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1 Introduction

Let M = Γ\H3 be a complete hyperbolic 3-manifold. A horocycle χ ⊂ M is an
isometrically immersed copy of R with zero torsion and geodesic curvature 1. The
torsion condition means that χ lies in an immersed totally geodesic plane.

One can regard χ as a limit of planar circles whose centers have moved off to
infinity. It is natural to ask what the possibilities are for its closure,

χ ⊂ M.

When M has finite volume, it is well–known that strong rigidity properties hold; e.g.
χ is always a properly immersed, homogeneous submanifold of M [Sh], [Rn]. Con-
tinuing the investigation begun in [MMO], this paper shows that rigidity persists
for horocycles in certain infinite volume 3-manifolds. These are the first examples of
Zariski dense discrete groups Γ ⊂ Isom(H3), other than lattices, where the topolog-
ical behavior of horocycles in Γ\H3 has been fully described.

Horocycles in acylindrical manifolds. To state the main results, recall that the
convex core of M is given by:

core(M) = Γ\hull(Λ) ⊂ M,

where Λ ⊂ Ĉ is the limit set of Γ, and hull(Λ) ⊂ H3 is its convex hull. We say M
is a rigid acylindrical manifold if its convex core is a compact submanifold of M
with nonempty, totally geodesic boundary. Our first result describes the behavior of
horocycles in M .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-016-0373-8&domain=pdf
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Theorem 1.1. Let χ ⊂ M = Γ\H3 be a horocycle in a rigid acylindrical 3-
manifold. Then either:

1. χ ⊂ M is a properly immersed 1-manifold; or
2. χ ⊂ M is a properly immersed 2-manifold, parallel to a totally geodesic surface

S ⊂ M ; or
3. χ is the entire 3-manifold M .

Corollary 1.2. The closure of any horocycle is a properly immersed submanifold
of M .

Similar results for geodesic planes in M are obtained in [MMO].

Homogeneous dynamics. To make Theorem 1.1 more precise, we reformulate it
in terms of the frame bundle FM → M .

Let G denote the simple, connected Lie group PGL2(C). Within G, we have the
following subgroups:

H = PSL2(R),

A =
{(

a 0
0 a−1

)
: a ∈ R+

}
,

K = SU(2)/(±I),

N =
{
ns =

(
1 s
0 1

)
: s ∈ C

}
,

U = {ns : s ∈ R}, and
V = {ns : s ∈ iR}.

Upon identifying H3 with G/K, we obtain the natural identifications

FM ∼= Γ\G and M ∼= Γ\G/K.

Every (oriented) horocycle χ in M lifts to a unique unipotent orbit xU in the frame
bundle FM . Let A+ = {

(
a 0
0 a−1

)
: a ≥ 1} be the positive semigroup in A, and let

RF+M = {x ∈ FM : xA+ ⊂ FM is compact}.

This locus is closed and invariant under AN .
Our main result may now be stated as follows (see Sect. 6).

Theorem 1.3. Let M = Γ\H3 be a rigid acylindrical 3-manifold. Then for any
x ∈ FM , either

1. xU is closed;
2. xU = xvHv−1 ∩ RF+M for some v ∈ V ; or
3. xU = RF+M .



GAFA HOROCYCLES IN HYPERBOLIC 3-MANIFOLDS 963

It is readily verified that these three alternatives give the three cases in Theorem
1.1, using the fact that the map FM → M is proper and its restriction to RF+M is
surjective.

Corollary 1.4. The closure of any U–orbit in RF+M is homogeneous, in the sense
that

xU = xS ∩ RF+M

for some closed subgroup S ⊂ G with U ⊂ S.

Indeed, we can take S = U , vHv−1 or G. As we will see in Sect. 7, the classifi-
cation of AU–orbits follows from Theorem 1.3 as well:

Corollary 1.5. For any x ∈ RF+M , we have xAU = xH ∩ RF+M .

The possibilities for xH are recalled in Theorem 2.3 below. (For x ̸∈ RF+M , it
is easy to see that the orbit xAU is closed.)

Strategy. The mechanism behind the proof of Theorem 1.3 is the following dichotomy.
Suppose a horocycle χ ⊂ M limits on a properly embedded, totally geodesic sur-
face S (such as one of the boundary components of the convex core of M). If χ is
contained in S then χ is trapped and χ = S; otherwise, χ is scattered by S, and
χ = M . In both cases the behavior of χ is strongly influenced by the behavior of
the horocycle flow on S. To complete the proof we show that, up to the action of
V , every recurrent horocycle accumulates on such a surface S. This step uses the
classification of H–orbits from [MMO].

We remark that any connected subgroup of G generated by unipotent elements
is conjugate to N , H or U . Theorem 1.3 completes the description of the topolog-
ical dynamics of these groups acting on FM , since the behavior of H and N was
previously known (see Sect. 2).

Outline of the paper. The remainder of the paper is devoted to the proof of
Theorem 1.3. In Sect. 2 we review existing results about dynamics on FM . In Sect.
3 we establish a general lemma about the double coset space U\G/H, and in Sect. 4
we prove an approximation theorem for U–orbits. The space of exceptional frames is
introduced in Sect. 5, and the proof of Theorem 1.3 is completed in Sect. 6. Corollary
1.5 is deduced in Sect. 7.

Remark. General acylindrical manifolds. When M is a convex cocompact, acylindri-
cal manifold that is not rigid, the behavior of horocycles can be radically different
from the rigid case. For example, a horocycle orthogonal to a closed leaf of the
bending lamination of ∂ core(M) can be properly embedded, giving rise to a frame
x ∈ FM with a compact A–orbit and a nonrecurrent U–orbit. The scattering argu-
ment also breaks down, due to the lack of totally geodesic surfaces inM . It is an open
problem to develop a rigidity theory for these and other infinite-volume hyperbolic
3-manifolds.
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2 Background

In this section we introduce notation and recall known results regarding topological
dynamics on FM .

Geometry on H3. Notation for G and its subgroups was introduced in Sect. 1.
We also let AC = {

(
z 0
0 z−1

)
: z ∈ C∗}. The action of G on H3 = G/K extends

continuously to a conformal action of G by Möbius transformations on the Riemann
sphere,

Ĉ = C ∪ {∞} ∼= G/ACN,

and the union H3 ∪ Ĉ ∼= B3 is compact. We let R̂ = R ∪ {∞} denote the standard
circle on Ĉ. Its orientation–preserving stabilizer in G is H.

Let M = Γ\H3 be a hyperbolic 3-manifold. The natural covering map

FH3 ∼= G → FM ∼= Γ\G

will be denoted by g *→ [g]. The limit set of Γ is characterized by Λ = Ĉ∩Γp, for any
p ∈ H3; the domain of discontinuity is its complement, Ω = Ĉ − Λ. The convex hull
of Λ is the smallest convex subset of H3 containing all geodesics with both endpoints
in the limit set; and its quotient gives the convex core of M :

core(M) = Γ\hull(Λ) ⊂ M.

A discrete group is elementary if it contains an abelian subgroup with finite index.
We will always assume that Γ ∼= π1(M) is a nonelementary group.

Surfaces in M . There is a natural correspondence between

(i) Closed H–orbits [xH] ⊂ FM ,
(ii) Properly immersed, totally geodesic surfaces S ⊂ M , and
(iii) Circles C ⊂ Ĉ such that [ΓC] is discrete in the space of all circles, C ∼= G/H.

This correspondence is given, with suitable orientation conventions, by S = the
projection of hull(C) ⊂ H3 to M , xH = TS, the bundle of frames tangent to S, and
[ΓC] = [xH] in Γ\G/H.

Convex cocompact manifolds. Now assume that the convex core of M is com-
pact. The renormalized frame bundle of M is defined by

RFM = {x ∈ FM : xA ⊂ FM is compact}.

Replacing A with A+ in the definition above, we obtain the locus RF+M . Note that
RFM is invariant under A and RF+M is invariant under AN .

In terms of the universal cover, we have [g] ∈ RF+M if and only if g(∞) ∈ Λ,
while [g] ∈ RFM if and only if {g(0), g(∞)} ⊂ Λ.

Minimality. We now turn to some dynamical results. Let L be a closed subgroup
of G. We say X ⊂ FM is an L–minimal set if xL = X for all x ∈ X.
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Figure 1: Limit set of a rigid acylindrical manifold

Theorem 2.1. (Ferte) If M is convex cocompact, then the locus RF+M is an
N–minimal set.

See [Fer, Cor.C(iii)]; a generalization appears in [Win]. We also record the fol-
lowing result from [Da]:

Theorem 2.2. (Dal’bo) If Γ ⊂ H is a nonelementary convex cocompact Fuchsian
group, then (Γ\H) ∩ RF+M is a U–minimal set.

Rigid acylindrical manifolds. Recall that M is a rigid acylindrical manifold if M
is convex cocompact, of infinite volume, and ∂ core(M) is totally geodesic. In this
case Ω ⊂ Ĉ is the union of a dense set of round disks with disjoint closures, and Λ
is a Sierpiǹski curve; see Fig. 1.

Theorem 2.3. Let M be a rigid acylindrical manifold. Then for any x ∈ RFM ,
either xH is closed or xH = (RF+M)H.

Proof. Since Ω is a union of round disks, any circle that meets Λ in just one point
can be approximated by a circle meeting Λ in two or more points; thus

(RFM)H = (RF+M)H. (2.1)

Let H ′ = PGL2(R) = H ∪ jH, where j =
(
1 0
0 −1

)
. Note that Aj = jA and hence

(RFM)j = RFM .
With H ′ in place of H, Theorem 2.3 is proved in [MMO, Cor. 1.7]. Using the

H ′ version, we can conclude that either xH is closed or xH ′ = (RF+M)H ′. In the
latter case, RFM is contained in xH ∪ xHj. But RFM has a dense A–orbit [MMO,
Thm. 4.3], so RFM is contained in xH or xHj. In either case, we have

RFM = (RFM)j ⊂ xHj2 = xH.

Hence xH = (RF+M)H by equation (2.1) above. ⊓-
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3 Configuration Spaces and Double Cosets

This section and the next present two self–contained results that will be used in
Sect. 6 below. In this section we will prove:

Theorem 3.1. Suppose gn → id in G−V H, and Tn ⊂ U is a sequence of K–thick
sets. Then there is a K ′–thick set V0 ⊂ V such that

lim supTngnH ⊃ V0.

Double cosets. As motivation for the theorem, we remark that the double coset
space U\G/H is the moduli space of pairs (χ, P ) ⊂ H3, where χ is a horocycle and
P ∼= H2 is a hyperplane. This moduli space is highly nonseparated near the identity
coset, where χ ⊂ P . This means that as χ approaches P , the pair (χ, P ) can have
many different limiting configurations, depending on how we choose coordinates.
The Theorem above describes, more precisely, the different limiting configurations
that arise. The appearance of multiple configurations is a basic mechanism at work
in homogeneous dynamics.

Limits of sets. We recall that the limsup of a sequence of sets Xn ⊂ G consists of
all limits of the form g = limxnk , where nk → ∞ and xnk ∈ Xnk .
Thick sets and polynomials. We say T ⊂ R is K-thick if

[1,K] · |T | = [0,∞).

This notion also makes sense for T inside any Lie group isomorphic to R, such as
U or V . A basic fact about thick sets, which will be used below, is the following.
Let p ∈ R[x] be a polynomial of degree d, and let T ⊂ R be K–thick. Then for any
symmetric interval I = [−a, a] ⊂ R, we have

max
x∈T∩I

|p(x)| ≥ kmax
x∈I

|p(x)|, (3.1)

where k > 0 depends only on K and d. For more details, see [MMO, §8].

Proof of Theorem 3.1. Fix y > 0. We will first show that lim supUgnH contains v
or v−1, where v(z) = z + iy.

Let Cn = gn(R̂). Since gn → id, we have Cn → R̂ in the Hausdorff topology
on closed subsets of Ĉ. Note that for n ≫ 0, Cn ∩ C is either a circle of large
radius or a straight line of nonzero slope (since gn ̸∈ V H). Thus Cn meets the locus
L = {z : |ℑ(z)| = y} for all n ≫ 0. Passing to a subsequence, we can assume that
Cn ∩L ̸= ∅ for all n, and that the point of Cn ∩L closest to the origin has the form
xn + ϵy for a fixed ϵ = ±1 (see Fig. 2). Let un(z) = z − xn; then

ungn(R̂) → R̂+ iϵy

as n → ∞. It follows that ungnhn(z) → z + iϵy for suitable hn ∈ H, since the
latter group can be used to reparameterize R̂. Equivalently, v or v−1 belongs to
lim supUgnH.
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Figure 2: The circles Cn → R̂ eventually meet the locus |ℑ(z)| = y

We now take into account the thick sets Tn. Note that at the scale |xn|, the arc
of gn(R̂) close to R is well–modeled by a parabola, i.e. the graph of a quadratic poly-
nomial. Applying equation (3.1) to this polynomial, we find there is a K ′ depending
only on K, and a sequence x′

n + iy′
n ∈ Cn, such that u′

n(z) = z − x′
n ∈ Tn, and

1 ≤ |y/y′
n| ≤ K ′. Passing to a subsequence and arguing as above, we conclude that

v(z) = z + iy′ belongs to lim supTngnH for some y′ with 1 ≤ |y/y′| ≤ K ′. Since
y > 0 was arbitrary, this shows that V ∩ (lim supTngnH) is a K ′–thick subset of V .
⊓-

Remark. Theorem 3.1 is a strengthening of [MMO, Lem. 8.2]; the proof here is more
geometric.

4 Moving to the Renormalized Frame Bundle

In this section we describe how to use U to move points close to RFM into RFM .
The boundary of the convex core of M gives rise to an exceptional case.

Theorem 4.1. Suppose xn ∈ (RFM)U and xn → y ∈ RFM . Then there exists a
sequence un ∈ U such that xnun ∈ RFM and

1. We have un → id, and hence xnun → y; or
2. There is a component S of ∂ core(M) such that yH = TS, and xnun accumulates

on TS as n → ∞.

The proof relies on the following fact from planar hyperbolic geometry.

Lemma 4.2. Let γ,χ ⊂ H2 be a geodesic and a horocycle respectively, let δ be a
geodesic joining the base of χ to one of the endpoints of γ, and let {p} = δ∩χ. Then
for all R ≫ 0, if d(χ, γ) < R − 1, then d(p, γ) < R.

The proof is indicated in Fig. 3, where the endpoint in common to γ and δ is at
infinity. Note that an R–neighborhood of γ ⊂ H2, for R ≫ 0, is bounded by a pair
of rays meeting at an angle of nearly 180◦.
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Figure 3: If d(γ,χ) ≤ R − 1, with R ≫ 0, then d(p, γ) < R

Proof of Theorem 4.1. Choose gn → g0 in G such that [gn] = xn and [g0] = y, and
let Cn = gn(R̂).

Recall that [g] ∈ RFM if and only if {g(0), g(∞)} ⊂ Λ. By assumption, gn(∞) ∈
Λ for all n, and g0(0) ∈ Λ. Moreover, since xn ∈ (RFM)U , there exist sn ∈ R such
that gn(sn) ∈ Λ. Let us arrange that |sn| is as small as possible; then gn(In) ⊂ Ω,
where In = (−sn, sn). Setting un(z) = z − sn, we then have [gnun] = xun ∈ RFM .

It remains to verify that (1) or (2) is true. If |sn| → 0, then clearly we are in case
(1), so let us assume that s = lim sup |sn| > 0. In this case, we claim C0 bounds a
component Ω0 of Ω. To see this, recall that Ω is a union of round disks with disjoint
closures. The arc J = g0(−s, s) is the limit, along a subsequence, of arcs gn(In) ⊂ Ω;
since Ω has only finitely many components with diameter greater than diam(J)/2,
there is a unique component Ω0 of Ω such that g0(0) ∈ ∂Ω0. In fact the entire circular
arc J must lie in Ω0, and hence C0 ⊂ Ω0. Since |C0 ∩ Λ| ≥ 2, we have C0 = ∂Ω0.

Consequently the plane H0 = hull(C0) ⊂ H3 covers a component S of ∂ hull(M).
In particular, we have y ∈ TS.

Now even in this case, we have sn → 0 along the subsequence where gn(0) ̸∈ Ω0.
Thus to complete the proof, it suffices to show that (2) holds under the assumption
that gn(0) ∈ Ω0 for all n. Under this assumption, Cn ∩ Ω0 is a circular arc with two
distinct endpoints, one of which is gn(sn). Equivalently, Hn = hull(Cn) meets H0

along a geodesic γn ⊂ H3, with one end converging to gn(sn).
Let χn ⊂ Hn denote the horocycle resting on gn(∞) whose natural lift to FH3

gives the orbit gnU . Let δn denote the geodesics in H3 connecting gn(∞) to gn(sn).
Note that δn and χn both lie in the plane Hn, and cross at a unique point pn.

We claim that d(pn, H0) → 0. To see this, fix ϵ > 0. It is easy to see that the set
of points in Hn that are within hyperbolic distance ϵ of H0 is convex and invariant
under translation along γn; thus

Hn(ϵ) = {p ∈ Hn : d(p,H0) < ϵ} = {p ∈ Hn : d(γn, p) < Rn}

for some Rn > 0. Since xn → y, we have Hn → H0 and hence Rn → ∞; moreover,
χn converges to a horocycle in H0, so eventually d(γ,χn) < Rn − 1. By Lemma 4.2,
this implies that d(pn, γ) < Rn, and hence d(pn, H0) < ϵ for all n ≫ 0.
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By construction we have gnun ∈ FpnH3. Since the frame gnun is tangent to the
geodesic δn, whose endpoints lie in the limit set, we have [gnun] ∈ RFM ; and since
d(pn, H0) → 0 (and indeed Hn and H0 are nearly parallel near pn), the frames gnun
accumulate on TH0 and hence the frames xnun = [gnun] accumulate on TS. ⊓-

5 Exceptional Frames

Let M be a rigid acylindrical manifold. We define the locus of exceptional frames in
FM by

EM =
⋃

{xHV : x ∈ RFM and xH ⊂ FM is closed}.

In this section we develop some basic properties of the exceptional locus.

Immersed surfaces. As we remarked in Sect. 1, when x ∈ RFM and xH is
closed, its projection to M is a properly immersed, totally geodesic surface S passing
through the convex core of M . For v ∈ V , the projection of xHv to M is a surface
equidistant from S. The exceptional locus accounts for all the horocycles that lie on
such surfaces.

Like RF+M , the locus EM is invariant under the action of AN . In terms of the
universal cover, we have [g] ∈ EM iff g(R̂) is tangent, at g(∞), to a circle C such
that |C ∩ Λ| ≥ 2 and ΓC is discrete. Note that

EM ∩ RFM ̸= ∅, (5.1)

since EM contains the compact H–orbits coming from the totally geodesic boundary
components of the convex core of M .

Lemma 5.1. If x ∈ RFM , then xAU meets EM .

Proof. If xH is closed, then we have x ∈ EM already. Otherwise, we have xH =
(RF+M)H by Theorem 2.3, and xAUH = xH, since AU\H is compact. Thus
xAUH = (RFM+)H contains one of the compact orbits yH ⊂ EM coming from
the boundary of the convex core of M , so xAU must meet this orbit as well. ⊓-

Lemma 5.2. For any x ∈ EM ∩RF+M , the locus Y = xU is a U–minimal set, and
Y = xvHv−1 ∩ RF+M for some v ∈ V .

Proof. Since U commutes with the action of V , it suffices to treat the case where
xH is closed in FM . In this case, xH = TS for some properly immersed, totally
geodesic surface S ⊂ M . The subgroup π1(S) ⊂ π1(M) determines a covering space
M ′ → M , which we can normalize so that M ′ = Γ′\H3 with Γ′ ⊂ H. (If S happens
to be nonorientable, we pass to the orientation–preserving subgroup of index two.)

Since S is properly immersed, M ′ is convex cocompact; and since M is acylindri-
cal, M ′ is nonelementary. It is now easy to check that the covering map FM ′ → FM
sends (Γ′\H)∩RF+M ′ isomorphically to Y = (xH)∩RF+M , respecting the action
of U (cf. [MMO, Thm. 6.2, Prop. 7.2]). The result then follows from Dal’bo’s mini-
mality Theorem 2.2. ⊓-
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Lemma 5.3. For any x ∈ RF+M − EM , the orbit xU meets RFM .

Proof. Suppose x ∈ RF+M but xU does not meet RFM . Then x = [g] where
C = g(R̂) meets Λ in just one point. Therefore C is tangent to D = ∂Ω0 for some
component Ω0 ⊂ Ω, and ΓD is discrete, so x ∈ EM . ⊓-

6 Classification of U–Orbit Closures

We can now complete the proof of Theorem 1.3. The interaction between xU and
the exceptional locus EM plays a leading role in the proof.

Lemma 6.1. For any x ∈ RF+M , the orbit closure X = xU meets EM .

Proof. Note that the result holds for x if and only if it holds for some x′ ∈ xAN .
Thus we are free to adjust x by elements of AN in the course of the proof.

Suppose X is disjoint from EM . By Lemma 5.3, after replacing x with an element
of xU , we may assume x ∈ RFM . Then X contains a closed, U–invariant set Y such
that Y L+ ⊂ Y for some 1-parameter semigroup L+ ⊂ AV , by [MMO, Prop. 9.3 and
Thm. 9.4]. Let L ⊂ AV be the group generated by L+. Note that either L = V or
L = vAv−1 for some v ∈ V .

Choose ℓn → ∞ in L+
∼= R+. Then L =

⋃
ℓ−1
n L+. The locus Y ℓn ⊂ X is U–

invariant, so by Lemma 5.3 again we can find yn ∈ RFM∩Y ℓn. Pass to a subsequence
such that yn → z ∈ RFM . We have ynℓ−1

n L+ ⊂ X for all n, so in the limit we obtain
zL ⊂ X.

If L = V , then we have zN ⊂ X, so X = RF+M by Theorem 2.1, and thus X
meets EM by equation (5.1). Otherwise, L = vAv−1 for some v ∈ V . Therefore

X ⊃ zvAUv−1.

Again, we can find u ∈ U such that y = zuv ∈ RFM . Then yAU = zvAU . By
Lemma 5.1, yAU meets EM , so X meets EM as well. ⊓-

Typical orbits. Using the results of Sects. 3 and 4, we can now finally describe the
behavior of U–orbits outside of the exceptional locus.

Theorem 6.2. Suppose x ∈ RF+M − EM . Then xU = RF+M .

Proof. Let X = xU . Choose y ∈ X ∩ EM , using Lemma 6.1. By Lemma 5.2, there
is a v ∈ V such that Z = yvHv−1 is closed, we have

X ⊃ Y = yU = Z ∩ RF+M,

and Y is a U–minimal set. Replacing x with xv, we can assume that v = id, and
hence Z = yH. Then Y ∩ RFM ̸= ∅, so we can also assume that y ∈ RFM . By
Lemma 5.3, after replacing x with xu for some u ∈ U , we can further assume that
x ∈ RFM .
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Let X∗ = X ∩ RFM , and let

G0 = {g ∈ G : Zg ∩ X∗ ̸= ∅}.

We claim there is a sequence gn → id in G0 − HV . To see this, first note that since
y ∈ X, we can find un ∈ U and gn → id in G such that xun = ygn. In particular, we
have xun → y. We now apply Theorem 4.1. This Theorem implies that after changing
our choice of un ∈ U , we can assume that xun ∈ X∗ and either (i) xun → y, or (ii)
Z = Y is compact, and xun accumulates on Y . In either case, after passing to a
subsequence and (in case (ii)) possibly changing our choice of y ∈ Y , we still have
xun = ygn. Then clearly gn ∈ G0, we have gn → id, and gn ̸∈ HN = HV because
yH ⊂ EM while x ̸∈ EM .

Since Z is H–invariant, we have HG0 = G0. By [MMO, Lem. 9.2], there is also
a K > 1 and a sequence of K–thick sets Tn such that gnTn ⊂ G0 for all n. Applying
Theorem 3.1 (with the order of factors reversed) to the sequence HgnTn ⊂ G0, we
find that G0 contains a thick subset V0 ⊂ V . In particular, we can choose vn → ∞
in V ∩ G0. Then Zvn meets X∗ by the definition of G0. But Zvn ∩ RF+M = Y vn,
so the U–minimal set Y vn also meets X∗, and thus Y vn ⊂ X for all n. Now Y vn
is invariant under the closed subgroup v−1

n AUvn of AN , which converges to N as
n → ∞. By compactness of X∗, we conclude that X contains the N–orbit of a point
in X∗, and hence X = RF+M by Theorem 2.1. ⊓-

Proof of Theorem 1.3. Let x be an element of FM .
(1) If x ̸∈ RF+M , then xU is closed. Indeed, in this case xU corresponds to a

horocycle χ ⊂ H3 resting on a point of Ω, and the projection of χ to M is a proper
immersion.

(2) If x ∈ EM ∩ RF+M , then we xU = xvHv−1 ∩ RF+M for some v ∈ V , by
Lemma 5.2.

(3) Finally, if x ∈ RF+M − EM , then xU = RF+M by Theorem 6.2. ⊓-

7 Classification of AU–Orbit Closures

In this final section we use the classification of U–orbits to show that

xAU = xH ∩ RF+M (7.1)

for all x ∈ RF+M , as stated in Corollary 1.5.

Generic circles. Let M = Γ\H3 be a rigid acylindrical manifold. Let C = G/H be
the space of oriented circles in Ĉ, let

C0 = {C ∈ C : |C ∩ Λ| ≥ 2},

and let

C1 = {C ∈ C0 : ΓC is discrete in C}.
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Lemma 7.1. The set C1 is countable.

Proof. A circle C ∈ C1 corresponds to a properly immersed, totally geodesic surface
S with fundamental group π1(S) ∼= ΓC . Thus ΓC is a finitely generated, nonele-
mentary group and C is the unique circle containing Λ(ΓC). Since Γ is countable,
there are only countably many possibilities for ΓC , and hence only countably many
possibilities for C. ⊓-

Lemma 7.2. There is a circle C ∈ C0 that is not tangent to any circle in C1.

Proof. It is easy to see that C0 has nonempty interior, while the set of circles tangent
to a given C ∈ C1 is nowhere dense. Since C1 is countable, the result follows from
the Baire category theorem. ⊓-

Rephrased in terms of Γ\G, this shows:

Corollary 7.3. There is an orbit yH ⊂ FM − EM that meets RFM .

Proof of Corollary 1.5. The argument is similar to the proof of Lemma 5.1. Consider
x ∈ RF+M . We always have xAU ⊂ RF+M , since the latter set is closed and AU
invariant.

If xU meets RFM , then we can reduce to the case where x ∈ RFM . Under this
assumption, if xH is closed, then xU = xH ∩ RF+M by Theorem 1.3; since the
latter set is A–invariant, it also coincides with xAU . Otherwise, by Theorem 2.3 and
compactness of AU\H, we have

xAUH = xH = (RFM+)H.

In particular, by Corollary 7.3, xAU meets RF+M − EM . Let y denote a point in
their intersection. Then we have

RF+M = yU ⊂ xAU

by Theorem 6.2, so equation (7.1) holds in this case as well.
Finally, if x ∈ RF+M but xU does not meet RFM , then xH corresponds to a

circle tangent to Λ in just one point, and (7.1) is easily verified using minimality of
the horocycle flow on a compact hyperbolic surface (cf. [MMO, Thm. 1.5]). ⊓-
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