LECTURE 16.

ALIREZA SALEHI GOLSEFIDY

1. Recall.

In the previous lecture, we said what an irreducible polynomial is: a non-zero, non-unit polynomial \(f(x) \) such that, if \(f(x) = p(x)q(x) \), then either \(p(x) \) or \(q(x) \) is unit.

Remark 1. Let \(F \) be a field. Then a non-constant polynomial \(p(x) \in F[x] \) is irreducible if and only if it cannot be written a product of two smaller degree polynomials.

We also proved

Proposition 2. Let \(F \) be a field. A non-constant polynomial \(p(x) \in F[x] \) is irreducible if and only if \(\langle p(x) \rangle \) is a maximal ideal if and only if \(F[x]/\langle p(x) \rangle \) is a field.

2. Reducibility test for degrees 2 and 3.

In general, it is not easy to prove if a given polynomial is irreducible or not. But if the polynomial is of degree 2 or 3, it is relatively easy.

Theorem 3. Let \(F \) be a field and \(p(x) \in F[x] \). Assume \(\deg(p) = 2 \) or 3. Then it is reducible over \(F \) if and only if it has a solution in \(F \).

Proof. In both of these cases, it is easy to see, that if \(p \) is reducible then, one of the factors is of degree 1, which implies that \(p \) has a solution over \(F \). The other direction is a corollary of the Factor Theorem. \(\Box \)

3. Gauss’s Lemma and reducibility over \(\mathbb{Z} \).

Now we would like to explore the relation between reducibility over \(\mathbb{Q} \) and \(\mathbb{Z} \).

Example 4. \(f(x) = 2x \) is reducible over \(\mathbb{Z} \) but irreducible over \(\mathbb{Q} \).

How about the other direction? What is the real obstruction? In Example 4, the scalar term was the problem. That is the motivation to define the *content* of a non-zero integer polynomial.

Definition 5. Let \(0 \neq p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x] \). The content of \(p \) is defined to be \(c(p) := \gcd(a_0, \ldots, a_n) \).

\(p \) is called *primitive* if \(c(p) = 1 \).

Example 6.

1. \(c(2x + 1) = 1 \).
2. \(c(4x^3 + 2) = 2 \).
3. \(c(ap(x)) = ac(p) \) for any \(a \in \mathbb{N} \) and \(0 \neq p(x) \in \mathbb{Z}[x] \).

Theorem 7. Let \(f(x) \in \mathbb{Z}[x] \) be a primitive polynomial. Then \(f(x) \) is irreducible over \(\mathbb{Q} \) if and only if it is irreducible over \(\mathbb{Z} \).

Date: 2/17/2012.
(2) Let \(p(x) \in \mathbb{Z}[x] \). If \(p(x) \) is reducible over \(\mathbb{Q} \), then it is reducible over \(\mathbb{Z} \).

In order to prove Theorem 7, first we need to prove the following lemma.

Lemma 8 (Gauss’s Lemma).

1. Product of two primitive polynomials is also primitive.
 2. For any \(f(x), g(x) \in \mathbb{Z}[x] \), we have that \(c(fg) = c(f)c(g) \).

Proof. 1. If not, then there is a prime \(p \) which divides all the coefficients of \(f(x)g(x) \), i.e. \(f(x)g(x) = 0 \), where \(f(x), g(x) \in \mathbb{Z}/p\mathbb{Z}[x] \) are obtained by reducing the coefficients modulo \(p \). Since \(\mathbb{Z}/p\mathbb{Z}[x] \) is an integral domain, either \(f \) or \(g \) = 0. This implies that \(p \) divides all the coefficients of either \(f \) or \(g \), which contradicts the fact that \(f \) and \(g \) are primitive.

2. By the definition, \(f = c(f)f_1 \) and \(g = c(g)g_1 \), where \(f_1 \) and \(g_1 \) are primitive. So \(fg = c(f)c(g)f_1g_1 \). By the first part, we know that \(f_1g_1 \) is primitive. Therefore \(c(fg) = c(f)c(g) \). \(\square \)

Proof of Theorem 7. 1. If \(f(x) \) is reducible over \(\mathbb{Z} \), then \(f(x) = p(x)q(x) \). Since \(f \) is primitive, \(\deg(p), \deg(q) > 1 \). Thus \(f \) is also reducible over \(\mathbb{Q} \). The other direction is a corollary of the second part.

2. If \(f(x) \) is reducible over \(\mathbb{Q} \), then \(f(x) = p(x)q(x) \) for some \(p(x), q(x) \in \mathbb{Q}[x] \) of smaller degree. Without loss of generality we can and will assume that \(f \) is primitive. Let \(a, b \in \mathbb{N} \) such that \(p_1(x) = ap(x) \in \mathbb{Z}[x] \) and \(q_1(x) = bq(x) \in \mathbb{Z}[x] \). So
 \[
 abf(x) = p_1(x)q_1(x).
 \]
 By Gauss’s Lemma, we have \(ab = ab \cdot c(f) = c(abf(x)) = c(p_1q_1) = c(p_1)c(q_1) \). Hence \(f = p_1/c(p_1) \cdot q_1/c(q_1) \), which shows that \(f \) is reducible over \(\mathbb{Z} \). \(\square \)

4. Irreducibility Test.

Modulo \(p \) might be easier to see if a polynomial is irreducible or not.

Theorem 9. Let \(f(x) \in \mathbb{Z}[x] \) and \(p \) be prime. Let \(\bar{f}(x) \in \mathbb{Z}/p\mathbb{Z}[x] \) be the the polynomial obtained by the reducing modulo \(p \). If \(\deg(f) = \deg(\bar{f}) \) and \(\bar{f} \) is irreducible, then \(f \) is irreducible over \(\mathbb{Q} \).

Example 10. (1) \(f(x) = (15/7)x^3 - (4/9)x^2 + x + (17/19) \).

(2) \(f(x) = x^4 + 1 \) is reducible over \(\mathbb{Z}/p\mathbb{Z} \) for any \(p \) but it is irreducible over \(\mathbb{Z} \).

Mathematics Dept, University of California, San Diego, CA 92093-0112

E-mail address: golsefidy@ucsd.edu