The starting point of lots of topics in ring theory is number theory; to be precise, the study of roots of (monic) polynomials with integer coefficients. For instance, can we talk about primes of \(\mathbb{Z}[i] \)? How about an arbitrary ring? Do we have unique factorization? etc.

It turns out that (for an arbitrary ring) it is better to work with ideals instead of elements.\(^1\) So we will define a prime ideal instead of a prime element. And later (not in this course) you see that certain rings has “unique factorization” for ideals but does not have unique factorization property.

Definition 1. Let \(I \) and \(J \) be two ideals of \(R \); then we define

\[
IJ := \{ \sum_{i} a_i b_i \mid a_i \in I, b_i \in J \}.
\]

and

\[
I + J := \{ a + b \mid a \in I, b \in J \}.
\]

Lemma 2.

1. \(IJ \) is an ideal of \(R \) and \(IJ \subseteq I \cap J \).
2. \(I + J \) is an ideal and moreover \(\langle I \cup J \rangle = I + J \).

Proof.

1. By the definition it is clear that \(IJ \) is closed under subtraction. Since \(RI \subseteq I \) (resp. \(JR \subseteq J \)), we have \(RIJ \subseteq IJ \) (resp. \(IJR \subseteq IJ \)). So \(IJ \) is an ideal.

Let \(x \in IJ \). So there are \(a_i \in I \) and \(b_i \in J \) such that

\[
x = \sum_{i=1}^{n} a_i b_i.
\]

Since \(I \) (resp. \(J \)) is an ideal and \(a_i \in I \) (resp. \(b_i \in J \)), \(x = \sum_{i=1}^{n} a_i b_i \in I \). Hence \(x \in I \cap J \).

2. Since \(I + J + I + J = (I + I) + (J + J) = I + J, -(I + J) = (-I) + (-J) = I + J, R(I + J) = RI + RJ \subseteq I + J \) and \((I + J)R = IR + JR \subseteq I + J \), \(I + J \) is an ideal. Since \(I = I + 0 \subseteq I + J \) and \(J = 0 + J \subseteq I + J \), we have \(I \cup J \subseteq I + J \). Since \(I + J \) is an ideal which contains \(I \cup J \), we have that

\[
\langle I \cup J \rangle \subseteq I + J.
\]

Let \(x \in I + J \); then by the definition there are \(a \in I \) and \(b \in J \) such that \(x = a + b \). We have \(a \in I \subseteq \langle I \cup J \rangle \) and \(b \in J \subseteq \langle I \cup J \rangle \). Since \(\langle I \cup J \rangle \) is an ideal, it is closed under addition. Thus \(x = a + b \in \langle I \cup J \rangle \). Thus \(I + J \subseteq \langle I \cup J \rangle \), which finished our proof.

Definition 3. An ideal \(P \) of \(R \) is called a prime ideal if \(P \neq R \) and

\[
IJ \subseteq P \Rightarrow I \subseteq P \text{ or } J \subseteq P,
\]

for any two ideals \(I \) and \(J \) of \(R \).

Lemma 4. Let \(R \) be a commutative ring. An ideal \(P \) is prime if and only if

\[
ab \in P \Rightarrow a \in P \text{ or } b \in P.
\]

\(^1\)In fact, when we are working with a PID, there is no big difference between working with elements or working with ideals. Because of this over \(\mathbb{Z} \) there is no need of working with ideals.

Date: 1/30/2012.
Proof. If \(ab \in P \), then \((ab) \subseteq P \). Since \(R \) is commutative, this implies that \((a)(b) = (ab) \subseteq P \). Now if \(P \) is prime, then either \((a) \subseteq P \) or \((b) \subseteq P \), and we are done.

Let \(IJ \subseteq P \) and assume the contrary that \(I \nsubseteq P \) and \(J \nsubseteq P \). Hence there is \(a \in I \setminus P \) and \(b \in J \setminus P \). In particular, \(ab \in IJ \subseteq P \). By our assumption, either \(a \in P \) or \(b \in P \), which is a contradiction. \(\square \)

Example 5. \(n\mathbb{Z} \) is a prime ideal if and only if either \(n = 0 \) or \(n \) is prime.

Definition 6. A proper ideal \(I \) is called a maximal ideal of \(R \) if
\[
J \triangleleft R \text{ and } I \subseteq J \Rightarrow J = I \text{ or } J = R.
\]

Example 7. \(n\mathbb{Z} \) is a maximal ideal if and only if \(n \) is prime.

Lemma 8. Let \(R \) be a unital commutative ring. Let \(I \) be an ideal in \(R \). Then

1. \(I \) is a prime ideal if and only if \(R/I \) is an integral domain.
2. \(I \) is a maximal ideal if and only if \(R/I \) is a field.

Proof. 1. If \(I \) is a prime ideal, then \(R/I \) is an integral domain.
\[
(a + I)(b + I) = I \Rightarrow ab \in I \Rightarrow a \in I \text{ or } b \in I \Rightarrow a + I = I \text{ or } b + I = I.
\]

If \(R/I \) is an integral domain, then \(I \) is a prime ideal.
\[
ab \in I \Rightarrow I = ab + I = (a + I)(b + I) \Rightarrow a + I = I \text{ or } b + I = I \Rightarrow a \in I \text{ or } b \in I.
\]

2. If \(I \) is a maximal ideal, then \(R/I \) is a field. Since we know that \(R/I \) is a unital commutative ring, it is enough to show that any non-zero element is a unit.
\[
a + I \neq I \Rightarrow a \notin I \Rightarrow (a) + I = R \Rightarrow \exists b \in R, x \in I, ab + x = 1 \Rightarrow 1 + I = ab + x + I = ab + I = (a + I)(b + I) \Rightarrow a + I \in U(R/I).
\]

Corollary 9. In a unital commutative ring any maximal ideal is a prime ideal.