LECTURE 3.

ALIREZA SALEHI GOLSEFIDY

Let’s see a few new construction of rings:

Definition 1. Let R_1, R_2, \ldots, R_n be rings. Similar to groups, we can consider their direct sum. Namely

$$R_1 \oplus \cdots \oplus R_n = \{(r_1, \ldots, r_n) \mid \forall i, r_i \in R_i\}$$

gives us a new ring (with componentwise addition and multiplication). It is again called the direct sum of R_1, \ldots, R_n.

Example 2. Let $(G, +)$ be an abelian group. Then $(\text{Hom}(G, G), +, \circ)$ is a ring. (It is easy to check all the properties. Notice that $(\text{Fun}(G, G), +, \circ)$ is NOT a ring.)

Remark 3. The above example is a generalization of the fact that $M_n(\mathbb{Q}) = \text{Hom}(\mathbb{Q}^n, \mathbb{Q}^n)$ or $M_n(\mathbb{Z}) = \text{Hom}(\mathbb{Z}^n, \mathbb{Z}^n)$ are rings!

Remark 4. Whenever you see a new object (structure) in math, you should ask about the maps which preserve its structure (usually called homomorphisms) and its subsets with similar structure (sub-, e.g. subgroups).

Let R be a ring. A non-empty subset S of R is called a **subring** if it is a ring with respect to operations of R.

Lemma 5. Let S be an non-empty subset of R. Then S is a subring if and only if

1. it is closed under multiplication, i.e. $\forall a, b \in S, ab \in S$.
2. it is closed under subtraction, i.e. $\forall a, b \in S, a - b = a + (-b) \in S$.

Proof. From group theory, we know that $(S, +)$ is a subgroup of $(R, +)$. By the assumption (S, \cdot) is a semigroup. And since R is a ring, we have the distribution rules. Hence S is a subring.

Example 6. $S \subseteq \mathbb{Z}$ is a subring if and only if $S = n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Proof. First let us check that for any $n \in \mathbb{Z}$, $n\mathbb{Z}$ is a subring. By Lemma 5 it is enough to check the followings:

1. (Closed under multiplication) $\forall k, k' \in \mathbb{Z}$, $(nk) \cdot (nk') = n(nk\cdot k') \in n\mathbb{Z}$.
2. (Closed under subtraction) $\forall k, k' \in \mathbb{Z}$, $nk - nk' = n(k - k') \in n\mathbb{Z}$.

To see the other direction, we prove that even any subgroup of $(\mathbb{Z}, +)$ is of the above form. Let S be a (additive) subgroup of \mathbb{Z}. If $S = \{0\}$, we are done. So assume that there is $0 \neq a \in S$. Since S is a subgroup, $-a$ is also in S. Either a or $-a$ is a positive integer. So $S \cap \mathbb{N}$ is a non-empty subset of \mathbb{N}. Thus by the well-ordering principle there is a smallest element n in $S \cap \mathbb{N}$. We claim that $S = n\mathbb{Z}$. If not, there is $b \in S$ which is not a multiple of n. By division algorithm there is an integer q and a positive integer r such that $b = nq + r$, and $r < n$.

Hence $r = b - nq \in S \cap \mathbb{N}$ which contradicts the fact that n is the smallest element in $S \cap \mathbb{N}$.

Example 7. Let R be a unital ring. Then the group generated by 1_R is a subring of R.

Date: 1/9/2012.
Proof. Clearly it is closed under subtraction. So by Lemma 5 it is enough to check that it is closed under multiplication, for any \(k, k' \in \mathbb{Z} \), we have:

\[
(k \cdot 1_R) \cdot (k' \cdot 1_R) = \sum_{i=1}^{\left| k \right|} \left(\text{sgn} \ k \right) \cdot 1_R \cdot \sum_{j=1}^{\left| k' \right|} \left(\text{sgn} \ k' \right) \cdot 1_R = \sum_{i=1}^{\left| k \right|} \left(\text{sgn} \ k \right) \cdot 1_R \cdot \sum_{j=1}^{\left| k' \right|} \left(\text{sgn} \ k' \right) \cdot 1_R
\]

\[
= \sum_{i=1}^{\left| k k' \right|} \left(\text{sgn} \ (k k') \right) \cdot 1_R = \left(\left| k k' \right| \right) \left(\text{sgn} \ (k k') \right) \cdot 1_R = (k k') \cdot 1_R,
\]

where

\[
\text{sgn}(k) := \begin{cases}
1 & \text{if } k > 0, \\
0 & \text{if } k = 0, \\
-1 & \text{if } k < 0.
\end{cases}
\]

\[\square \]

Definition 8. Let \(R \) be a ring and \(a \in R \). \(a \) is called a right zero-divisor (resp. left zero-divisor) if there is \(0 \neq b \in R \) such that \(ba = 0 \) (resp. \(ab = 0 \)). \(a \) is called a zero divisor if there are non-zero elements \(b \) and \(b' \) such that \(ab = b'a = 0 \).

Example 9. If \(a \in U(R) \), then \(a \) is not a left (or right) zero divisor.

Definition 10. Let \(R \) be a commutative unital ring. It is called an integral domain if it has no zero-divisors.

Example 11. (1) \(\mathbb{Z} \) is an integral domain.

(2) \(\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \) is a subring of \(\mathbb{C} \) and it is an integral domain.

(3) \(\mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \) are integral domains.

Let’s again look at the invertible elements.

Remark 12. 0 can never be invertible unless \(R = \{0\} \). So \(U(R) \subseteq R \setminus \{0\} \).

Definition 13. A unital ring \(R \) is called a division ring (or a skew field) if \(U(R) = R \setminus \{0\} \). A commutative division ring is called a field.

Example 14. (1) \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields.

(2) \(\mathbb{Z} \) and \(\mathbb{Z}[i] \) are not fields.

(3) \(\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\} \) is a field.

(4) It is not easy to construct division algebras. Here is one of the easiest examples,

\[
\mathbb{H} := \left\{ \begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix} \mid a, b \in \mathbb{C} \right\}.
\]

It is called a quaternion algebra. I will leave it as an exercise to show that \(\mathbb{H} \) is a division ring.