1. Either provide an example to support your answer or prove your claim: (5 points each)
 (1) What is a unit in a unital ring?
 (2) Give a ring \(R \) and a non-principal ideal \(I \).
 (3) Is there a non-commutative ring of order 4?
 (4) Let \(R \) be a ring and assume that it has a subring isomorphic to \(\mathbb{Q} \). Does \(R \) have a unity?

2. Let \(S = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \mid a, b \in \mathbb{Q} \right\} \subseteq \mathbb{M}_2(\mathbb{Q}) \).
 (1) (10 points) Prove that \(S \) is a commutative unital subring of \(\mathbb{M}_2(\mathbb{Q}) \).
 (2) (5 points) Prove that \(S \) is a field.
 (3) (10 points) Prove that \(f : S \rightarrow \mathbb{Q}[\sqrt{2}] \) given by
 \[f(\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}) = a + \sqrt{2}b \]
 is an isomorphism.
 (4) (5 points) Is \(R = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \) a field? Explain your answer.
 (5) (Bonus) Prove that \(R \) is isomorphic to \(\mathbb{R} \oplus \mathbb{R} \).

Mathematics Dept, University of California, San Diego, CA 92093-0112

E-mail address: golsefidy@ucsd.edu

Date: 1/27/2012.