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Abstract

Let M be a convex cocompact, acylindrical hyperbolic 3-manifold
of infinite volume, and let M∗ denote the interior of the convex core of
M . In this paper we show that any geodesic plane inM∗ is either closed
or dense. We also show that only countably many planes are closed.
These are the first rigidity theorems for planes in convex cocompact
3-manifolds of infinite volume that depend only on the topology of M .
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1 Introduction

In this paper we establish a new rigidity theorem for geodesic planes in
acylindrical hyperbolic 3-manifolds.

Hyperbolic 3-manifolds. Let M = Γ\H3 be a complete, oriented hyper-
bolic 3-manifold, presented as a quotient of hyperbolic space by the action
of a discrete group

Γ ⊂ G = Isom+(H3).

Let Λ ⊂ S2 = ∂H3 denote the limit set of Γ, and let Ω = S2 − Λ denote
the domain of discontinuity. The convex core of M is the smallest closed,
convex subset of M containing all closed geodesics; equivalently,

core(M) = Γ\ hull(Λ) ⊂M

is the quotient of the convex hull of the limit set Λ of Γ. Let M∗ denote the
interior of the convex core of M .

Geodesic planes in M∗. Let

f : H2 →M

be a geodesic plane, i.e. a totally geodesic immersion of the hyperbolic plane
into M . We often identify a geodesic plane with its image, P = f(H2).

By a geodesic plane P ∗ ⊂M∗, we mean the nontrivial intersection

P ∗ = P ∩M∗ 6= ∅

of a geodesic plane in M with the interior of the convex core. A plane P ∗ in
M∗ is always connected, and P ∗ is closed in M∗ if and only if P ∗ is properly
immersed in M∗ (§2).

Acylindrical manifolds and rigidity. In this work, we study geodesic
planes in M∗ under the assumption that M is a convex cocompact, acylin-
drical hyperbolic 3-manifold. The acylindrical condition is a topological one;
it means that the compact Kleinian manifold

M = Γ\(H3 ∪ Ω)

has incompressible boundary, and every essential cylinder in M is boundary
parallel (§2). We will be primarily interested in the case where M is a
convex cocompact manifold of infinite volume. Under this assumption, M
is acylindrical if and only if Λ is a Sierpiński curve.1

Our main goal is to establish:

1A compact set Λ ⊂ S2 is a Sierpiński curve if S2 − Λ =
⋃

Di is a dense union of
Jordan disks with disjoint closures, and diam(Di) → 0. Any two Sierpiński curves are
homeomorphic [Wy].
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Theorem 1.1 Let M be a convex cocompact, acylindrical, hyperbolic 3-
manifold. Then any geodesic plane P ∗ in M∗ is either closed or dense.

As a complement, we will show:

Theorem 1.2 There are only countably many closed geodesic planes P ∗ ⊂
M∗.

We also establish the following topological equidistribution result:

Theorem 1.3 If P ∗i ⊂M∗ is an infinite sequence of distinct closed geodesic
planes, then

lim
i→∞

P ∗i = M∗

in the Hausdorff topology on closed subsets of M∗.

Remarks.

1. We do not know of any instance of Theorem 1.1 where P ∗ is closed in
M∗ but P is not closed in M .

Added in proof. An example of such an exotic plane in an acylindrical
manifold has recently been constructed by Zhang. In his example, the
closure of P is not even locally connected near ∂M∗ [Zh].

Thus the rigidity of planes described in Theorem 1.1 does not extend
beyond the convex core of M .

2. In the special case where M is compact (so M = M∗), Theorem 1.1 is
due independently to Shah and Ratner (see [Sh], [Rn]).

3. For a general convex cocompact manifold M , there can be uncountably
many distinct closed planes in M∗; see the end of §2.

4. Examples of acylindrical manifolds such that M∗ contains infinitely
many closed geodesic planes are given in [MMO, Cor.11.5]

5. The study of planes P that do not meet M∗ can be reduced to the
case where M is a quasifuchsian manifold. This case can be analyzed
via the bending lamination (cf. §6).

Comparison to the case of geodesic boundary. A convex cocompact
hyperbolic 3-manifold M such that ∂ core(M) is totally geodesic is automat-
ically acylindrical. For these rigid acylindrical manifolds, the results above
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were obtained in our previous work [MMO]. While one would ultimately like
to analyze planes in a large class of geometrically finite groups, our previous
results covered only countably many examples (by Mostow rigidity).

The present paper makes a major step forward in this program, by devel-
oping a new argument for unipotent recurrence which works without geodesic
boundary, which is robust enough to be invariant under quasi-isometry, and
which is powerful enough to apply to the class of all convex cocompact
acylindrical manifolds. The key insight is that one should work with a
proper subset of the renormalized frame bundle, defined in terms of thick-
ness of Cantor sets, where we show sufficient recurrence takes place in the
acylindrical case.

Figure 1. Limit set of a cylindrical 3-manifold.

The cylindrical case. The acylindrical setting is also close to optimal,
since Theorem 1.1 is generally false for cylindrical manifolds.

For example, consider a quasifuchsian group Γ containing a Fuchsian
subgroup Γ′ of the second kind with limit set Λ′ ⊂ S1. Given (a, b) ∈ Λ′×Λ′,
let Cab denote the unique circle orthogonal to S1 such that Cab∩S1 = {a, b}.
It is possible to choose Γ such that Cab ∩ Λ = {a, b} for uncountably many
(a, b); and further, to arrange that the corresponding hyperbolic planes P ⊂
M and P ∗ ⊂ M∗ have wild closures, violating Theorem 1.1 (cf. [MMO,
App. A]).

The same type of example can be embedded in more complicated 3-
manifolds with nontrivial characteristic submanifold; an example is shown
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in Figure 1.

G = PSL2(C) ∼= Isom+(H3)

H = PSL2(R) ∼= Isom+(H2)

K = SU(2)/(±I)

A =
{(

a 0
0 a−1

)
: a > 0

}
N = {ns = ( 1 s

0 1 ) : s ∈ C}
U = {ns : s ∈ R}
V = {ns : s ∈ iR}

FH3 = G = {the frame bundle of H3}
H3 = G/K

S2 = G/AN = ∂H3

C = G/H = {the space of oriented circles C ⊂ S2}

Table 2. Notation for G and some of its subgroups and homogeneous spaces.

Homogeneous dynamics. Next we formulate a result in the language of
Lie groups and homogeneous spaces, Theorem 1.4, that strengthens both
Theorems 1.1 and 1.3.

To set the stage, we have summarized our notation for G and its sub-
groups in Table 2. We have similarly summarized the spaces attached to an
arbitrary hyperbolic 3–manifold M = Γ\H3 in Table 3. (In the definition of
C∗, a circle C ⊂ S2 separates Λ if the limit set meets both components of
S2 − C.)

Circles, frames and planes. Circles, frame and planes are closely related.
In fact, if P denotes the set of all (oriented) planes in M , then we have the
natural identifications:

P = Γ\C = FM/H. (1.1)

Indeed, all three spaces can be identified with Γ\G/H. We will frequently
use these identifications to go back and forth between circles, frames and
planes.

When M∗ is nonempty (equivalently, when Γ is Zariski dense in G), the
spaces C∗ and F ∗ correspond to the set of planes P∗ that meet M∗. In other
words, we have

P∗ = Γ\C∗ = F ∗/H. (1.2)
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To go from a circle to a plane, let P be the image of hull(C) ⊂ H3 under
the covering map from H3 to M . To go from a frame x ∈ FM to a plane,
take the image of xH under the natural projection FM →M .

When Λ is connected and consists of more than one point (e.g. when M
is acylindrical), it is easy to see that:

C∗ = {C ∈ C : C meets Λ}.

Thus the closures of the dense sets arising in Theorem 1.4 below are quite
explicit.

M = Γ\H3 = (the quotient hyperbolic 3-manifold)

M = Γ\(H3 ∪ Ω)

core(M) = Γ\ hull(Λ)

M∗ = int(core(M))

FM = Γ\G = (the frame bundle of M)

F ∗ = {x ∈ FM : x is tangent to a plane P that meets M∗}
C∗ = {C ∈ C : C separates Λ}

Table 3. Spaces associated to M = Γ\H3.

The closed or dense dichotomy. We can now state our main result from
the perspective of homogeneous dynamics.

Theorem 1.4 Let M = Γ\H3 be a convex cocompact, acylindrical 3-manifold.
Then any Γ-invariant subset of C∗ is either closed or dense in C∗. Equiva-
lently, any H-invariant subset of F ∗ is either closed or dense in F ∗.

(The equivalence is immediate from equation (1.2).)
This result sharpens Theorem 1.1 to give the following dichotomy on the

level of the tangent bundles:

Corollary 1.5 The normal bundle to a geodesic plane P ∗ ⊂ M∗ is either
closed or dense in the tangent bundle TM∗.

Beyond the acylindrical case. This paper also establishes several results
that apply outside the acylindrical setting. For example, Theorems 2.1,
4.1, 5.1 and 6.1 only require the assumption that M has incompressible
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boundary. In fact, the main argument pivots on a result relating Cantor
sets and Sierpiński curves, Theorem 3.4, that involves no groups at all.

Discussion of the proofs. We conclude with a sketch of the proofs of
Theorems 1.1 through Theorem 1.4.

Let M = Γ\H3 be a convex cocompact acylindrical 3–manifold of infinite
volume, with limit set Λ and domain of discontinuity Ω. The horocycle and
geodesic flows on the frame bundle FM = Γ\G are given by the right actions
of U and A respectively. The renormalized frame bundle of M is the compact
set defined by

RFM = {x ∈ FM : xA is bounded}. (1.3)

In §2 we prove Theorem 1.2 by showing that the fundamental group of
any closed plane P ∗ ⊂M∗ contains a free group on two generators. We also
show that Theorems 1.1 and 1.3 follow from Theorem 1.4. The remaining
sections develop the proof of Theorem 1.4.

In §3 we show that Λ is a Sierpiński curve of positive modulus. This
means there exists a δ > 0 such that the modulus of the annulus between
any two components D1, D2 of S2 − Λ satisfies

mod(S2 − (D1 ∪D2)) ≥ δ > 0.

We also show that if Λ is a Sierpiński curve of positive modulus, then there
exists a δ > 0 such that C ∩ Λ contains a Cantor set K of modulus δ,
whenever C separates Λ. This means that for any disjoint components I1
and I2 of C −K, we have

mod(S2 − (I1 ∪ I2)) ≥ δ > 0.

This result does not involve Kleinian groups and may be of interest in its
own right.

In §4 we use this uniform bound on the modulus of a Cantor set to
construct a compact, A–invariant set

RFkM ⊂ RFM

with good recurrence properties for the horocycle flow on FM . We also show
that when k is sufficiently large, RFkM meets every H–orbit in F ∗.

The introduction of RFkM is one of the central innovations of this paper
that allows us to handle acylindrical manifolds with quasifuchsian boundary.
When M is a rigid acylindrical manifold, RFkM = RFM for all k sufficiently
large, so in some sense RFkM is a substitute for the renormalized frame
bundle. For a more detailed discussion, see the end of §4.
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In §5 we shift our focus to the boundary of the convex core. Using the
theory of the bending lamination, we give a precise description of C ∩ Λ in
the case where C comes from a supporting hyperplane for the limit set.

In §§6 and 7, we formulate two density theorems for hyperbolic 3-manifolds
M with incompressible boundary. These results do not require that M is
acylindrical. Each section gives a criterion for a sequence of circles Cn ∈ C∗
to have the property that

⋃
ΓCn is dense in C∗.

In §6 we show that density holds if Cn → C 6∈ C∗ and lim(Cn ∩ Λ) is
uncountable. The proof relies on the analysis of the convex hull given in §5.

In §7 we show that density holds if Cn → C ∈ C∗ and C 6∈
⋃

ΓCn,
provided C ∩ Λ contains a Cantor set of positive modulus. The proof uses
recurrence, minimal sets and homogeneous dynamics on the frame bundle,
and follows a similar argument in [MMO]. It also relies on the density result
of §6.

When M is acylindrical, the Cantor set condition is automatic by §3.
Thus Theorem 1.4 follows immediately from the density theorem of §7.

Question. We conclude by mentioning an open problem that goes beyond
the acylindrical case. Let P ∗ ⊂M∗ be a plane in a quasifuchsian manifold,
and suppose the corresponding circle satisfies |C ∩ Λ| > 2. Does it follow
that P ∗ is closed or dense in M∗?

Acknowledgements. We would like to thank Elon Lindenstrauss and Yair
Minsky for useful discussions.

2 Planes in acylindrical manifolds

In this section we will prove Theorem 1.2, and show that our other main
results, Theorems 1.1 and 1.3, follow from Theorem 1.4 on the homogeneous
dynamics of H acting on F ∗.

Let M = Γ\H3 be a convex cocompact hyperbolic 3-manifold. We first
describe how the topology of M influences the shape of planes in M∗. Here
are the two main results.

Theorem 2.1 If M has incompressible boundary, then the fundamental
group of any closed plane P ∗ ⊂M∗ is nontrivial.

Theorem 2.2 If M is acylindrical, then the fundamental group of any
closed plane P ∗ ⊂M∗ contains a free group on two generators.

The second result immediately implies Theorem 1.2, which we restate as
follows:
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Corollary 2.3 If M is acylindrical, then there are at most countably many
closed planes P ∗ ⊂M∗.

Proof. In this case P ∗ corresponds to a circle C whose stabilizer ΓC (as
discussed below) is isomorphic to the fundamental group of P ∗, and contains
a free group on two generators 〈a, b〉. Since C is the unique circle containing
the limit set of 〈a, b〉 ⊂ Γ, and there are only countably many possibilities
for (a, b), there are only countable possibilities for P ∗.

In the remainder of this section, we first develop general results about
planes in 3–manifolds, and prove Theorems 2.1 and 2.2. Then we derive
Theorems 1.1 and 1.3 from Theorem 1.4. Finally we show by example that
a cylindrical manifold can have uncountably many closed planes P ∗ ⊂M∗.
Topology of 3-manifolds. We begin with some topological definitions.

Let D2 denote a closed 2-disk, and let C2 ∼= S1 × [0, 1] denote a closed
cylinder. Let N be a compact 3-manifold with boundary. We say N has
incompressible boundary if every continuous map

f : (D2, ∂D2)→ (N, ∂N)

can be deformed, as a map of pairs, so its image lies in ∂N . (This property
is automatic if ∂N = ∅.)

Similarly, N is acylindrical if it has incompressible boundary and every
continuous map

f : (C2, ∂C2)→ (N, ∂N),

injective on π1, can be deformed into ∂N . That is, every incompressible
disk or cylinder in N is boundary parallel.

When N = M = Γ\(H3 ∪ Ω) is a compact Kleinian manifold, these
properties are visible on the sphere at infinity: the limit set Λ of Γ is con-
nected iff M has incompressible boundary, and M is acylindrical iff Λ is a
Sierpiński curve or Λ = S2.

For more on the topology of hyperbolic 3-manifolds, see e.g. [Th2], [Mor],
and [Md].

Topology of planes. Next we discuss the fundamental group of a plane
P ⊂ M , and the corresponding plane P ∗ ⊂ M∗. These definitions apply to
an arbitrary hyperbolic 3-manifold.

For precision it is useful to think of a plane P as being specified by an
oriented circle C ⊂ S2, whose convex hull covers P . More precisely, the
plane attached to C is given by the map

f̃ : hull(C) ∼= H2 ⊂ H3 →M = Γ\H3
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with image f̃(H2) = P . The stabilizer of the circle C in G is a conjugate
xHx−1 of H = PSL2(R); hence its stabilizer in Γ is given by

ΓC = Γ ∩ xHx−1.

Let
S = ΓC\ hull(C).

Then the map f̃ descends to give an immersion

f : S →M

with image P . The immersion f is generically injective if P is orientable;
otherwise, it is generically two–to–one (and there is an element in Γ that
reverses the orientation of C).

We refer to
π1(S) ∼= ΓC

as the fundamental group of P (keeping in mind caveats about orientability).

Planes in the convex core. Now suppose P ∗ = P ∩M∗ is nonempty. In
this case

S∗ = f−1(M∗)

is a nonempty convex subsurface of S, with π1(S
∗) = π1(S). The map

f : S∗ → P ∗ ⊂M∗

presents S∗ as the (orientable) normalization of P ∗, i.e. as the smooth
surface obtained by resolving the self-intersections of P ∗. Similarly, the
frame bundle of P with its branches separated is given by

FP = xH ⊂ FM

for some x ∈ F ∗. (One should consistently orient C and P to define FP .)
To elucidate the connections between these objects, we formulate:

Proposition 2.4 Let M be an arbitrary hyperbolic 3–manifold. Suppose
C ∈ C∗ and x ∈ F ∗ correspond to the same plane P ∗ ⊂ M∗. Then the
following are equivalent:

1. ΓC is closed in C∗.

2. The inclusion ΓC ⊂ C∗ is proper.
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3. xH is closed in F ∗.

4. P ∗ is closed in M∗.

5. The normalization map f : S∗ → P ∗ is proper.

In (2) above, ΓC is given the discrete topology.

Proof. If ΓC is not discrete in C∗, then by homogeneity it is perfect (it has
no isolated points). But a closed perfect set is uncountable, so ΓC is not
closed. Thus (1) implies that ΓC ⊂ C∗ is closed and discrete, which implies
(2); and clearly (2) implies (1). The remaining equivalences are similar,
using equation (1.2) to relate P∗, C∗ and F ∗.

Compact deformations. In the context of proper mappings, the notion
of a compact deformation is also useful.

Let f0 : X → Y be a continuous map. We say f1 : X → Y is a compact
deformation of f0 if there is a continuous family of maps ft : X → Y
interpolating between them, defined for all t ∈ [0, 1], and a compact set
X0 ⊂ X such that ft(x) = f0(x) for all x 6∈ X0.

Let P ∗ ⊂ M∗ be a hyperbolic plane with normalization f0 : S∗ → M∗.
We say Q∗ ⊂ M∗ is a compact deformation of P ∗ if it is the image of S∗

under a compact deformation f1 of f0.

Theorem 2.5 Let M = Γ\H3 be an arbitrary 3-manifold, and let K ⊂M∗
be a submanifold such that the induced map

π1(K)→ π1(M)

is surjective. Then K meets every geodesic plane P ∗ ⊂M∗ and every com-
pact deformation Q∗ of P ∗.

Corollary 2.6 If π1(M) is finitely generated, then there is a compact sub-
manifold K ⊂M∗ that meets every plane P ∗ ⊂M∗.

Proof. Provided M∗ is nonempty, π1(M
∗) is isomorphic to π1(M); and

since the latter group is finitely generated, there is a compact submanifold
K ⊂ M∗ (say a neighborhood of a bouquet of circles) whose fundamental
group surjects onto π1(M

∗).
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Proof of Theorem 2.5. We will use the fact that S0 and S1 can link in
S2.

Let P ∗ be a plane in M∗, arising from a circle C ⊂ S2 with an associated
map f : S → P as above. Since P meets M∗, there are points in the limit
set of Γ on both sides of C. Since the endpoints of closed geodesics are dense
in Λ×Λ (cf. [Eb]), we can find a hyperbolic element g ∈ Γ such that its two
fixed points

Fix(g) = {a1, a2} ⊂ S2

are separated by C, and the convex hull of {a1, a2} in H3 projects to a closed
geodesic δ ⊂M . Note that Fix(g) ∼= S0 and C ∼= S1 are linked in S2.

Since π1(K) maps onto π1(M), the loop δ is freely homotopic to a loop
γ ⊂ K.

Let f0 = f |S∗. Suppose f0 : S∗ → M∗ has a compact deformation f1
with image Q∗ disjoint from K, and hence disjoint from γ. Extend this
deformation trivially to the rest of S, to obtain a compact deformation f1
of the geodesic immersion f : S → P . Then f1(S) is disjoint from γ. Lifting
f1 to the universal cover of S, we obtain a continuous map

f̃1 : hull(C)→ H3

that is a bounded distance from the identity map. In particular, its image
is a disk D spanning C.

Similarly, a suitable lift of γ gives a path γ̃ ⊂ H3, disjoint from D, that
joins a1 to a2. This contradicts the fact that C separates a1 from a2 in S2.

We can now proceed to the:

Proof of Theorem 2.1 (The incompressible case). For the begin-
ning of the argument, we only use the fact that M is compact and M∗ is
nonempty. Using the nearest point projection, it is straightforward to show
that core(M) is homeomorphic to M . Thus its interior M∗ deformation re-
tracts onto a compact submanifold K ⊂M∗, homeomorphic to M , such that
the inclusion is a homotopy equivalence; in particular, π1(K) ∼= π1(M

∗).
Consider a closed plane P ∗ ⊂M∗, arising as the image of a proper map

f : S∗ → P ∗ as above. We can also arrange that K is transverse to f , so its
preimage

S0 = f−1(K) ⊂ S∗

is a compact, smoothly bounded region in S∗. (However S0 need not be
connected.)
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We claim that, after changing f by a compact deformation, we can ar-
range that the inclusion of each component of S0 into S∗ is injective on π1.
This is a standard argument in 3-dimensional topology. If the inclusion is
not injective on π1, then there is a compact disk D ⊂ S∗ with D∩S0 = ∂D.
The map f sends (D, ∂D) into (M∗,K). Since K is a deformation retract
of M∗, f |D can be deformed until it maps D into K, while keeping f |∂D
fixed. Then D becomes part of S0. This deformation is compact because
D is compact. Since ∂S0 has only finitely many components, only finitely
many disks of this type arise, so after finitely many compact deformations
of f , the inclusion S0 ⊂ S∗ becomes injective on π1.

Now we use the assumption that K ∼= M has incompressible boundary.
Suppose that π1(S

∗) is trivial. Then π1 is trivial for each component of S0,
and hence each component of S0 is a disk. By construction the deformed
map f restricts to give a map of pairs

f : (S0, ∂S0)→ (K, ∂K).

Since K has incompressible boundary, we can further deform f |S0 so it sends
the whole surface S0 into ∂K. Then the image Q∗ of f gives a compact
deformation of P ∗ that is disjoint from K∗ = K − ∂K. But π1(K

∗) maps
onto π1(M), contradicting Theorem 2.5. Thus π1(S

∗) is nontrivial.

Proof of Theorem 2.2 (The acylindrical case). The proof follows the
same lines as the incompressible case. If π1(S

∗) does not contain a free
group on two generators, then S∗ is a disk or an annulus. After a compact
deformation, we can assume that the inclusion S0 = f−1(K) ⊂ S∗ is injective
on π1. Thus each component of S0 is also a disk or an annulus. Since K is
acylindrical, after a further compact deformation of f we can arrange that
f(S0) ⊂ ∂K, leading to a contradiction.

Rigidity of planes from homogeneous dynamics. Now suppose M =
Γ\H3 is a convex cocompact, acylindrical 3-manifold. Assume we know
Theorem 1.4, which states that under this hypothesis:

Any Γ–invariant set E ⊂ C∗ is closed or dense in C∗.

We can then prove the other two main results stated in the introduction.

Proof of Theorem 1.1. Let P ∗ be a geodesic plane in M∗, and let E = ΓC
be the corresponding set of circles. Then by Theorem 1.4, E is either closed
or dense in C∗, and hence P ∗ is either closed or dense in M∗.
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Proof of Theorem 1.3. Let P ∗i be a sequence of distinct closed planes in
M∗. We wish to show that limP ∗i = M∗ in the Hausdorff topology on closed
subsets of M∗. To see this, first pass to a subsequence so that P ∗i converges
to Q∗ ⊂M∗. It suffices to show that Q∗ = M∗ for every such subsequence.
Since each P ∗i is nowhere dense, to show that Q∗ = M∗ and complete the
proof, it suffices to show that

⋃
P ∗i is dense in M∗.

Let Ei ⊂ C∗ be the Γ–orbit corresponding to Pi, and let E =
⋃
Ei. Since

the planes Pi are distinct, the sets Ei are disjoint. By Corollary 2.6, there
exists a compact set K ⊂M∗ that meets every P ∗i , so there exists a compact
set K ′ ⊂ C∗ meeting every Ei. Thus we can choose Ci ∈ Ei ∩K ′ and pass
to a subsequence such that

Ci → C∞ ∈ K ′ ⊂ C∗

and C∞ 6∈ E. (If C∞ ∈ Ei = ΓCi, just drop that term from the sequence.)
Since E is not closed in C∗, it is dense in C∗ by Theorem 1.4. Consequently⋃
P ∗i is dense in M∗, as desired.

Example: uncountably many geodesic cylinders. To conclude, we
show that Theorem 2.2 and Corollary 2.3 do not hold for general convex
cocompact manifolds with incompressible boundary.

In fact, in such a manifold one can have uncountably many distinct closed
planes P ∗ ⊂M∗, each with cyclic fundamental group. For a concrete exam-
ple of this phenomenon, consider a closed geodesic γ and the corresponding
plane P in the quasifuchsian manifold M = Mθ discussed in [MMO, Cor.
A.2]. In this construction, γ is a simple curve in the boundary of the convex
core of M , and P ∼= γ×R is a hyperbolic cylinder properly embedded in M .
Consequently P ∗ ⊂ M∗ is a properly immersed cylinder in M∗. By vary-
ing the angle that P meets the boundary of core(Mθ) along γ, we obtain a
continuous family of properly immersed planes in M∗.

3 Moduli of Cantor sets and Sierpiński curves

The rest of the paper is devoted to the proof of Theorem 1.4.
In this section we define the modulus of a Cantor set K ⊂ S1 (or in any

circle C ⊂ S2), as well as the modulus of a Sierpiński curve K ⊂ S2. We
then prove:

Theorem 3.1 Let Λ be the limit set of Γ, where M = Γ\H3 is a convex
cocompact acylindrical 3–manifold of infinite volume. Then there exists a
δ > 0 such that:
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1. Λ is a Sierpiński curve of modulus δ, and

2. C ∩Λ contains a Cantor set of modulus δ, whenever the circle C ⊂ S2

separates Λ.

The modulus of a Sierpiński curve. For background on conformal
invariants and quasiconformal maps, see [LV].

We begin with some definitions. An annulus A ⊂ S2 is an open region
whose complement consists of two components. Provided neither component
is a single point, A is conformally equivalent to a unique round annulus of
the form

AR = {z ∈ C : 1 < |z| < R},

and its modulus is defined by

mod(A) =
logR

2π
.

(More geometrically, A is conformally equivalent to a Euclidean cylinder of
radius 1 and height mod(A).) Since the modulus is a conformal invariant,
we have

mod(A) = mod(g(A)) ∀g ∈ G. (3.1)

Recall that a compact set Λ ⊂ S2 is a Sierpiński curve if its complement

S2 − Λ =
⋃
Di

is a dense union of Jordan disks Di with disjoint closures, whose diameters
tend to zero. We say Λ has modulus δ if

inf
i 6=j

mod(S2 − (Di ∪Dj)) ≥ δ > 0.

The modulus of an annulus A ⊂ S1. Let C ⊂ S2 be a circle and let
A ⊂ C be an ‘annulus on C’, meaning an open set such that C−A = I1∪ I2
is the union of two disjoint intervals (circular arcs). We extend the notion
of modulus to this 1–dimensional situation by defining

mod(A,C) = mod(S2 − (I1 ∪ I2)).

Clearly mod(gA, gC) = mod(A,C) for all g ∈ G, and consequently
mod(A,C) depends only on the cross-ratio of the 4 endpoints of A. The
cross ratio is controlled by the lengths of the components A1, A2 of A and
the components I1, I2 of C −A. From this observation and monotonicity of
the modulus [LV, I.6.6] it is easy to show:
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Proposition 3.2 There are increasing continuous functions δ(t),∆(t) > 0
such that

δ(t) < mod(A,C) < ∆(t),

where t is the ratio of lengths

t =
min(|A1|, |A2|)
min(|I1|, |I2|)

.

The same result holds with t replaced by d(hull(I1),hull(I2)).
For later reference we recall the following result due to Teichmüller [LV,

Ch II, Thm 1.1]:

Proposition 3.3 Let I1 and I2 be the two components of C −A. Then

mod(B) ≤ mod(A,C)

for any annulus B ⊂ S2 separating the endpoints of I1 from those of I2.

The modulus of a Cantor set. Let K ⊂ C ⊂ S2 be a compact subset of
a circle, such that its complement

C −K =
⋃
Ii

is a union of open intervals with disjoint closures. Note that C is uniquely
determined by K (and we allow K = C). We say K has modulus δ if we
have

inf
i 6=j

mod(Aij , C) ≥ δ > 0, (3.2)

where Aij = C − Ii ∪ Ij . We will be primarily interested in the case where
K is a Cantor set, meaning

⋃
Ii is dense in C.

Slices. Next we show that circular slices of a Sierpiński curve inherit posi-
tivity of the modulus. This argument makes no reference to 3–manifolds.

Theorem 3.4 Let Λ ⊂ S2 be a Sierpiński curve of modulus δ > 0. Then
there exists a δ′ > 0 such that C ∩Λ contains a Cantor set K of modulus δ′

whenever C is a circle separating Λ.

Proof. Let S2 − Λ =
⋃
Di express the complement of Λ as a union of

disjoint disks. Each disk Di meets the circle C in a collection of disjoint
open intervals (see Figure 4). The proof will be based on a study of the
interaction of intervals from different components.
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C

Figure 4. A circle C and some components Di of S
2 − Λ.

Let U = C − Λ =
⋃
Ui, where

Ui = C ∩Di.

Note that distinct Ui have disjoint closures, and diamUi → 0, since these
two properties hold for the disks Di. The open set Ui may be empty.

We may assume U is dense in C, since otherwise we can just choose a
suitable Cantor set K ⊂ C−U . On the other hand, no Ui is dense in C; if it
were, we would have C ⊂ Di, contrary to our assumption that C separates
Λ. It follows that Ui is nonempty for infinitely many values of i.

Let us say an open interval I = (a, b) ⊂ C, with distinct endpoints, is
a bridge of type i if a, b ∈ ∂Ui. Note that an ascending union of bridges of
type i is again a bridge of type i, provided its endpoints are distinct.

Our goal is to construct a sequence of disjoint bridges I1, I2, I3 . . . such
that |I1| ≥ |I2| ≥ · · · and K = C −

⋃
Ii is a Cantor set of modulus δ′.

To start the construction, choose any bridge I1 ⊂ C. After changing
coordinates by a Möbius transformation g ∈ GC , we can assume that I1 fills
at least half the circle; i.e. |I1| > |C|/2. This will ensure that |I1| ≥ |Ik| for
all k > 1.

Next, let I2 be a bridge of maximal length among all those which are
disjoint from I1 and of a different type from I1. Such a bridge exists because
diam(Ui)→ 0, so only finitely many types of bridges are competing to be I2.
To complete the initial step, enlarge I1 to a maximal interval of the same
type, disjoint from I2.

Proceeding inductively, let Ik+1 ⊂ C be a bridge of maximum length
among all bridges disjoint from I1, . . . , Ik. Since I1 is a maximal bridge of
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its type among those disjoint from I2, and vice–versa, the intervals (I1, I2, Ik)
are of 3 distinct types, for all k ≥ 3. Consequently |I2| ≥ |Ik| for all k > 2.

Note that the bridges so constructed have disjoint closures. Indeed, if Ii
and Ij were to have an endpoint a in common, with i < j, then Ii ∪{a}∪ Ij
would be a longer interval of the same type as Ii, contradicting to stage i of
the construction.

Since U is dense in C, it follows that at any finite stage there is a bridge
disjoint from all those chosen so far, and thus the inductive construction
continues indefinitely. By construction, we have

|I1| ≥ |I2| ≥ |I3| · · ·

and by disjointness, |Ik| → 0. Moreover,
⋃
Ik is dense in C. Otherwise, by

density of U , we would be able to find a bridge J disjoint from all Ik, and
longer than Ik for all k sufficiently large, contradicting the construction of
Ik.

Let K = C −
⋃∞

1 Ik. Since the intervals Ik have disjoint closures, and
their union is dense in C, K is a Cantor set. We have K ⊂ Λ since ∂Ik ⊂ Λ
for all k.

Now consider any two indices i < j. Let

A = C − (Ii ∪ Ij) = A1 ∪A2,

where the open intervals A1 and A2 are disjoint. If the bridges Ii and Ij
have types s 6= t respectively, then the annulus

B = S2 − (Ds ∪Dt)

separates ∂Ii from ∂Ij , and hence

mod(A,C) ≥ mod(B) ≥ δ > 0

by Proposition 3.3.
On the other hand, if Ii and Ij have the same type s, then i, j > 2, and

there must be a bridge Ik, k < i, such that I1 ∪ Ik separates Ii from Ij .
Otherwise, we could have combined Ii and Ij to obtain a longer bridge at
step i.

It follows that

t =
min(|A1|, |A2|)
min(|Ii|, |Ij |)

≥ min(|I1|, |Ik|)
min(|Ii|, |Ij |)

=
|Ik|
|Ij |

≥ 1,
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since k < i < j. By Proposition 3.2, this implies that

mod(A,C) > δ0 > 0

where δ0 is a universal constant. Thus the Theorem holds with δ′ = min(δ0, δ).

Limit sets. We can now complete the proof of Theorem 3.1.

Theorem 3.5 Let M = Γ\H3 be a convex cocompact acylindrical 3–manifold
of infinite volume. Then its limit set Λ is a Sierpiński curve of modulus δ
for some δ > 0.

Proof. First suppose that every component of Ω = S2−Λ =
⋃
Di is a round

disk, i.e. suppose that M is a rigid acylindrical manifold. By compactness,
there exists an L > 0 such that the hyperbolic length of any geodesic arc
γ ⊂ core(M) orthogonal to the boundary at its endpoints is greater than
L. Consequently dij = d(hull(Di), hull(Dj)) ≥ L for any i 6= j. Since the
modulus of S2 − (Di ∪ Dj) is given by dij/(2π), Λ is a Sierpiński curve of
modulus δ = L/(2π) > 0.

To treat the general case, recall that for any convex cocompact acylindri-
cal manifold M , there exists a rigid acylindrical manifold M ′ = Γ′\H3 such
that Γ′ is K–quasiconformally conjugate to Γ. Since a K–quasiconformal
map distorts the modulus of an annulus by at most a factor of K, and the
limit set Λ′ of Γ′ is a Sierpiński curve with modulus δ′ > 0, Λ itself is a
Sierpiński curve of modulus δ = δ′/K > 0.

Proof of Theorem 3.1. Combine Theorems 3.4 and 3.5.

4 Recurrence of horocycles

Let M = Γ\H3 be an arbitrary 3–manifold. In this section we will define,
for each k > 1, a closed, A–invariant set

RFkM ⊂ RFM

consisting of points with good recurrence properties under the horocycle flow
generated by U (for terminology see Tables 2 and 3). We will then show:
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Theorem 4.1 Let M = Γ\H3 be a convex cocompact acylindrical 3–manifold.
We then have

F ∗ ⊂ (RFkM)H

for all k sufficiently large. More precisely, every plane P ∗ ⊂ M∗ is tangent
to a frame in RFkM .

We conclude by comparing the general result above to results that hold only
when ∂M∗ is totally geodesic.

We remark that (RFkM)H is usually not closed, even when M is acylin-
drical, because there can be circles C ∈ C∗ such that |C ∩ Λ| = 1.

Thick sets. We begin by defining RFkM . Let us say a closed set T ⊂ R is
k-thick if

[1, k] · |T | = [0,∞).

In other words, given x ≥ 0 there exists a t ∈ T with |t| ∈ [x, kx]. Note that
if T is k–thick, so is λT for all λ ∈ R∗.

If the translate T − x is k–thick for every x ∈ T , we say T is globally k–
thick. A set K ⊂ U is (globally) k-thick if its image under an isomorphism
U ∼= R is (globally) k–thick.

Unipotent recurrence. For x ∈ RFM , the unipotent orbit xU almost
never remains in RFM . Provided, however, there is a thick set K ⊂ U
such that xK ⊂ RFM , we have sufficient recurrence to carry through many
arguments that would be automatic if xU were bounded. The key point is
to combine thickness with the polynomial behavior of unipotent flows. This
theme is developed in detail in [MMO, §8], and it motivates the definition
of RFkM below.

Let
U(z) = {u ∈ U : zu ∈ RFM} (4.1)

denote the return times of z ∈ FM to the renormalized frame bundle under
the horocycle flow. We define RFkM for each k > 1 by

RFkM =

{
z ∈ RFM :

there exists a globally k–thick

set K with 0 ∈ K ⊂ U(z)

}
.

Let
U(z, k) = {u ∈ U : zu ∈ RFkM}.

Proposition 4.2 Suppose the convex core of M is compact. Then for any
k > 1, the set RFkM is a compact, A–invariant subset of RFM . Moreover,
U(z, k) is k–thick for each z ∈ RFkM .
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Proof. Using compactness of RFM , it is easily verified that if zn → z in FM
then lim supU(zn) ⊂ U(z). One can also check that if Kn ⊂ U is a sequence
of globally k–thick sets with 0 ∈ Kn, then lim supKn is also globally k–thick.
Consequently RFkM ⊂ RFM is closed, and hence compact.

Since U(za) is a rescaling of U(z) for any a ∈ A, and the notion of
thickness is scale–invariant, RFkM is A–invariant. For the final assertion,
observe that U(z, k) contains the thick set K ⊂ U(z) posited in the definition
of RFkM .

Thickness and moduli. To complete the proof Theorem 4.1, we just need
to relate thickness to the results of §3. For the next statement, we regard
R̂ = R ∪ {∞} as a circle on S2 ∼= Ĉ.

Proposition 4.3 Let K ⊂ R̂ be a Cantor set of modulus δ > 0 containing
∞. Then T = K ∩R is a globally k–thick subset of R, where k > 1 depends
only on δ.

Proof. Use Proposition 3.2 to relate the modulus of K to the relative sizes
of gaps in R−K.

Proof of Theorem 4.1. Since M is acylindrical, by Theorem 3.1 there
exists a δ > 0 such that for any C ∈ C∗, there exists a Cantor set K of
modulus δ with

K ⊂ C ∩ Λ ⊂ S2.

By Proposition 4.3, there exists a k0 such that T ⊂ R is globally k0–thick
whenever T ∪∞ is a Cantor set of modulus δ.

Let P ∗ be a plane in M∗. Choose C ∈ C∗ such that the image of hull(C)
in M∗ contains P ∗. Let K ⊂ C ∩Λ be the Cantor set of modulus δ provided
by Theorem 3.1.

By a change of coordinates, we can arrange that 0,∞ ∈ K ⊂ R̂. Let
z̃ ∈ FH3 be any frame tangent to hull(R̂) along the geodesic γ joining zero
to infinity, and let z denote its projection to FM . Then z is tangent to P ∗.
It is readily verified that there exists an isomorphism U ∼= R sending U(z) to
R∩Λ. Since 0 ∈ K ⊂ R∩Λ and K is globally k0–thick, we have z ∈ RFk0M
as well. Thus the Theorem holds for all k ≥ k0.

Comparison with the rigid case. We conclude by comparing the case of
a general convex cocompact acylindrical 3-manifold M , treated by Theorems
3.1 and 4.1, with the rigid case, studied in [MMO].

In the rigid case, every component Di of S2 − Λ is a round disk; hence
C ∩Di is connected for all C ∈ C∗, and one can show:
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K = C ∩ Λ is a compact set of definite modulus ∀C ∈ C∗.

See [MMO, Lemma 9.2]. Similarly, all horocycles passing through RFM are
recurrent, and RFkM = RFM for all k sufficiently large.

On the other hand, when M is not rigid, there are cases where both
these properties fail. For example, suppose the bending measure of hull(Λ)
has an atom of mass θ along the geodesic γ joining p, q ∈ Λ. Then we can
change coordinates on S2 ∼= Ĉ so that p = 0, q =∞, and Λ is contained in
the wedge defined by | arg(z)| < π− θ/2. Then the circle C ∈ C∗ defined by
Re(z) = 1 cannot meet the limit set in a set of positive modulus, since ∞ is
an isolated point of C ∩ Λ.

Similarly, the horocycle in H3 = C×R+ defined by η(t) = (it, 1) crosses
γ when t = 0, and satisfies d(η(t), hull(Λ)) → ∞ as |t| → ∞. Projecting to
M , we obtain a divergent horocycle orbit xU with x ∈ RFM . In particular,
x ∈ RFM − RFkM for all k.

Nevertheless C ∩ Λ can contain a Cantor set of positive modulus, con-
sistent with Theorem 3.1.

5 The boundary of the convex core

In this short section we analyze the behavior of C ∩ Λ for circles that meet
the limit set but do not separate it. The result we need does not require
that M is acylindrical, only that its convex core is compact.

Theorem 5.1 Let M = Γ\H3 be a convex cocompact 3–manifold with limit
set Λ. Let C be the boundary of a supporting hyperplane for hull(Λ). Then:

1. ΓC is a convex cocompact Fuchsian group; and

2. There is a finite set Λ0 such that

C ∩ Λ = Λ(ΓC) ∪ ΓCΛ0.

Here Λ(ΓC) denotes the limit set of ΓC = {g ∈ Γ : g(C) = C}.

Corollary 5.2 If the projection of hull(C) to M gives a plane P disjoint
from M∗ but tangent to a frame in RFkM , then ΓC is nonelementary.

Proof. The hypotheses guarantee that C does not separate Λ, and C ∩ Λ
contains an (uncountable) Cantor set of positive modulus. Then by the
preceding result, Λ(ΓC) is uncountable, so ΓC is nonelementary.
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Proof of Theorem 5.1. We will use the theory of the bending lamination,
developed in [Th1], [EpM], [KaT] and elsewhere.

IfM∗ is empty, then Λ is contained in a circle and the result is immediate.
The desired result is also immediate if C∩Λ is finite, because Λ(ΓC) ⊂ C∩Λ.

Now assume C∩Λ is infinite and M∗ is nonempty. Then K = ∂ core(M)
is a finite union of disjoint compact pleated surfaces with bending lamination
β. Let

f : S = ΓC\hull(C ∩ Λ)→M

be the natural projection. Since |C ∩ Λ| > 2, S is a metrically complete
hyperbolic surface with geodesic boundary, with nonempty interior S0. The
map f sends S0 isometrically to a component of K − β; in particular, S0
has finite area. It follows that the ends of S0 consist of the regions between
finitely many pairs of geodesics which are tangent at infinity; for an example,
see Figure 5. Consequently, we can find a finite set Λ0 ⊂ Λ (corresponding
to the finitely many ends of S0) such that

C ∩ Λ = Λ(ΓC) ∪ ΓCΛ0.

The group ΓC is convex cocompact because S has finite area and Γ contains
no parabolic elements.

Figure 5. A surface with a crown.

6 Planes near the boundary of the convex core

In this section we take a step towards the proof of Theorem 1.4 by estab-
lishing two density results.

Theorem 6.1 Let M = Γ\H3 be a convex cocompact 3–manifold with in-
compressible boundary. Consider a sequence of circles Cn → C with Cn ∈ C∗
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but C 6∈ C∗. Suppose that L = lim inf(Cn ∩ Λ) is uncountable. Then
⋃

ΓCn
is dense in C∗.

Under the same assumptions on M we obtain:

Corollary 6.2 Consider an H–invariant set E ⊂ F ∗ and fix k > 1. If the
closure of E ∩ RFkM contains a point outside F ∗, then E is dense in F ∗.

Proof. Consider a sequence xn ∈ E ∩RFkM such that xn → x ∈ RFkM −
F ∗. We then have a corresponding sequence of circles Cn ∈ C∗ such that
Cn → C 6∈ C∗. (The circles are chosen so that xn is tangent to the image of
hull(Cn) in M .)

Pass to a subsequence such that U(xn) (defined using equation (4.1))
converges, in the Hausdorff topology, to a closed set K ⊂ U(x). Then
Cn∩Λ also converges, to a compact set L ⊂ C homeomorphic to the 1-point
compactification of K. The fact that xn ∈ RFkM implies that K contains
a globally k–thick set; hence K is uncountable, so L is as well. Then by the
result above,

⋃
ΓCn is dense in C∗, so E is dense in F ∗.

Roughly speaking, these results show that planes P ∗ that are nearly
tangent to ∂M∗ are also nearly dense in M∗, subject to a condition on
RFkM that is automatic in the acylindrical case by Theorem 4.1.

Fuchsian dynamics. The proof of Theorem 6.1 exploits the dynamics of
the Fuchsian group ΓC . Given an open round disk D ⊂ S2 and a closed
subset E ⊂ ∂D, we let hull(E,D) ⊂ D denote the convex hull of E in the
hyperbolic metric on D.

The principle we will use is [MMO, Cor. 3.2], which we restate as follows.

Theorem 6.3 Let M = Γ\H3 be a convex cocompact hyperbolic 3–manifold.
Let D ⊂ S2 be a round open disk that meets Λ, and let C = ∂D. Suppose ΓC

is a nonelementary, finitely generated group, and let Cn → C be a sequence
of circles such that

Cn ∩ hull(Λ(ΓC), D) 6= ∅.

Then the closure of
⋃

ΓCn in C contains every circle that meets Λ.

Proof of Theorem 6.1. Let D and D′ denote the two components of
S2 − C. Since C 6∈ C∗, at least one of the components, say D′, is contained
in Ω. Since L ⊂ C ∩ Λ is uncountable, ΓC is nonelementary and finitely
generated by Theorem 5.1. Consider an ideal pentagon

X = hull(V,D) ⊂ hull(Λ(ΓC), D) (6.1)
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whose five vertices V lie in L. Since L = lim inf Cn∩Λ, we can find ‘vertices’

Vn ⊂ Cn ∩ Λ, |Vn| = 5,

such that Vn → V . In particular, |Cn ∩ Λ| ≥ 3 for all n.
Note that Cn is the unique circle passing through any three points of Vn.

If three of these points were to lie in D
′
, then we would have Cn ⊂ D

′
, and

hence |Cn ∩ Λ| ≤ 1, since Cn 6= C = ∂D
′

and D′ ⊂ Ω. Hence |Vn ∩D| ≥ 3.
Since |Cn∩C| ≤ 2, at least two adjacent components of Cn−Vn are contained
in D. It follows easily that Cn meets hull(V,D) for all n sufficiently large.
Using equation (6.1) we can then apply Theorem 6.3 to conclude that

⋃
ΓCn

is dense in C∗, since every C ∈ C∗ meets Λ.

7 Planes far from the boundary

In this section we finally prove Theorem 1.4, which we restate as Corollary
7.2. The proof rests on the following more general density theorem.

Theorem 7.1 Let M = Γ\H3 be a convex cocompact 3-manifold with in-
compressible boundary. Let Ci → C be a convergent sequence in C∗, with
C 6∈

⋃
ΓCi.

Suppose that C ∩ Λ contains a Cantor set of positive modulus. Then⋃
ΓCi is dense in C∗.

Corollary 7.2 If M = Γ\H3 is a convex cocompact acylindrical 3-manifold,
then any Γ–invariant set E ⊂ C∗ is either closed or dense in C∗.

Proof. Suppose E is not closed in C∗. Then we can find a sequence Ci ∈ E
converging to C ∈ C∗−E. Since M is acylindrical, C meets Λ in a Cantor set
of positive modulus, by Theorem 3.1. Since E is Γ-invariant, the preceding
result shows that

⋃
ΓCi is dense in C∗, so the same is true for E.

The proof of Theorem 7.1 follows the same lines as the proof of Theorem
7.3 in [MMO, §9]. We will freely quote results from [MMO] in the course
of the proof. The notation from Table 2 for the subgroups U, V,A,N of G
and other objects will also be in play. A generalization of Theorem 7.1 to
manifolds with compressible boundary is stated at the end of this section.

Setup in the frame bundle. To prepare for the proof, we first reformulate
it in terms of the frame bundle.
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Let Ci → C as in the statement of Theorem 7.1. Since C ∩Λ contains a
Cantor set of positive modulus, by Proposition 4.3 we can choose k > 1 and
x∞ ∈ RFkM ∩ F ∗ such that x∞H corresponds to ΓC. Let us also choose
xi → x∞ in F ∗ such that xiH corresponds to ΓCi. Since C 6∈

⋃
ΓCi, we

also have
x∞ 6∈ E =

⋃
xiH.

To prove Theorem 7.1 we need to show:

E is dense in F ∗.

We may also assume that:

The set E ∩ RFkM ∩ F ∗ is compact. (7.1)

Otherwise E ∩ F ∗ = F ∗ by Corollary 6.2, and hence E is dense in F ∗.

Dynamics of semigroups. We say that L ⊂ G is a 1–parameter semigroup
if there exists a nonzero ξ ∈ Lie(G) such that

L = {exp(tξ) : t ≥ 0}.

To show a set is dense in F ∗, we will use the following fact.

Proposition 7.3 Let L ⊂ V be a 1–parameter semigroup. Then xLH con-
tains F ∗ for all x ∈ F ∗.

Proof. Let C ∈ C∗ be a circle corresponding to xH. Then xLH corresponds
to a family of circles Cα such that

⋃
Cα contains one of the components of

S2−C. Since C ∈ C∗, both components meet the limit set. Hence ΓCα ⊃ C∗
for some α by [MMO, Cor. 4.2].

The staccato horocycle flow. Recall that the compact set RFkM is
invariant under the geodesic flow A. Moreover, Proposition 4.2 states that

U(z, k) = {u ∈ U : zu ∈ RFkM}

is a thick subset of U , for all z ∈ RFkM . In other words, RFkM is also
invariant under the staccato horocycle flow, which is interrupted outside of
U(z, k).

Recurrence. Next we define a compact set W with

x∞ ∈W ⊂ E ∩ F ∗
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with good recurrence properties for the horocycle flow. Namely, we let

W =

{
(E − E) ∩ RFkM ∩ F ∗ if this set is compact, and

E ∩ RFkM ∩ F ∗ otherwise.
(7.2)

(This definition is motivated by the proof of Lemma 7.6.)
In either case, W is compact by assumption (7.1). Since E ∩ F ∗ is

H–invariant, we have

WA = W and WU ∩ RFkM ⊂W.

The second inclusion gives good recurrence; namely, we have

xU(x, k) ⊂W (7.3)

for all x ∈W ; and U(x, k) is thick, because W ⊂ RFkM .

The horocycle flow. We now exploit the fact that E is invariant under the
horocycle flow. The 1–parameter horocycle subgroup U ⊂ H is distinguished
by the fact that its normalizer contains (with finite index) the large subgroup
AN ⊂ G. If X is U–invariant, then so is Xg for any g ∈ AN .

Minimal sets. A closed set Y is a U–minimal set for E with respect to W
if Y ⊂ E, Y meets W , Y U = Y , and

yU = Y for all y ∈ Y ∩W.

Note that E itself has all these properties except for the last. The existence
of a minimal set Y follows from the Axiom of Choice and compactness of
W . From now on we will assume that:

Y is a U–minimal set for E with respect to W .

To show that E is large, our strategy is to show it contains Y g for many
g ∈ AN . To this end, we remark that for g ∈ AN :

If (Y ∩W )g meets E, then Y g ⊂ E.

Indeed, in this case by minimality we have:

E ⊃ ygU = yUg = Y g, (7.4)

where yg ∈ (Y ∩W )g ∩ E.

Translation of Y inside of Y . The fact that horocycles in Y return
frequently to W allows one to deduce additional invariance properties for Y
itself. Note that the orbits of AV are orthogonal to the orbits of U in the
Riemannian metric on FM .
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Lemma 7.4 There exists a 1-parameter semigroup L ⊂ AV such that

Y L ⊂ Y.

Proof. In the rigid acylindrical case, this is Theorem 9.4 in [MMO] for
W = RFM . The only property of RFM used in the proof is the k-thickness
of {u ∈ U : xu ∈ RFM} for any x ∈ RFM . Hence the proof works verbatim
with W replacing RFM , in view of equation (7.3). In fact Y L = Y since
id ∈ L.

Translation of Y inside of E. Our next goal is to find more elements
g ∈ G that satisfy Y g ⊂ E. Consider the closed set S(Y ) ⊂ G defined by

S(Y ) = {g ∈ G : (Y ∩W )g ∩ E 6= ∅}.

Since E is H–invariant, we have S(Y )H = S(Y ).

Lemma 7.5 If S(Y ) contains a sequence gn → id in G − H, then there
exists vn ∈ V − {id} tending to id such that

Y vn ⊂ E.

Proof. Let gn ∈ S(Y ) be a sequence tending to id in G−H. First suppose
that there is a subsequence, which we continue to denote by {gn}, of the
form gn = vnhn ∈ V H. Since gn 6∈ H, we have vn 6= id for all n. The
claim then follows from the H-invariance of S(Y ) and the U -minimality of
Y , see (7.4).

Therefore, assume that gn /∈ V H for all large n. Since gn ∈ S(Y ), there
exist yn ∈ Y ∩W such that yngn ∈ E.

Since Y is U–invariant andWU∩RFkM ⊂ RFkM , we have yU(y, k) ⊂ Y
for all y ∈ Y , and U(y, k) is a k–thick subset of U .

Therefore, by [MMO, Thm. 8.1], for any neighborhood G0 of the identity
in G we can choose un ∈ U(yn, k) and hn ∈ H such that

u−1n gnhn → v ∈ V ∩G0 − {id}.

After passing to a subsequence, we have ynun → y0 ∈ Y ∩W . Hence

yngnhn = (ynun)(u−1n gnhn) ∈ E

converges to y0v ∈ E.
Since Y is U -minimal with respect to W and y0 ∈ Y ∩W , we have

y0vU = y0Uv = Y v ⊂ E.

Since G0 was an arbitrary neighborhood of the identity, the claim follows.
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Choosing Y . In general there are many possibilities for the minimal set
Y , and it may be hard to describe a particular one, since the existence of
a minimal set is proved using the Axiom of Choice. The next result shows
that, nevertheless, we can choose Y so it remains inside E under suitable
translations transverse to H but still in AN .

Lemma 7.6 There exists a U–minimal set Y for E with respect to W , and
a sequence vn → id in V − {id}, such that

Y vn ⊂ E

for all n.

Proof. By Lemma 7.5, it suffices to show that Y can be chosen so that
S(Y ) contains a sequence gn → id in G−H. We break the analysis into two
cases, depending on whether or not E meets the compact set W .

First consider the case where E is disjoint from W . Let Y be a U–
minimal set for E with respect to W . Choose y ∈ Y ∩W . Since Y ⊂ E,
there exist gn → id such that ygn ∈ E. Then y /∈ E, and hence gn ∈ G−H,
so we are done.

Now suppose E meets W . Then W −E is not closed, by equation (7.2).
So in this case there exists a sequence xn ∈ W − E with xn → x ∈ E ∩W .
In particular, xH ∩W 6= ∅. Thus there exists a U -minimal set Y for xH
with respect to W .

We now consider two cases. Assume first that Y ∩ W ⊂ xH. Pick
y ∈ Y ∩W ; then y = xh for some h ∈ H. Since xn → x we have xnh → y.
Now writing ygn = xnh, we have gn → id. As y ∈ xH ⊂ E and xn /∈ E, we
have gn ∈ G−H, and we are done.

Now suppose that W ∩ Y 6⊂ xH. Choose y ∈ (W ∩ Y ) − xH. Since we
have Y ⊂ xH, there exist gn → id with ygn ∈ xH. Moreover, gn ∈ G −H
since y /∈ xH, and the proof is complete in this case as well.

Semigroups. We are now ready to complete the proof of Theorem 7.1. We
will exploit the 1-parameter semigroup L ⊂ AV guaranteed by Lemma 7.4.
To discuss the possibilities for L, let us write the elements of V and A as

v(s) =

(
1 is

0 1

)
and a(t) =

(
et 0

0 e−t

)
.

We then have two semigroups in V , defined by V± = {v(s) : ±s ≥ 0}, and
two similar semigroups in A± in A. It will also be useful to introduce the

28



interval
V[a,b] = {v(s) : s ∈ [a, b]}.

In the notation above, if L ⊂ AV is a 1-parameter semigroup, then either

(i) L = V±;
(ii) L = A±; or
(iii) L = v−1A±v, for some v ∈ V , v 6= id.

Proof of Theorem 7.1. To complete the proof, it only remains to show
we have F ∗ ⊂ E.

Choose Y and vn ∈ V so that Y vn ⊂ E as in Lemma 7.6. Write vn =
v(sn); then sn → 0 and sn 6= 0. Passing to a subsequence, we can assume
sn has a definite sign, say sn > 0.

By Lemma 7.4, there is a 1–parameter semigroup L ⊂ AV such that

Y L ⊂ Y.

The rest of the argument breaks into 3 cases, depending on whether L is of
type (i), (ii) or (iii) in the list above.

(i). If L = V±, then we have F ∗ ⊂ Y LH ⊂ EH = E by Proposition 7.3,
and we are done.

(ii). Now suppose L = A±. Let

B = {id} ∪
⋃
A±vnA.

Since Y L ⊂ Y and Y vnA ⊂ EA = E for all n, we have

Y B ⊂ E.

Note that a(t)v(s)a(−t) = v(e2ts). Consequently we have

v(e2tsn) ∈ B

for all n and all t with a(t) ∈ L = A±.
Suppose L = A+. Since sn → 0 and sn > 0, in this case we have V+ ⊂ B;

hence Y V+H ⊂ E and we are done as in case (i).
Now suppose L = A−. In this case at least we obtain an interval

V[0,s1] ⊂ B.
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Choose a sequence an ∈ A such that V+ =
⋃
anV[0,s1]a

−1
n . Consider y ∈

Y ∩W . Since ya−1n ∈W , and W is compact, after passing to a subsequence
we can assume that

ya−1n → y0 ∈W ⊂ F ∗.

We then have
y0V+ =

⋃
ya−1n (anV[0,s1]a

−1
n ) ⊂ E,

which again implies that F ∗ ⊂ E, by Proposition 7.3.

(iii). Finally, consider the case L = v−1A±v for some v ∈ V , v 6= id. We
then have Y B ⊂ E where

B = v−1A±vA.

By an easy computation, B contains V[0,±s] for some s > 0, and the argument
is completed as in case (ii).

The compressible case. In conclusion, we remark that Theorems 6.1 and
7.1 remain true without the hypothesis that M has incompressible boundary,
provided we replace C∗ with

C# = {C ∈ C∗ : C meets Λ}

and require that M∗ is nonempty. The proofs are simple variants of those
just presented.
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