√
−3,
√
−7)

C4 : k = Q(
√

3), l = Q(
√
−1,
√

3)
C5, C6 : k = Q(

√
2), l = Q(

√
−1,
√

2), Q(
√

2,
√
−3)

C7, C8, C9 : k = Q(
√

5), l = Q(ζ5), Q(
√
−3,
√

5), Q(
√
−1,
√

5)

At this point calculating R(l/k,m) and using corollary 5, we show that none of
the above pairs are admissible. Most of the needed zeta function or L-function
values are borrowed from [PY08], and the rest are computed using PARI/GP
and functional equations. Having the values, we see that numerator ofR(l/k,m)
has the following prime factor, which is neither d = 2 nor a prime factor of m,
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and therefore (k, l) is not admissible and subsequently d = 1, i.e. k = Q.

m \ (k, l) C1 C2 C3 C4 C5 C6 C7 C8 C9
5 113 19 11 23 11 11 293 31 587
6 11 23 11 11 293 31 587
7 23 293
8 23 293

Theorem 14. In our setting k = Q. In particular, if F is a local field of
characteristic zero, D0 an F -central division algebra, and there is a discrete
vertex transitive action on the Bruhat-Tits building of SLn(D0), then F = Qp

for some prime number p, and Aut(F ) = 1.

Remark 15. Since there is no Galois action, Γ̂0 = Γ0 is contained in Γ. Hence
Γ also acts transitively on the vertices. From this point on, without loss of
generality, we assume that Γ0 = Γ.

7 Determining possible l’s.

7.1

In the previous section, we have established that k = Q and Aut(F ) = 1 (so
d̂ = 1). Here first we use a variation of The Second Estimate to get an upper
bound for the possible Dl’s. In fact, we notice that #µm(l) is at most 6 since l
is a quadratic number field. Therefore[

300s(s− 1) · h(s)
Vm

] 2
s(G)−s

≥ Dl.

By the above inequality, we get the following (s = 1.5).

m 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Dl ≤ 49 135 18 29 10 13 6 7 4 5 3 3 2 2 2

Moreover since the the left hand side of the above inequality decreases for m ≥
19, we get Dl ≤ 2 for m ≥ 17. On the other hand, there is no quadratic field
with absolute value of discriminant less than 3.

Proposition 16 (First Bound). Let F be a local field of characteristic zero, and
G0 an absolutely almost simple F -group, with absolute rank rG0 . If rG0 > 15,
then there is no discrete vertex transitive action on the Bruhat-Tits building of
G0/F .

7.2

Since l is a complex quadratic field, there is al a square free positive integer
such that l = Q(

√
−al). It is well-known that Dl = al (resp. 4al) if al = 3
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mod 4 (resp. otherwise). We define χ on prime numbers and then extend it
multiplicatively to all the positive integers.

χ(p) =

 1 p splits over l,
−1 p is a prime over l,
0 p ramifies over l.

If p 6= 2, then clearly χ(p) =
(
−al
p

)
, where

( ·
·
)

is the Jacobi symbol. It is also
well-known that p = 2 is a ramified prime over l unless al = 3 (mod 4), on that
case χ(2) = 1 (resp. −1) if al = 7 (mod 8) (resp. al = 3 (mod 8)). If al is odd,
then by the reciprocity law, for any odd prime p,

χ(p) = (−1)
p−1
2 · (−1)

p−1
2 ·

al−1
2 ·

(
p

al

)
= (−1)

p−1
2 ·

al+1
2 ·

(
p

al

)
.

Coupling with the description of χ(2), we have that when al = 3 (mod 4), for
any natural number n,

χ(n) =
(
n

al

)
,

and consequently it is a primitive Dirichlet character whose conductor isDl = al.
When al 6= 3 (mod 4), by the above discussion, χ is again a primitive Dirichlet
character whose conductor is Dl = 4al. So overall Ll/k(s) = L(χ, s), where the
later is a Dirichlet L-function.

On the other hand, one can compute value of Dirichlet L-functions (resp. zeta
function) at negative integers using generalized Bernoulli (resp. Bernoulli) num-
bers. Indeed, if

Fχ(z) =
Dl∑
j=1

χ(j)zejz

eDlz − 1
=
∞∑
j=0

Bj,χ
zj

j!
,

then Bj,χ’s are called generalized Bernoulli numbers, and L(χ, 1− j) = −Bj,χj .
Similarly, if

F (z) =
zez

ez − 1
=
∞∑
j=0

Bj
zj

j!
,

then Bj ’s are called Bernoulli numbers, and ζ(1− j) = −Bjj .

The von Staudt-Clausen theorem states that B2j +
∑

(p−1)|2j
1
p ∈ Z. In par-

ticular, the denominator of B2j is a square free number, and any of its prime
factors is at most 2j + 1. Analog of this theorem for the generalized Bernoulli
numbers is proved by Leopoldt [Le58] and Carlitz [Ca59]. In particular, prime
factors of the denominator of Bj,χ/j are at most Dl. Indeed they prove that if
Dl is not power of a prime number, then Bj,χ/j is an integer.
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7.3

Computing the first 12 terms of F (z), we calculate the Bernoulli numbers,
and consequently ζ(−2j + 1) for j between 1 and 6. In particular, ζ(−11) =

691
23·32·5·7·13 . In 7.1, we saw that for m > 11, Dl is at most 7. Hence by the
discussion in 7.2, 691 does not appear as a prime factor of any of the zeta or L-
function values in R(l/Q,m) for any possible l and m ≤ 16. Hence R(l/Q,m)
has 691 as a prime factor of its numerator if 11 < m < 17 and (Q, l) is an
admissible pair, which contradicts corollary 5. Hence we have the following
improvement of proposition 16.

Proposition 17 (Second Bound). Let G0, F , and rG0 be as in proposition 16.
If rG0 > 10, then there is no discrete vertex transitive action on the Bruhat-Tits
building of G0/F .

7.4

To get a list of admissible l = Q(
√
−al), we apply corollary 5. To this end, we

have to be able to effectively compute R(l/Q,m) for a large list of l and small
range of m, which is an easy task applying the generalized Bernoulli numbers
and discussion in 7.2. We use Mathematica to compute value of L-functions
for the needed complex quadratic fields (see the Appendix B). We look for the
cases where we do not have “bad” prime factors in the numerator of R(l/k,m).
As a consequence, we get the following possible (m, al).

(m, al) (8, 3) (7, 3)
R(Q(

√
a)/Q,m)−1 215 · 39 · 52 210 · 38 · 5

(11)
(m, al) (6, 3) (6, 1) (6, 7) (6, 31)

R(Q(
√
a)/Q,m)−1 210 · 37 · 5 · 7 214 · 34 · 7 23 · 34 · 5 · 72 2 · 3−1 · 7

(m, al) (5, 3) (5, 1) (5, 7) (5, 31)
R(Q(

√
a)/Q,m)−1 27 · 35 · 5 211 · 32 32 · 5 · 7 2−2 · 3−3

Proposition 18. With the previous setting, the only possible pairs of (m, al)’s
for m > 4 are

(8, 3), (7, 3), (6, 3), (6, 1), (6, 7), (6, 31), (5, 3), (5, 1), and (5, 7).

Proof. By the above discussion, it is enough to exclude (m, al) = (5, 31). By
the Main Inequality, lemma 7, and theorem 14, we have that

1 ≥ R(l/Q,m)
hl,m ·#µm(l)

for any possible m and l. On the other hand, hQ(
√
−31) = 3 and clearly no

quadratic field has a primitive 5th root of unity. Hence the right hand side
of the above inequality, for (m, al) = (5, 31), is equal to 22 · 33, which is a
contradiction.
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Corollary 19 (Third Bound). Let G0, F , and rG0 be as in proposition 16. If
rG0 > 7, then there is no discrete vertex transitive action on the Bruhat-Tits
building of G0/F .

8 Determining G.

In this section, we will describe the possible global forms, via the description of
the local forms of G. Namely, we will find the possible set of primes over which
G is not quasi-split.

8.1

Definition 20. For a given natural number b > 1, a prime factor of bc − 1
is called a primitive prime factor if it does not divide bc

′ − 1 for any natural
number c′ less than c.

Lemma 21. i) Let q be a positive integer. A primitive prime factor of qc − 1
exists and any such factor is larger than 7 if c ∈ {5, 7, 10, 14, 8}.

ii) If q is an integer larger than 2, then (q2 − q + 1)(q2 + q + 1) has a prime
factor larger than 7.

Proof. i) By Bang’s theorem, any (q, c) 6= (2, 6) has a primitive factor. Let p be
a primitive prime factor of qc− 1. Clearly p and q are co-prime. Hence qp−1− 1
is also divisible by p. In particular, p− 1 is divisible by c, which finishes proof
of the first part.

ii) If not, then p a primitive prime factor of q6 − 1 should be equal to 7 (by
Bang’s theorem such a prime exists.) Hence 7 does not divide q − 1, q + 1, and
q2 + q + 1. Since q2 − q + 1 and q2 + q + 1 are co-prime, 7|q2 − q + 1, and
q2 + q + 1 is an odd number, the only possible prime factors of q2 + q + 1 are 3
and 5. On the other hand, if 5 divides q2 + q+ 1, then it also divides q3−1, and
consequently q − 1, which is a contradiction. Hence q2 + q + 1 = 3α for some
positive integer α. Thus we have (2q+ 1)2 = 4 · 3α− 3, and as a result 3 divides
4 · 3α−1 − 1, which happens only when α = 1. Therefore q2 + q + 1 = 3 and so
q = 1, which is a contradiction.

8.2

Proposition 22. As in the setting of section 3.2, if D is non-commutative,
then (m, al) = (5, 7). Moreover, D does not split only over primes which divide
2. In particular, D0 = F and n = m.
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Proof. Let D be a non-commutative l-central division algebra, with an invo-
lution of second kind. Since there is no non-commutative division algebra
over a local field with an involution of second kind, if D does not split over
p, (p) = Nl/Q(p) splits over l. In this case, as in the proof of lemma 2,
e′(Pp) =

∏m−1
dp-i,i=1(qip − 1).

If m 6= 5, then by lemma 8.1, e′(Pp) has a prime factor larger than 7. On the
other hand, in all of the possible cases, R(l/Q,m) has no prime factor larger
than 7 in its denominator. Hence we get a contradiction from

1
#µ(Q) ·#Γ0 ∩K

=
n · R(l/Q,m)

#Γ0/Λ
·
∏

e′(Pp)

as the denominator of the right hand side of the above equality has no prime
factor larger than 7. Hence D should split over all the finite places, and there-
fore D is commutative.

If m = 5, then by proposition 18, hl = 1. On the other hand, no quadratic field
has a 5th root of unity, and so #µ5(l) = 1. Since 5 is a prime number, D0 = F
and D either splits over a prime, or it remains a division algebra. Now by the
Main Inequality, we have

1 ≥ R(l/Q, 5)
∏
p∈T◦1

e′(Pp)
5

= R(l/Q, 5)
∏
p∈T◦1

(p− 1)(p2 − 1)(p3 − 1)(p4 − 1)
5

.

From this inequality, we get that the only possibilities for (al, p) are

(3, 2), (1, 2), (7, 2), (3, 3), and (1, 3).

However for p = 2, we get 7 as a prime factor in the numerator for al = 3 or
1, which is not possible, and for p = 3, 13 appears as a prime factor in all the
cases. Altogether the only remaining possibility is (al, p) = (7, 2). (We also note
that 2 splits over l = Q(

√
−7).)

Now it is clear thatD0 should be commutative as otherwiseD is non-commutative
and so m = 5, in which case n = 1, and G0 is anisotropic over F , which is a
contradiction.

Corollary 23. For (m, al) = (5, 7), there are at most four possibilities for D.

Proof. By Brauer-Hasse-Noether theorem, any division algebra over a number
field is a cyclic algebra. Moreover, it can be classified with its local Hasse
invariants. By the above proposition, D splits over any prime except those
which divide 2 = p0 · p̄0. Since D admits an involution of second kind,

invp0(D) + invp̄0(D) = 0
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in Q/Z. So for a given invp0(D), there is a unique D. On the other hand,
exp([D]) = ind(D) = 5. Hence

invp0(D) ∈
{

1
5
,

2
5
,

3
5
,

4
5

}
,

and we are done.

8.3

Let p be a prime, which is unramified over l, and does not split over l. If G is
not quasi-split over p, then m is even. So under our assumptions m is either 6
or 8.

Let m = 8. As it is discussed in the proof of lemma 2, e′(Pp) is divisible by
either

p8 − 1
p+ 1

, or
(p8 − 1)(p7 + 1)(p6 − 1)
(p3 + 1)(p2 − 1)(p+ 1)

.

In either case by lemma 8.1, it has a prime factor larger than 7, which gives us
a contradiction similar to the discussion in 8.2.

Let m = 6. Again as we have seen in the proof of lemma 2, e′(Pp) is divisible
by either

p6 − 1
p+ 1

, or
(p6 − 1)(p5 + 1)(p4 − 1)
(p3 + 1)(p2 − 1)(p+ 1)

.

The second term always has a prime factor larger than 7 by lemma 8.1[part i],
and the first term has such a prime factor if p > 2 by lemma 8.1[part ii]. Hence
the only possibility for p is 2. Since p is supposed to be a prime over l, the only
possibilities for al are either 3 or 31.

Proposition 24. In the previous setting, if p is a prime over l, and G is not
quasi-split over Qp, then m = 6, al is either 3 or 31, and p = 2. Furthermore
in these cases all the maximal parahorics containing Pp are special.

Proof. By the above discussion, the only possibility for m is 6, and p is definitely
2. On the other hand, since p is supposed to be a prime over l, the only
possibilities for al are either 3 or 31. The second part of the proposition is also
a direct consequence of the above analysis, coupling with the fact that the first
terms in the above formulas are associated with the special parahorics.

8.4

Let p be a ramified prime over l. If G is not quasi-split over Qp, then, as above,
m is equal to 6 or 8.
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Let m = 8. Similar to the analysis in 8.3, we use the proof of lemma 2, to say
that e′(Pp) is divisible by either

p4 − 1,
(p8 − 1)
(p2 − 1)

(p3 − 1),
(p8 − 1)(p6 − 1)
(p4 − 1)(p2 − 1)

(p2 − 1), or
(p8 − 1)
(p2 − 1)

(p− 1).

By lemma 8.1, except the first term, the others, have a prime factor larger than
7. Hence with a similar analysis as in 8.2, they are not acceptable.

Let m = 6. Similar to the previous cases, from the proof of lemma 2, we know
that e′(Pp) is divisible by either

p3 − 1, p6 − 1, or
p6 − 1
p+ 1

.

When p 6= 2, except the first term, the rest, have a prime factor larger than 7,
and so they are not acceptable. On the other hand, p is ramified over l. Thus
it divides Dl. By proposition 18, we know that Dl ∈ {3, 4, 7, 31}. Notice that
33 − 1, 73 − 1, and 313 − 1 have prime factors lager than 7.

Proposition 25. In the previous setting, if p is ramified over l, and G is not
quasi-split over Qp, then (m, al, p) is either (8, 3, 3) or (6, 1, 2). Furthermore
when m = 8, Pp is a special parahoric with only one vertex in its type.

Proof. It is a direct corollary of the above analysis.

8.5

Here we will study the Hermitian form h (same notation as in 3.2). We start
with the case (m, al) = (5, 7), where we have an l-central division algebra.
Corollary 23 gives us the local Hasse invariants, and by a theorem of Landherr
[Sc85, Chapter 10, Theorem 2.4.], D has τ an involution of second kind. In this
case, h is a map from D × D → D which is Q-linear in both of the variables,

and
i) h(xd, y) = τ(d)h(x, y)
ii) h(x, yd) = h(x, y)d
iii) h(x, y) = τ(h(y, x)),

for any x, y, d in D. Thus h is uniquely determined by ah = h(1, 1).

Proposition 26.

i) By changing ah, without loss of generality we can take any involution of
second kind on D.

ii) For a given second kind involution on D, there is an Hermitian form over
D which has signature ind(D) over the Archimedean place.

iii) For a given second kind involution on D, any two Hermitian forms over
D which are anisotropic over the Archimedean place determine the same
unitary group.
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iv) There are exactly two possible G simply connected Q-absolutely almost
simple group which are anisotropic over R, and coming from a hermitian
form over D.

Proof. i) Let τ1 and τ2 be two involution of second kind on D. Then τ1 ◦ τ2 is
an l-automorphism of D. Hence by Skolem-Noether, there is d ∈ D such that

τ2(x) = d−1τ1(x)d,

for any x in D. Since τ2 ◦ τ2 = id, d−1τ1(x)d = τ1(dxd−1) = τ1(d)−1τ1(x)τ1(d).
Hence τ1(d) = λd for some λ in l. On the other hand, d = τ1 ◦τ1(d) = Nl/Q(λ)d,
and so Nl/Q(λ) = 1. By Hilbert’s tenth problem, there is µ in l, such that
λ = µµ̄−1. Let a ∈ D such that a = τ1(a). Then

τ1(x)ax = a⇔ τ2(x) · µ−1d−1a · x = µ−1d−1a.

Moreover τ2(µ−1d−1a) = µ−1d−1a. Therefore we get the same Q-algebraic
group, which proves the first part of proposition.

ii) See [Sc85, Theorem 6.9, 6.11].

iii) Any Hermitian form and any of its scalar multiples determine the same uni-
tary group. On the other hand, index of D is odd in our case, so without loss
of generality we can assume that determinant of our Hermitian form is 1. On
the other hand, by [Sc85, Corollary 6.6.], two hermitian forms with the same
dimension, determinant, and signature over the Archimedean place are isomor-
phic, which finishes the proof.

iv) To see the last part is enough to note that (D, τ, ah) and (Dop, τ, ah) deter-
mine isomorphic unitary groups.

In the other possible cases, there is no division algebra, and we have a hermitian
form over a global field. Such a form is uniquely determined by its dim, det,
and its sign over the Archimedean places [Sc85, Chapter 10, Corollary 6.6]. In
particular, without loss of generality we can assume that h = diag(b, 1, · · · , 1)
for some positive rational number b. We even can and will assume that b is a
positive square-free rational integer.

If m is odd, then unitary group of diag(b, 1, · · · , 1) and diag(b2, b, · · · , b) are
equal. The determinant of the later is 1, and its signature is the same as the
identity matrix over the Archimedean places. Hence without loss of generality,
we can assume that h = Im.

Let m = 8. As a result of proposition 24 and proposition 25, either the her-
mitian form splits over all the finite places, or it does not split only over 3. If
it splits over all the finite places, then b is in the image of the norm map over
any finite place. By our assumption it is also positive. Hence at each place it is
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isomorphic to I8. Therefore by Hasse-Minkowski [Sc85, Chapter 5, Lemma 7.4]
and the fact that any unitary form is determined uniquely with the quadratic
form qh(x) = h(x, x), we conclude that h is isomorphic to I8.

Now we claim that if a hermitian form on Q(
√
−3)8 splits over any prime except

3, then it also splits over 3. Let qh be the corresponded quadratic form to h, as
before. First we show that b is odd since qh splits over Q2. Assume the contrary.
b = 2b′, where b′ is odd. Since qh splits over Q2, we have

〈2b′〉+ 7〈1〉+ 〈6b′〉+ 7〈3〉 = 0.

As 8〈1〉 = 0 in W (Q2) the Witt ring of Q2, we get

〈1, 3〉 = 〈2b′〉 ⊗ 〈1, 3〉,

which happens if and only if 2b′ is represented by 〈1, 3〉 over Q2. Looking at it
modulo 8, we get a contradiction with the fact that b′ is odd.

Now, let us also recall some of the well-known facts on W (Q) the Witt ring of
Q. Let ∂p be a homomorphism from W (Q) to W (fp) defined as follows

∂p〈a〉 = 0, ∂p〈pa〉 = 〈a〉,

for each integer a relatively prime to p. Combining these homomorphisms we
get one homomorphism ∂ : W (Q)→ ⊕W (fp). It is well-known [MiHu73] that

0→ Z〈1〉 ↪→W (Q) ∂−→ ⊕W (fp)→ 0 (12)

is a short exact sequence. By the definition of ∂p, it factors through W (Qp). In
particular, since h splits over any prime p 6= 3, ∂p(qh) = 0. On the other hand,

qh = 〈1, 3〉 ⊗ (〈b〉+ 7〈1〉).

So
∂p(qh) = 〈1, 3〉 ⊗ ∂p〈b〉 in W (fp).

Hence if p 6= 3 is a prime factor of b, then 〈1, 3〉 = 0 in W (fp). Hence by
quadratic reciprocity, if p 6= 2, p ≡ 1 (mod 3). Since b is odd, either b ≡ 1
(mod 3) or b/3 ≡ 1 (mod 3). Let us examine ∂3. By the definition,

∂3(qh) = ∂3〈b〉+ ∂3〈3b〉+ 7〈1〉.

By the above discussion, ∂3(qh) = 8〈1〉 = 0 in W (f3). Overall qh is in the kernel
of ∂, and its dimension is 16. Thus qh = 16〈1〉 in W (Q). In particular, it also
splits over Q3, which proves our claim.

Let m = 6, and as before qh the corresponded quadratic form to h. By (12), if
h splits at all the finite places, qh is a multiple of 〈1〉. For m = 6, dim qh = 12,
and so qh = 12〈1〉, which contradicts the fact that 12〈1〉 is not zero in W (Q2).
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Hence by proposition 24 and proposition 25, al 6= 7, and moreover 2 is the only
prime over which qh is not trivial. However, even in this case, we claim that
∂pqh = 0 for any p. For odd primes, there is nothing to prove. Over p = 2, since
qh does not split over 2, qh = 2〈1, al〉. Thus by the definition ∂2 maps it to zero
in W (f2). Therefore by (12), qh = 12〈1〉. On the other hand, it is the quadratic
form associated to the hermitian form diag(b, 1, · · · , 1) over Q(

√
−al). Hence

we have
〈1, al〉 ⊗ 〈b, 1, · · · , 1〉 = 12〈1〉.

By Euler’s theorem, 4〈1〉 = 4〈al〉, and so

4〈1〉 = 〈1, al〉 ⊗ 〈b, 1〉. (13)

From equation (13), one can easily see that b = 1 (resp. b = 2) works for al = 1
(resp. al = 3). However we claim that al = 31 is not possible.

To show this claim, using equation (13), it is enough to show that the quaternion
algebra (−1,−1) is not isomorphic to the algebra (−31,−b) for any positive
square free b. Assume the contrary, so for any p ∈ V (Q),(

−1,−1
νp

)
=
(
−31,−b
νp

)
(14)

By equation (14) and Weil’s reciprocity law, we have(
−1,−1
ν2

)
= −1 =

(
−31,−1
ν2

)
·
∏
p|b

(
−31, p
ν2

)
(15)

On the other hand, since 31 can be represented by 2〈1〉,

〈1, 1, 31, 31〉 = 0 (16)

in W (Q2). Similarly, as −31 represented by 〈1,−2〉 in Q2, we get(
−31, 2
ν2

)
= 1. (17)

For odd primes, we have(
−31, p
ν2

)
=
(
−1, p
ν2

)(
31, p
ν2

)
= (−1)

p−1
2 · (−1)

31−1
2 · p−1

2

= 1. (18)

Equations (15), (16), (17), and (18) give a contradiction, which finishes proof
of our claim.
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Theorem 27. As in the previous setting, G is isomorphic to SUh,Dn , where D
is an l-central division algebra, l = Q(

√
−al) for some al, h is hermitian form,

and m = n · ind(D). Moreover when m is larger than 4, the only possibilities
for the above parameters are

m al D h
G1 8 3 l I8
G2 7 3 l I7
G3 6 3 l diag(2, 1, · · · , 1)
G4 6 1 l I6
G5 5 3 l I5
G6 5 1 l I5
G7 5 7 l I5
G8 5 7 D 1

where the only nonzero Hasse invariants of D are over p0 = 1+
√
−7

2 and p̄0 =
1−
√
−7

2 . Moreover invp0D + invp̄0D = 0.

Proof. It is a direct consequence of theorem 14, proposition 18, corollary 23,
proposition 26, and the above discussion.

9 Type of parahorics.

In this section, we describe the possible types of Pp parahorics of maximal type.

9.1

We start with the primes which split over l, i.e. p = p · p̄. For instance by
theorem 27, we know that except for the case G8 and p = 2, any maximal
parahoric subgroup of G(Qp) is isomorphic to SLm(Zp). In the G8 case, G(Q2)
is a compact subgroup, and so P2 = G(Q2). In the other cases, since Pp is
parahoric of maximal type, mp number of elements of its type Θp divides m.
Moreover its index in a maximal subgroup containing it is∏m

i=1(pi − 1)∏mp
i=1(pi − 1)m/mp

. (19)

By lemma 8.1, pm − 1 has a primitive factor larger than 7 if m ∈ {5, 7, 8}. In
which case, if m1 < m, e′(Pp) has a prime factor larger than 7, and we get a
contradiction by a similar argument as in 8.2. Thus for these dimensions Pp

is a maximal parahoric. For m = 6, by equation (19), p5 − 1 appears in the
numerator and not in the denominator, and by lemma 8.1 it has a prime factor
larger than 7. Therefore again Pp is a maximal parahoric.
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9.2

Here assume that p is a prime over l, and moreover G is quasi-split over Qp. In
this case, by the virtue of the formula given in the second item of the proof of
lemma 5 and lemma 8.1, e′(Pp) has a prime factor larger than 7 if m 6= 6 and
Θp contains a non-hyper-special vertex. If m = 6, we can use the same formula
in the proof of lemma 5, and this time use the primitive factor of p10 − 1 to
get a similar result. There is only one maximal type containing hyper-special
vertices which is not hyper-special itself. This occurs only for even dimension
with Θp containing exactly two hyper-special vertices. In which case,

e′(Pp) =
∏m
i=2(pi − (−1)i)∏m/2
i=1 (pi − 1)

.

Again we can apply lemma 8.1, and conclude that p5 + 1 has a prime factor
larger than 7, and so does e′(Pp), which is a contradiction as we have seen in
8.2. Overall, we conclude that for this kind of prime, Pp is hyper-special.

9.3

Let p be an inert prime over l, and assume that G is not quasi-split over
Qp. Then by proposition 24 and theorem 27, (m, al) = (6, 3), and p = 2.
Furthermore by proposition 24, all the vertices of Θp the type of Pp are special.
Hence type of the only possible non-special parahoric contains both of the special
vertices. In which case,

e′(P2) =
(25 + 1)(24 − 1)(23 + 1)(22 − 1)

(22 − 1)(2− 1)
,

that gives us a contradiction as the numerator has a prime factor larger than 7.
Therefore in this case, e′(P2) = 21.

9.4

Let p be a ramified prime over l, and assume that G is quasi-split over Qp.
Since Pp is of maximal type Θp, either Θp contains one vertex, or it consists of
two special vertices and the dimension is even. We consider them case-by-case.
For (m, al, p) = (8, 3, 3), 41 appears as a prime factor of the numerator of e′(Pp)
if Pp is not special. When (m, al, p) = (7, 3, 3) and Pp is not special, 13 is a
prime factor of the numerator of e′(Pp). Thus in these cases, e′(Pp) is one.

(m, al, p) = (6, 3, 3). If either Θ3 = {2} or it consists of two special vertices,
then e′(P3) has 13 as a prime factor of its numerator. Hence the only possible
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non-special type is Θ3 = {1}, in which case e′(P3) = 28.

m = 6 m = 5

(m, al, p) = (5, 3, 3), (5, 1, 2), and (5, 7, 7). When m = 5, there is only one non-
special maximal type. One can easily compute e′(P3) in each case, and see that
it is equal to 10, 5, and 50, respectively.

9.5

Again let p be a ramified prime over l. But this time G is not quasi-split over
Qp. By proposition 25, (m, al, p) is either (8, 3, 3) or (6, 1, 2). Furthermore when
m = 8, only type Θ3 = {1} is allowed, in which case, e′(P3) = 80.

m = 8 m = 6

When m = 6, all the maximal types have one vertex, and e′(P2) is 7, 63, or 21
if Θ2 = {1}, {2}, or {3}, respectively.

9.6

Proposition 28. As in the previous setting. Let T = {p ∈ Vf (Q)| e′(Pp) 6= 1}.
Then

Label T (p,Θp, e
′(Pp))

G1 ∅
G2 ∅
G3 {2} ⊆ • ⊆ {2, 3} (2, s, 21), (3, {1}, 28)
G4 {2} (2, {1}, 7), (2, {2}, 63), (2, {3}, 21)
G5 • ⊆ {3} (3, {1}, 10)
G6 • ⊆ {2} (2, {1}, 5)
G7 • ⊆ {7} (7, {1}, 50)
G8 {2} ⊆ • ⊆ {2, 7} (2,∅, 315), (7, {1}, 50)
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In particular, #Θp = 1 for any p.

Proof. It is a direct result of the above discussion.

Corollary 29. The only automorphism of Dp local Dynkin diagram which fixes
Θp is identity. Moreover e′(Pp) = 1 when (m, al, p) is either (6, 3, 3) or (5, 7, 7).

Proof. By proposition 28, it is enough to show that e′(P3) = 1 for (m, al) =
(6, 3) to prove the first claim. To show this, we use the original formula

1
#µ(Q) ·#Γ0 ∩K

=
n · R(l/Q,m)

#Γ0/Λ
·
∏

e′(Pp). (20)

Here we know that n = m and all the prime factors of Γ0/Λ are also prime factors
of m. Moreover R(Q(

√
−3)/Q, 6)−1 = 210 · 37 · 5 · 7 and R(Q(

√
−7)/Q, 5)−1 =

32 · 5 · 7. Hence if e′(P3) 6= 1 and (m, al) = (6, 3), then there is an extra 7 in the
numerator of the right hand side of the above equality. Similarly if e′(P7) 6= 1
and (m, al) = (5, 7), then there is an extra 2 in the numerator of the right hand
side. Both of them give us contradiction, which finishes our proof.

10 Stabilizer of a vertex of B.
10.1

Using the volume formula, we will compute the number of elements of Γ0 which
stabilize a vertex in the Bruhat-Tits building, for any lattice described by the-
orem 27 together with proposition 28 and corollary 29.

First we compute number of elements of Γ0/Λ. By theorem 1, it is enough to
compute #δ(Ad(G)(k))◦Θ. On the other hand, by corollary 29,

δ(Ad(G)(k))◦Θ = ker(ξ◦) ∩ δ(Ad(G)(k)).

So by 4.3, we have to compute #lξ◦/(l×)m. We follow a similar argument as in
4.3 to describe lξ◦/(l×)m. However here we also use the fact that hl = 1 for all
the fields l under consideration.

Let x(l×)m ∈ lξ◦/(l×)m. Without loss of generality, we can assume that x is in
Ol. Since Ol is UFD, we can write

x = u
∏

pi1pi2 ·
∏

p′
i′ ·
∏

p′′
i′′
,

where u is a unit in Ol, p, p′, and p′′ are prime elements in Ol, p is the Galois
conjugate of p, p−1p is not a unit in Ol, p′ is rational, and p′′/p′′ is a unit in
Ol. By the definition, we have

Nl/Q(x) = N(u) ·
∏

N(p)i1+i2 ·
∏

p′2i
′
·
∏

Nl/Q(p′′)i
′′
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is the m-th power of a rational number. Hence m divides i1 + i2, 2i′, and i′′.
We also know that x(l×)m acts trivially on all the local Dynkin diagrams except
possibly at the p0. Thus by the discussion in 4.2

x(l×)m = u · pi10 · p0
i2 · (l×)m.

If either G is not quasi-split over the ramified prime, or m is odd, then the local
Dynkin diagram over the ramified place has a trivial group of isometries. So

#Γ0/Λ = #lξ◦/(l×)m = m ·#µm(l). (21)

Otherwise, l = Q(
√
−3) and (−1)(l×)m acts non-tirvially on the local Dynkin

diagram over the ramified place. Hence

#Γ0/Λ = #lξ◦/(l×)m = m ·#µgcd(m,3)(l). (22)

Proposition 30. As in the previous setting, we have

Label T (Θp, e
′(Pp))

#Γ0/Λ
m #µ(Q) ·#Γ0 ∩K

G1 ∅ 1 215 · 39 · 52

G2 ∅ 1 210 · 38 · 5
G3 {2} (s, 21) 3 210 · 37 · 5
G4 {2} ({1}, 7), ({2}, 63), ({3}, 21) 1 214 · 34, 214 · 32, 214 · 33

G5 • ⊆ {3} ({1}, 10) 1 27 · 35 · 5, 26 · 35

G6 ∅ 1 211 · 32

G7 ∅ 1 32 · 5 · 7
G8 {2} (∅, 315) 1 1

Proof. It is a direct consequence of proposition 28, corollary 29, and equations
(11), (20), (21), and (22).

10.2

Since working with the simply connected cover is much easier than working with
the adjoint form, we will reformulate proposition 30 for the simply connected
form and Λ0. Note that

Ad(Λ ∩K) = Λ ∩K.

On the other hand, Γ0 ∩K/Λ ∩K can be identified with a subgroup of Γ0/Λ
which is isomorphic to δ(Ad(G)(k))◦Θ. By corollary 29 and the definition of K,
we can identify Γ0 ∩K/Λ ∩K with a subgroup of

δ(Ad(G)(k))ξ = ker(ξ) ∩ δ(Ad(G)(k)).

By a similar argument as in 10.1, we know that

#δ(Ad(G)(k))ξ =

{
#µgcd(m,3)(l) if 2|m, al = 3 & G quasi-split/ p = 3;
#µm(l), otherwise.
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Hence in all the cases except possibly for type G3, Γ0 ∩K = Λ ∩K. For type
G3, Γ0 ∩K/Λ ∩K either is trivial or has three elements. On the other hand,

#Λ ∩K = #µ(Q) ·#Ad(Λ ∩K).

Thus overall, we have

Label T (Θp, e
′(Pp)) #Λ ∩K

G1 ∅ 215 · 39 · 52

G2 ∅ 210 · 38 · 5
G3 {2} (s, 21) 210 · 36 · 5 or 210 · 37 · 5
G4 {2} ({1}, 7), ({2}, 63), ({3}, 21) 213 · 34, 213 · 32, 213 · 33

G5 • ⊆ {3} ({1}, 10) 27 · 35 · 5, 26 · 35

G6 ∅ 211 · 32

G7 ∅ 32 · 5 · 7
G8 {2} (∅, 315) 1

11 Final check.

At this point we only know type of (Pp)’s up to an automorphism of the local
Dynkin diagrams. In this section, first we show that we are allowed to take any
coherent family of parahoric subgroups with that restriction on their type.

Then we will have all the information of the possible lattices. At the final
step, we have to check if they act transitively on the vertices of the Bruhat-Tits
building or not. To do so, we have to compute number of elements of Λ ∩ K
directly and see if we get the same number as in the previous section. We
will explain our method of finding the number of elements of this finite group
implementing MAGMA.

11.1

Proposition 31. Let Θ be an admissible p0-global type, and (Pp)p 6=p0 a coherent
family of parahoric subgroups of type Θ. Then

(Ad(G))(A) = Ad(G)(Q) ·
∏

p∈{∞,p0}

Ad(G)(Qp)
∏

p∈Vf\{p0}

Pp.

Proof. Let (gp) be an element in Ad(G)(A). For any p, we map gp to H1(Qp, µ)
via the boundary map δp. By the discussion in 4.2 and using the fact that Ol
is UFD, we can identify elements of Aut(Dp) with some elements of

ker(H1(Qp, Rl/Q(µ))→ H1(Qp, µ)),

as follows,
pi(lp×)m × p(−i)(lp

×)m p = pp splits/ l;
pm/2(lp×)m 2|m and p prime/ l;
(−1)(lp×)m 2|m, G quasi-split/ l, and p ramified/ l.
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Hence x(l×)m maps to these elements where

x =
∏

pip · p(−ip) ·
∏

pηpm/2 · (−1)εp ,

ip, ηp, and εp are coming from the action on the Dynkin diagram. On the other
hand, it is easy to see that x(l×)m is in l0/(l×)m. Hence there is g an element
of Ad(G)(Q) which is mapped to x(l×)m by the boundary map. Thus g−1gp
acts trivially on the local Dynkin diagrams for any prime p. In particular,
g−1gp(Pp) has the same type as Pp. Thus there is g̃p ∈ G(Qp) such that
Ad(g̃p)g−1gp(Pp) = Pp. Clearly we can assume that g̃p = 1 for all p’s except
finitely many. For the Archimedean place and p0, let g̃p = 1. So (g̃p) ∈ G(A).
By strong approximation, there are g̃ ∈ G(Q) and

(g̃′p) ∈
∏

p∈{∞,p0}

G(Qp) ·
∏

p∈Vf\{p0}

Pp ⊆ G(A)

such that, (g̃p) = (g̃′p) · g̃. Hence for any p 6= p0, Ad(g̃)g−1gp(Pp) = Pp, which
completes the proof.

Corollary 32. Let Θ1 and Θ2 be two admissible p0-global types in the same
orbit of

∏
Aut(Dp), and {P1

p} and {P2
p} be two family of coherent parahoric

subgroups of type Θ1 and Θ2, respectively. Then the corresponded lattices Γ
1

and Γ
2

are conjugate of each other.

Proof. Since in our cases ξ is surjective, using the assumptions we can conclude
that there is (gp) ∈ Ad(G)(A) such that gp(P1

p) = P2
p for any p 6= p0. By

proposition 31, there are g ∈ Ad(G)(Q) and

(g′p) ∈
∏

p∈{∞,p0}

Ad(G)(Qp) ·
∏

p∈Vf\{p0}

P
1

p,

such that gp = gg′p for any p. Thus for any p 6= p0, g(P1
p) = P2

p, and so
g(Λ1) = Λ2, where

Λ1 = G(Q) ∩
∏

p∈Vf\{p0}

P1
p & Λ2 = G(Q) ∩

∏
p∈Vf\{p0}

P2
p.

Therefore Ad(Λ1) and Ad(Λ2) are conjugate of each other, and so are Γ
1

and
Γ

2
their normalizers.

11.2

Here we introduce new families of simply transitive actions on the vertices of
Bruhat-Tits buildings. These examples are coming from the G8 case. We note
that by [PY08, Lemma 4], G(Q) is torsion free. In particular, Λ ∩ K = {1}.

38



Hence by proposition 30 and 10.2, for any odd prime p0 which is 1, 2, or 4 mod-
ulo 7, PGL5(Qp0) has at least four non-isomorphic lattices which act transitively
on the vertices of the associated Bruhat-Tits building. These four lattices are
coming from two possible Q-groups described by certain hermitian forms over
division algebras of degree 5 over Q(

√
−7), and except over 2 or 7 the other para-

horics are hyper-special, over 7 we can choose either of the special parahorics.
This way, we get four family of vertex-simply-transitive actions on Bruhat-Tits
building of dimension 4.

11.3

In this section, we will find the number of elements of the desired finite groups.
For this purpose, technically we first describe Zp-schemes of the corresponded
parahorics, and then give H an Z-scheme whose fibers over different primes give
us the given Zp-schemes. As a result, we reduce the problem of finding the
number of elements of Λ∩K to finding #H(Z). Alternatively, for each possible
lattice, we describe h′ a hermitian form, and one has to find number of elements
of SLm(Ol) which preserve h′. For this end, we first look at qh′ the quadratic
form associated to h′ over Z2m. Using MAGMA [BCP97], find the group of
symmetries of qh′ and elements which commute with lω, where Ol = Z[ω] and
lω is the linear map associated to multiplication by ω in Oml = Z2m.

For a given G, i.e. al, m, and h. We will do the following four steps.

1- For p a non-splitting prime over l, describing hp hermitian form on lmp =
l ⊗Q Qm

p , such that the corresponded special unitary group is isomorphic
to G over Qp, and moreover,

{g ∈ SLm(Op) | ρ(g)(hp) = hp}

is mapped to a parahoric of the same type as Pp.

2- For p a non-splitting prime over l, find gpGLm(Op) ∈ GLm(lp)/GLm(Op),
such that ρ(gp)(hp) = h. For p a splitting prime over l, by proposition 28,
without loss of generality we can assume that gp ∈ GLm(Zp).

3- Find g ∈ GLm(l), such that gGLm(Op) = gpGLm(Op), where p is a prime
in Ol which divides p.

4- Let h′ = ρ(g−1)(h),

qh′ =
[

Re(h′) Re(wh′)
Re(wh′)t N(w)Re(h′)

]
,

and

lω =
[

−N(ω)Im
Im Tr(ω)Im

]
.

Find group of 2m by 2m integer matrices which preserve qh′ and commute
with lω, using MAGMA. By looking at the generators of this group find
the image of determinant map from GLm(Ol) if needed.

39



Note that with these choices of g and hp’s, after identifying G with the Q-special
unitary group associated with h′, for any non-split prime p,

{x ∈ SLm(Op)| ρ(x)(h′) = h′}

is a parahoric subgroup of the desired type in G(Qp). In particular,

Λ ∩K = {x ∈ SLm(Ol)| ρ(x)(h′) = h′}

gives us a precise description of this intersection.

11.3.1

The first step is an easy consequence of Bruhat-Tits theory, proposition 28, and
corollary 29, we will just summarize the result as a proposition. Let

Jk =



[
Ik/2

Ik/2

]
if k is even,

 1
I(k−1)/2

I(k−1)/2

 if k is odd.

Proposition 33. In the above setting, except for the G8 case, we have the
following possibilities for hp. If a prime is not mentioned, hp is the hermitian
form associated to Jm. For (m, al, h) = (8, 3, I8) and p = 3,

(GI
1) hp = ρ(diag(

√
−3I4, I4))(J8).

For (m, al, h) = (7, 3, I7), h2 = −J7, and h3 is equal to either

(GI
2) J7, or (GII

2 ) ρ(diag(1,
√
−3I4, I4))(J7).

For (m, al, h) = (6, 3,diag(2, 1, · · · , 1)) and p = 2 (resp. p = 3),

(GI
3) hp =


2

1
I2

I2

 (resp. ρ(diag(
√
−3I3, I3))(J8).)

For (m, al, h) = (6, 1, I6) and p = 2, hp is equal to either (GI
4) X,

(GII
4 ) ρ(diag(I2, (1 + i)I2, I2))(X), or (GIII

4 ) ρ(diag(I2, 1 + i, I3))(X),

where X =

 I2
I2

I2

.

40



For (m, al, h) = (5, 3, I5) and p = 3, hp is equal to either (GI
5) J5,

(GII
5 ) ρ(diag(1,

√
−3I2, I2))(J5), or (GIII

5 ) ρ(diag(1,
√
−3, I3))(J5).

For (m, al, h) = (5, 1, I5) and p = 2, hp is equal to either

(GI
6) J5, or (GII

6 ) ρ(diag(1, (1 + i)I2, I2))(J5).

For (m, al, h) = (5, 7, I5) and p = 7, hp is equal to either

(GI
7) J5, or (GII

7 ) ρ(diag(1,
√
−7I2, I2))(J5).

11.3.2

Here we will go through the possibilities of hp’s for any prime p, and find
gpGLm(Op) as described in the second step. Before going to each case sep-
arately, let us describe gpGLm(Op)’s for almost all primes.

Lemma 34. In the above setting, if p a non-splitting prime over l does not
divide 2al, then there is gp ∈ GLm(Op) such that ρ(gp)(hp) = h.

Proof. Let

Bm =



[
1
2Im/2 − 1

2Im/2

Im/2 Im/2

]
if m is even, 1

1
2Im/2 − 1

2Im/2

Im/2 Im/2

 if m is odd.

Then ρ(Bm)(diag(Idm/2e,−Ibm/2c)) = Jm.

On the other hand, for any prime p which does not divide 2al, there are
x1, x2 ∈ fp such that x2

1 + alx
2
2 = −1 (resp 2(x2

1 + alx
2
2) = 1). Thus, by

virtue of Hensel’s lemma, there are x1, x2 ∈ Zp such that x2
1 + alx

2
2 = −1 (resp.

2(x2
1 + alx

2
2) = 1). Therefore there is yp a diagonal matrix in GLm(Op), such

that ρ(yp)(h) = diag(Idm/2e,−Ibm/2c).

By the above discussion, and proposition 33, we have that ρ(Bmyp)(h) = Jm =
hp. So gp = y−1

p B−1
m satisfies all the desired conditions.

(GI
1) By lemma 34, we should only understand g2 and g3. Let us start with

p = 2. It is clear that (x1, x2) = (2, 1) is a solution of x2
1 + 3x2

2 = −1 in
Z/8Z. Hence by virtue of Hensel’s lemma, there are x1 and x2 in Z2 such that
x2

1 + 3x2
2 = −1. So

h2 = J8 = ρ(B8diag(I4, (x1 +
√
−3x2)I4))(h).

Hence g2 = diag(I4, (−x1 +
√
−3x2)I4)B−1

8 brings h2 to h. Now we will go one
step further, and find a representative of g2GL8(Z2[ 1+

√
−3

2 ]) in GL8(Q[
√
−3]).
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Indeed using the fact that x1 ≡ 2 (mod 4) and x2 ≡ 1 (mod 4), it is easy to
check that

g2GL8

(
Z2

[
1 +
√
−3

2

])
=
[ 1

2I4
−2+

√
−3

2 I4 2I4

]
GL8

(
Z2

[
1 +
√
−3

2

])
.

Now consider p = 3. (x1, x2) = (1, 1) is a solution of x2
1 + x2

2 = −1 in f3. So
there are x1 and x2 in Z3 such that x2

1 + x2
2 = −1. Hence

h3 = ρ

(
diag(

√
−3I4, I4) ·B8 · diag(I4,

[
x1 x2

−x2 x1

]
,

[
x1 x2

−x2 x1

]
)
)

(h),

and as a consequence, we have to find a representative of g3GL8(Z3[
√
−3]) in

GL8(Q[
√
−3]), where

g3 =
(

diag(
√
−3I4, I4) ·B8 · diag(I4,

[
x1 x2

−x2 x1

]
,

[
x1 x2

−x2 x1

]
)
)−1

.

Using the fact that x1 ≡ x2 ≡ 1 (mod 3), it is easy to check that

g3GL8(Z3[
√
−3]) =


1√
−3
I2

1√
−3
I2

1√
−3
Z(1,−1) I2

1√
−3
Z(1,−1) I2

GL8(Z3[
√
−3]),

where Z(y1, y2) =
[

y1 y2

−y2 y1

]
.

(GI
2) By lemma 34, we only have to find g2 and g3. Similar to the previous

case, one can easily find that

g2GL7

(
Z2

[
1 +
√
−3

2

])
=

 1
1
2I3

−2+
√
−3

2 I3 2I3

GL7

(
Z2

[
1 +
√
−3

2

])
.

Now let p = 3.

h3 = −J7 = ρ(B7)(diag(−I4, 3)) = ρ(B7 · diag(Z(x1, x2), Z(x1, x2), I3))(h),

where (x1, x2) is a solution of x2
1 + x2

2 = −1 in Z3. So it clear that

g3GL7(Z3[
√
−3]) = GL7(Z3[

√
−3]).

(GII
2 ) By lemma 34, again we only have to find g2 and g3. g2 is the same as GI

2.
For p = 3, we proceed similar to the previous case, and we get

h3 = ρ(diag(1,
√
−3I3, I3) ·B7 · diag(Z(x1, x2), Z(x1, x2), I3))(h),
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where x1 and x2 are as in GI
2 case. We can and will assume that x1 ≡ x2 ≡ 1

(mod 3), and then use it to check that

g3GL7(Z3[
√
−3]) =


1√
−3

− 1√
−3

1
1√
−3
I2

I3


[
I4
Y1 I3

]
GL7(Z3[

√
−3]),

where

Y1 =


−1√
−3

0 0 0
0 0 −1√

−3
−1√
−3

0 0 1√
−3

−1√
−3

 .
(GI

3) We only have to study p = 2 and p = 3. We start with h2.

h2 = ρ(diag(I2, B4))(diag(2, I3,−12) = ρ(diag(I2, B4)diag(I4, (2+
√
−3x)I2)(h),

where x is a solution of 3x2 = −5 in Z2.By virtue of Hensel’s lemma such a
solution exist, as it is the case in Z/8Z. We can further assume that x ≡ 1
(mod 4). Now it is easy to check that

g2GL6

(
Z2

[
1 +
√
−3

2

])
=

 I2
1
2I2

−2+
√
−3

2 I2 2I2

GL6

(
Z2

[
1 +
√
−3

2

])
.

Now we study h3. We know that

h3 = ρ(diag(
√
−3I3, I3)B6)(diag(I3,−I3)).

Let x be a solution of x2 = −2 in Z3. Then ρ(diag(Z(x, 1), x))(−I3) = diag(I2, 2).
Hence we have

h3 = ρ(diag(
√
−3I3, I3)B6diag(I3, Z(x, 1), x−1))(diag(I5, 2)).

Let σ be the permutation matrix corresponded to the following permutation
(6, 5, 4, 3, 2, 1). So

h3 = ρ(diag(
√
−3I3, I3)B6diag(I3, Z(x, 1), x−1)σ)(h).

One can check that

g3GL6(Z3[
√
−3]) = diag(

1√
−3

I3, I3)
[
I3
Y2 I3

]
GL6(Z3[

√
−3]),

where

Y2 =
1√
−3

 1
1 −1
1 1

 .
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(GI
4) In this case, by lemma 34, we only have to study h2. We have

h2 = ρ(diag(I2, B4))(diag(I4,−I2)).

On the other hand, by virtue of Hensel’s lemma, there are x1, x2, x3 and x4 in
Z2 such that

x2
1 + x2

2 + x2
3 + x2

4 = −1.

Let H(y1, y2, y3, y4) =
[

y1 +
√
−1 y2 y3 +

√
−1 y4

−y3 +
√
−1 y4 y1 −

√
−1 y2

]
. Hence we have

h2 = ρ(diag(I2, B4)diag(I4, H(x1, x2, x3, x4)))(h).

We can and will assume that x1 = 2, x3 = x4 = 1, and x2 ≡ 1 (mod 4). One
can check that

g2GL6(Z2[
√
−1]) =

 I2
1
2I2

1
2H(−2, 1, 1, 1) 2I2

GL6(Z2[
√
−1]).

(GII
4 ) In this case, again by lemma 34, we only have to study h2. Borrowing

notations from the previous case, we have

h2 = ρ(diag(I2, (1 + i)I2, I2)diag(I2, B4)diag(I4, H(x1, x2, x3, x4))(h).

One can check that

g2GL6(Z2[
√
−1]) =

 I2
1
2I2

1
2H(−2, 1, 1, 1) (1− i)I2

GL6(Z2[
√
−1]).

(GIII
4 ) Here again, we only have to calculate g2GL6(Z2[

√
−1]). As before we

start with h2.

h2 = ρ(diag(I2, 1 + i, I3) diag(I2, B4) diag(I4, H(x1, x2, x3, x4))(h).

It can be checked that

g2GL6(Z2[
√
−1]) =

 I2
1
2I2

1
2H(−2, 1, 1, 1) 2Y3

GL6(Z2[
√
−1]),

where Y3 = diag((1 + i)−1, 1).

(GI
5) The only primes which should be studied are 2 and 3. p = 2 is almost

identical to GI
3, and we have

g2GL5

(
Z2

[
1 +
√
−3

2

])
=

 1
1
2I2

−2+
√
−3

2 I2 2I2

GL5

(
Z2

[
1 +
√
−3

2

])
.
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Now let p = 3. We have

h3 = ρ(diag(1, B4) diag(I3, Z(x1, x2))(h),

where (x1, x2) is a solution of x2
1 + x2

2 = −1 in Z3. Hence

g3GL5(Z3[
√
−3]) = GL5(Z3[

√
−3]).

(GII
5 ) Again we have two primes to look at, and p = 2 is the same as GI

5. For
h3, we know that

h3 = ρ(diag(1,
√
−3I2, I2) diag(1, B4) diag(I3, Z(x1, x2))(h),

where x1 and x2 are as in the previous case. We can and will assume that
x1 ≡ x2 ≡ 1 (mod 3). One can check that

g3GL5(Z3[
√
−3]) =

 1
1√
−3
I2

1√
−3
Z(1,−1) I2

GL5(Z3[
√
−3]).

(GIII
5 ) As in the previous case, by lemma 34, we only have to study p = 2 and

p = 3, and the case of p = 2 is identical with GI
5. On the other hand, we know

that
h3 = ρ(diag(1,

√
−3, I3) diag(1, B4) diag(I3, Z(x1, x2))(h),

where x1 and x2 are as in the previous two cases. One can check that

g3GL5(Z3[
√
−3]) =

 1
Y4

Y5 I2

 ,
where Y4 = diag( 1√

−3
, 1) and Y5 =

[
1√
−3

0
1√
−3

0

]
.

(GI
6) In this case, we only have to describe g2. We know that

h2 = ρ(diag(1, B4) diag(I3, H(x1, x2, x3, x4))(h),

where (x1, x2, x3, x4) is a solution of x2
1 + x2

2 + x2
3 + x2

4 = −1 in Z2. Indeed we
can and will assume that x1 = 2, x3 = x4 = 1, and x2 ≡ 1 (mod 4). One can
check that

g2GL5(Z2[
√
−1]) =

 1
1
2I2

1
2H(−2, 1, 1, 1) 2I2

GL6(Z2[
√
−1]).

(GII
6 ) Following the previous case, we have to find g2, and we have

h2 = ρ(diag(1, (1 + i)I2, I2) diag(1, B4) diag(I3, H(x1, x2, x3, x4)))(h),
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where are xi’s are as in the previous case. One can see that, in this case,

g2GL5(Z2[
√
−1]) =

 1
1
2I2

1
2H(−2, 1, 1, 1) (1− i)I2

GL6(Z2[
√
−1]).

(GI
7) By lemma 34, we only have to study p = 2 and p = 7. However in this

case, p = 2 splits over l, and so we only have to find g7. We know that

h7 = ρ(diag(1, B4) diag(I3, Z(x1, x2)))(h),

where (x1, x2) is a solution of x2
1 + x2

2 = −1 in Z7. Thus, it is clear that

g7GL5(Z7[
√
−7]) = GL5(Z7[

√
−7]).

(GII
7 ) As in the previous case, we only have to find g7. Similarly, we know that

h7 = ρ(diag(1,
√
−7I2, I2) diag(1, B4) diag(I3, Z(x1, x2)))(h),

where xi’s are as in the previous case. Further we can and will assume that
x1 ≡ 3 (mod 7) and x2 ≡ 2 (mod 7). I can be checked that

g7GL5(Z7[
√
−7]) =

 1
I2

1√
−7
Z(3,−2) I2

GL5(Z7[
√
−7]).

11.3.3

Now, we will use the given local data, and list matrices in GLm(l) which repre-
sent the described local cosets. In all the cases, there are at most two non-trivial
local matrices, and all of them are lower triangular matrices. When al = 1,
there is only one non-trivial local matrix for which we have a representative in
GLm(O[ 1

1+i ]). Thus it also satisfies the other local conditions. By this or a
similar argument, we get the following l-matrix representatives with the desired
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local conditions for the following cases.

type g ∈ GLm(l) type g ∈ GLm(l)

GI
2

 1
1
2I3

−2+
√
−3

2 I3 2I3

 GI
4

 I2
1
2I2
1
2Y6 2I2



GII
4

 I2
1
2I2
1
2Y6 (1− i)I2

 GIII
4

 I2
1
2I2
1
2Y6 2Y3



GI
5

 1
1
2I2

−2+
√
−3

2 I2 2I2

 GI
6

 1
1
2I2
1
2Y6 2I2



GII
6

 1
1
2I2
1
2Y6 (1− i)I2

 GI
7 I7

GII
7

 1
1√
−7
I2

1√
−7
Z(3,−2) I2


where Y3 = diag((1 + i)−1, 1) and Y6 = H(−2, 1, 1, 1).

For the other cases, we will write the local matrices as product of a unipotent
matrix and a diagonal matrix. Then use method of Chinese remainder argu-
ment to find the needed l-matrix representative. We get the following matrices.

(GI
1) g =


I2

I2
Y7 I2

Y7 I2

 diag( 1
2
√
−3
I4, 2I4), where

Y7 =
[

10− 3
√
−3 −4

4 10− 3
√
−3

]
.
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(GII
2 ) g =

 1
v I3
w Y8 I3

 diag( 1√
−3
, 1

2 ,
1

2
√
−3
I2, 2I3), where

v = −4

 1
0
0

 , w = (10−3
√
−3)v, Y8 =

 10− 3
√
−3

−10 + 3
√
−3 −4

4 −10 + 3
√
−3

 .

(GI
3) g =

 I2
Y9 I2
Y10 Y11 I2

 diag( 1√
−3
I2,

1
2
√
−3
, 1

2 , 2I2), where

Y9 =
[

0 0
1 0

]
, Y10 =

[
−2

6− 3
√
−3 −2

]
, Y11 =

[
2− 3

√
−3

−4 6− 3
√
−3

]
.

(GII
5 ) g =

 1
I2
Y7 I2

 diag(1, 1
2
√
−3
I2, 2I2), where Y7 is as above.

(GIII
5 ) g =

 1
I2
Y12 I2

 diag(1, 1
2
√
−3
, 1

2 , 2I2), where

Y12 =
[
−2 +

√
−3

4 −2 +
√
−3

]
.

In each case, by the choice of g, Γ acts transitively on the vertices of the asso-
ciated Bruhat-Tits building if and only if

#{x ∈ SLm(Ol) | ρ(x)(ρ(g−1)(h)) = ρ(g−1)(h)} (23)

is equal to the value of #Λ ∩ K as we have already computed in 10.2. So
to complete the panorama, one has to compute (23), which can be done as
described in the forth step, and we execute in the next section.

11.3.4

In this section, we will summarize the results of programming with MAGMA
as described in the forth step. Namely, at each case, we looked at the associ-
ated quadratic form over Z2m, found its group of symmetries, a generating set
and image of the determinant map if needed to find the number of those with
determinant one. In some of the cases, it is clear that the determinant is onto
the group of roots of unity of Ol, e.g. when m is odd and l = Q[ω] or l = Z[i].
Consequently, we get the following table, which combined with the results of
10.2, finishes our proof of theorem A and theorem B.
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Proposition 35. Let Λ, K, and Gj
i be as above. Then

Label Full group of symmetries #Λ ∩K
GI

1 215 · 310 · 52 215 · 39 · 52

GI
2 211 · 39 · 5 · 7 210 · 38 · 5 · 7

GII
2 211 · 39 · 5 210 · 38 · 5

GI
3 26 · 36 26 · 35 or 25 · 35

GI
4 215 · 32 · 5 2• · 32 · 5

GII
4 216 · 32 214 · 32

GIII
4 216 · 3 2• · 3

GI
5 28 · 36 · 5 27 · 35 · 5

GII
5 28 · 36 · 5 27 · 35 · 5

GIII
5 27 · 36 26 · 35

GI
6 212 · 32 · 5 210 · 32 · 5

GII
6 213 · 32 211 · 32

GI
7 28 · 3 · 5 27 · 3 · 5 or 28 · 3 · 5

GII
7 25 · 32 · 5 · 7 24 · 32 · 5 · 7 or 25 · 32 · 5 · 7

Appendix A: Table d=2.

Dk = 5 Dk = 8 Dk = 12 Dk ≥ 13
δl/k hl rl
5 1 10
9 1 6
16 1 4
41 1 2
49 1 2
61 1 2
73 1 2
64 1 2
109 1 2
117 2 6
121 2 2

δl/k hl rl
4 1 8
5 1 4
8 1 4
9 1 6
9 1 6
13 1 4
17 1 2
17 1 2
20 1 4
25 1 2
27 1 6
29 1 4
32 1 2
32 1 2
33 1 2
33 1 2
36 2 2
36 2 4
37 1 4

δl/k hl rl
1 1 12
3 1 6
4 1 6
4 1 6
7 1 6
7 1 6
12 1 6
13 2 6

Dk δl/k hl rl
13 9 2 6
13 13 1 2
17 8 1 2
21 1 1 6
24 1 1 6
24 1 1 6
24 3 1 6
24 4 2 2
24 4 2 4
24 5 2 4
28 1 1 4
28 2 1 2
33 1 1 6
40 1 1 2
44 1 1 4
52 1 1 4
56 1 1 2
56 1 1 2
56 1 2 2
57 1 1 6
60 1 2 2
60 1 2 4
60 1 2 6
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Appendix B: Values of Zeta and L-functions.

As it is mentioned before, using Bernoulli numbers, we compute values of zeta
function at negative odd integer numbers, and we get the following.

i 1 3 5 7 9 11
ζ(−i) −1

12
1

120
−1
252

1
240

−1
132

691
32760 .

Here we provide the Mathematica program which gives us a bad prime factor
of the corresponded L-functions, together with the results. These prime factors
do not appear in the denominator of the other zeta or L-function factors of
R(l/Q,m). Wherever an entry is 0, it means that the numerator does not have
a large enough prime factor.

For a given number, first we establish if it is discriminant of a complex quadratic
field or not. Then define the character χ associated to this quadratic field l. Fi-
nally we introduce the related exponential function of the generalized Bernoulli
numbers, compute the L-function via the generalized Bernoulli numbers, and
give a large enough prime factor of the numerator.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For[i = 2, i <135, i++,
bool1:=Mod[i, 4] == 0 && ! (MoebiusMu[i/4] == 0)

&& ! (Mod[i/4, 4] == 3);
bool2 := Mod[i, 4] == 3 && ! (MoebiusMu[i] == 0);
If [ bool1 || bool2, a := If[bool1, i/4, i];

Chi[s ] := If[OddQ[s], JacobiSymbol[-i, s],
OddPart := s/2ˆ (FactorInteger[s][[1]][[2]]);
(If[! (OddQ[a]), 0, If[Mod[a, 8] == 7, 1, -1]])ˆ
(FactorInteger[s][[1]][[2]])*
JacobiSymbol[-i, OddPart]];

F[z ] := Sum[Chi[k]*z*Eˆ (k*z)/(Eˆ (i*z) - 1), {k, 1, i - 1}];
B = Series[F[z], z, 0, 12];
For[b = 1, b < 11, b = b + 2;

L = FactorInteger[SeriesCoefficient[B, b]*(b - 1)!];
ABadPrimeFactor = 0;
NotFound = True;
For[counter = 1, counter < Length[L] + 1, counter++,

If[NotFound && L[[counter]][[2]] > 0 && 11 < L[[counter]][[1]] &&
GCD[L[[counter]][[1]], i] == 1 && PrimeQ[L[[counter]][[1]]],
ABadPrimeFactor = L[[counter]][[1]]; NotFound = False ]; ];

Print[”&”, ABadPrimeFactor]; ];
Print[”\\\\”]; ]; ];

. . . . . . . . . . . . . . . . . . . . . . . The Mathematica program . . . . . . . . . . . . . . . . . . . . . . .
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a Ll/Q(−2) Ll/Q(−4) Ll/Q(−6) Ll/Q(−8) Ll/Q(−10)
3 0 0 0 809 1847
1 0 0 61 277 19
7 0 0 73 8831 73
2 0 19 307 83579 23
11 0 17 17 4999 43
15 0 31 941 821063 1682150401
19 0 269 53 13 41
5 59 137 23 1116041413 149
23 0 71 18517 41 63659
6 23 797 249089 13 43
31 0 0 41 337 17
35 0 107 31 19 61
39 0 457 30509 552942737 3480906042721
10 79 39521 1579 109493813441 1217
43 83 29 76565663 202075601281 13
47 0 59 5099 13640153 3671
51 67 2297 116111407 17235782633 37
13 409 263 55257133 251 16747
55 0 10687 103 193 997121
14 0 61 7963537 73 607
59 67 14813 47 19 7877706624037007
67 251 19 1367650871 151 3272681
17 13 19211 23 95621 1039
71 17 2267 4021907 30007358867 13
79 31 19 1879 17 23
83 31 37 167 151 107
21 43 53 46411 3511 22079
87 0 37 59 89 3633269
22 13 239 5171 7507 19
91 0 154877 1000621267 11827264167629 19
95 0 42013 199 59 271
103 17 7193 157 163 34471
26 311 39161 1409 197 6451
107 97 51341 317 263 89
111 151 19 197 1031593 34369
115 491 19 6949 13 13057719994803998711
29 107 17 17 37 24123887717272745429
119 31 37 10957 1209625671061 3889
30 127 53 6091875511 421 53
123 17 19 31 9947794325893 19
127 0 83 19 31 43
131 17 6967 4603 619 79829759
33 10333 8189899 17 23 59
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Appendix C: Siegel-Klingen theorem.

In section 6, we had to find the exact value of R(l/k,m) for certain k, l and
m. To do so, we used PARI, and we had to have a bound for the denominator
of R(l/k,m). Here we give a new proof of Siegel-Klingen theorem, which also
provides a bound for the denominator of R(l/k,m). J-P. Serre in [Se71] had
already mentioned relation between co-volume of S-arithmetic lattices and ra-
tionality of zeta-values (Siegel’s theorem).3 He used Euler-Ponicarè measures
to get Siegel’s theorem. Here we proceed with a similar approach, in the p-adic
setting, and as a result we also get rationality of certain L-function values (Klin-
gen’s theorem).

Let k be a totally real number field, and l a totally complex quadratic extension
of k. Consider the hermitian space (lm, Im), and G the corresponded absolutely
almost simple, simply connected unitary k-group. Let (Pp)p∈Vf (k) be a coherent
family of parahorics with maximum volume among the parahoric subgroups of
the corresponded group. For any prime p which splits over l, as we have seen in
section 3, one can construct Λp a lattice in SLm(kp). By equation (6), lemma
2, and lemma 3, we have that

vol(SLm(kp)/Λp) = R(l/k,m) ·
∏

e′(Pp′).

By the choice of Pp′ ’s, whenever G is quasi-split over a place, e′(Pp′) = 1. On
the other hand, if m is odd, over any prime we get a quasi-split group. When
m is a multiple of 4, then over any prime the determinant of the split hermitian
from is equal to one. Hence G is again quasi-split over any prime. So overall
we have

vol(SLm(kp)/Λp) = R(l/k,m), when m is odd or 4|m.

When m is congruence to 2 modulo 4, G is quasi-split over a place whenever
−1 is in the image of norm map. In particular, over all the unramified places, it
is quasi-split. Over a ramified place, by lemma 2, e′(Pp′) is either one or qm/2p −1.

On the other hand, we know that Λp’s are co-compact lattices, and have a finite
set of vertices as a fundamental domain in the associated Bruhat-Tits building.
Since the first congruence subgroup of SLm(Op) is a pro-p group where p is an
odd rational prime divisible by p, the intersection of Λp with the stabilizer of
any vertex is a finite group whose order divides #SLm(fp) times a power of p.
As a consequence

vol(SLm(kp)/Λp) ∈ 1
#SLm(fp)

Z[1/p].

Hence if m is either odd or a multiple of 4,

R(l/k,m) ·Wm ∈ Z,
3The second author would like to thank Professor A. Rapinchuk for pointing out this

reference to him.
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where Wm = g.c.d.p(#SLm(fp)), p splits over l, and does not divide 2. When
m is congruence to 2 modulo 4, then by a similar argument

R(l/k,m) ·Wm ·
∏

p ramify/l

(qm/2p − 1) ∈ Z.
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