Ricci flow on Wallach flag varieties

Nolan R. Wallach

January 19, 2013
The Spaces and Metrics

- $M = G/K$ with $G = U(3, \mathbb{C}), U(3, \mathbb{H})$ or “$U(3, \mathbb{O}) = F_4$”
The Spaces and Metrics

- $M = G/K$ with $G = U(3, \mathbb{C}), U(3, \mathbb{H})$ or "$U(3, \mathbb{O}) = F_4$"
- $K = U(1, \mathbb{C}) \times U(1, \mathbb{C}) \times U(1, \mathbb{C}), U(1, \mathbb{H}) \times U(1, \mathbb{H}) \times U(1, \mathbb{H})$
or "$U(1, \mathbb{O}) \times U(1, \mathbb{O}) \times U(1, \mathbb{O}) = \text{Spin}(8)$"
The Spaces and Metrics

- $M = G/K$ with $G = U(3, \mathbb{C}), U(3, \mathbb{H})$ or “$U(3, \mathbb{O}) = F_4$”
- $K = U(1, \mathbb{C}) \times U(1, \mathbb{C}) \times U(1, \mathbb{C}), U(1, \mathbb{H}) \times U(1, \mathbb{H}) \times U(1, \mathbb{H})$
 or “$U(1, \mathbb{O}) \times U(1, \mathbb{O}) \times U(1, \mathbb{O}) = Spin(8)$”
- $T(M)_{eK} = F \oplus F \oplus F = \mathbb{R}^d \oplus \mathbb{R}^d \oplus \mathbb{R}^d$, $F = \mathbb{C}, \mathbb{H}, \mathbb{O}$ and $d = 2, 4, 8$.

This lecture is an exposition of joint work with Man Wai (Mandy) Cheung.
The Spaces and Metrics

- $M = G / K$ with $G = U(3, \mathbb{C}), U(3, \mathbb{H})$ or “$U(3, \mathbb{O}) = F_4$”
- $K = U(1, \mathbb{C}) \times U(1, \mathbb{C}) \times U(1, \mathbb{C}), U(1, \mathbb{H}) \times U(1, \mathbb{H}) \times U(1, \mathbb{H})$
 or “$U(1, \mathbb{O}) \times U(1, \mathbb{O}) \times U(1, \mathbb{O}) = Spin(8)$”
- $T(M)_{eK} = F \oplus F \oplus F = R^d \oplus R^d \oplus R^d$, $F = \mathbb{C}, \mathbb{H}, \mathbb{O}$ and $d = 2, 4, 8$.
- $\langle \ldots, \ldots \rangle_{eK} = x_1 \langle \ldots, \ldots \rangle_1 \oplus x_2 \langle \ldots, \ldots \rangle_2 \oplus x_3 \langle \ldots, \ldots \rangle_3$, $x_i > 0$ and $\langle z, w \rangle_i = Re z \overline{w}$.
The Spaces and Metrics

- $M = G/K$ with $G = U(3, \mathbb{C}), U(3, \mathbb{H})$ or \(U(3, \mathbb{O}) = F_4\)
- $K = U(1, \mathbb{C}) \times U(1, \mathbb{C}) \times U(1, \mathbb{C}), U(1, \mathbb{H}) \times U(1, \mathbb{H}) \times U(1, \mathbb{H})$ or \(U(1, \mathbb{O}) \times U(1, \mathbb{O}) \times U(1, \mathbb{O}) = Spin(8)\)
- $T(M)_{eK} = F \oplus F \oplus F = R^d \oplus R^d \oplus R^d, F = \mathbb{C}, \mathbb{H}, \mathbb{O}$ and $d = 2, 4, 8$.
- $\langle ..., ... \rangle_{eK} = x_1 \langle ..., ... \rangle_1 \oplus x_2 \langle ..., ... \rangle_2 \oplus x_3 \langle ..., ... \rangle_3, x_i > 0$ and $\langle z, w \rangle_i = Re z\overline{w}$.
- This lecture is an exposition of joint work with Man Wai (Mandy) Cheung.
The curvature

- If $x_1 = x_2$ then the sectional curvature is strictly positive if $0 < \frac{x_3}{x_1} < 1$ or $1 < \frac{x_3}{x_1} < \frac{4}{3}$ and there is some strictly negative curvature if $\frac{x_3}{x_1} > \frac{4}{3}$.
The curvature

- If $x_1 = x_2$ then the sectional curvature is strictly positive if $0 < \frac{x_3}{x_1} < 1$ or $1 < \frac{x_3}{x_1} < \frac{4}{3}$ and there is some strictly negative curvature if $\frac{x_3}{x_1} > \frac{4}{3}$.

- The symmetric group acting by permuting factors preserves positive curvature. We consider the case when $x_3 < x_1 < x_2$. Since scaling by a constant preserves the sign of curvature we consider $x_1 = 1$, $x_2 = 1 + r$ and $x_3 = s$ with $r > 0$ and $0 < s < 1$.

With the notation above a necessary and sufficient condition that the sectional curvature be positive is $r < s^2 + 2p_1s + s^2 < s^2$ (equivalent to Valiev's result).

We note that if $0 < s < 1$ then $s^2 + 2p_1s + s^2 < s^2$.

N. Wallach ()
flag varieties
The curvature

- If \(x_1 = x_2 \) then the sectional curvature is strictly positive if \(0 < \frac{x_3}{x_1} < 1 \) or \(1 < \frac{x_3}{x_1} < \frac{4}{3} \) and there is some strictly negative curvature if \(\frac{x_3}{x_1} > \frac{4}{3} \).

- The symmetric group acting by permuting facters preserves positive curvature. We consider the case when \(x_3 < x_1 < x_2 \). Since scaling by a constant preserves the sign of curvature we consider \(x_1 = 1, x_2 = 1 + r \) and \(x_3 = s \) with \(r > 0 \) and \(0 < s < 1 \).

- With the notation above a necessary and sufficient condition that the sectional curvature be positive is \(r < \frac{s-2+2\sqrt{1-s+s^2}}{3} \) (equivalent to Valiev’s result).
The curvature

- If $x_1 = x_2$ then the sectional curvature is strictly positive if $0 < \frac{x_3}{x_1} < 1$ or $1 < \frac{x_3}{x_1} < \frac{4}{3}$ and there is some strictly negative curvature if $\frac{x_3}{x_1} > \frac{4}{3}$.

- The symmetric group acting by permuting factors preserves positive curvature. We consider the case when $x_3 < x_1 < x_2$. Since scaling by a constant preserves the sign of curvature we consider $x_1 = 1$, $x_2 = 1 + r$ and $x_3 = s$ with $r > 0$ and $0 < s < 1$.

- With the notation above a necessary and sufficient condition that the sectional curvature be positive is $r < \frac{s^2 - 2 + 2\sqrt{1 - s + s^2}}{3}$ (equivalent to Valiev’s result).

- We note that if $0 < s < 1$ then

$$\frac{s^2}{4} < \frac{s - 2 + 2\sqrt{1 - s + s^2}}{3} < \frac{s^2}{3}.$$
Fundamental domain for S_3 acting on the homogeneous metrics of positive curvature consists of the points in the first quadrant below the graph the sets \(\{(s, 0)| 0 < s < 1\} \) and \(\{(1, r)|0 < r < \frac{1}{3}\} \).
\[\text{Ric}(g) = x_1 r_1 \langle \ldots, \ldots \rangle_1 + x_2 r_2 \langle \ldots, \ldots \rangle_2 + x_3 r_3 \langle \ldots, \ldots \rangle_3. \]
\[\text{Ric}(g) = x_1 r_1 \langle \ldots, \ldots \rangle_1 + x_2 r_2 \langle \ldots, \ldots \rangle_2 + x_3 r_3 \langle \ldots, \ldots \rangle_3. \]

\[r_i = \frac{dx_i^2 - dx_j^2 - dx_k^2 + (10d - 8)x_jx_k}{2x_1x_2x_3} \]

where \(\{i, j, k\} = \{1, 2, 3\} \).
Hamilton’s Ricci flow is given in these parameters as

$$\frac{dx_i}{dt} = -2r_i x_i.$$
\[\text{Ric}(g) = x_1 r_1 \langle \ldots, \ldots \rangle_1 + x_2 r_2 \langle \ldots, \ldots \rangle_2 + x_3 r_3 \langle \ldots, \ldots \rangle_3. \]

\[r_i = \frac{dx_i^2 - dx_j^2 - dx_k^2 + (10d - 8)x_jx_k}{2x_1x_2x_3} \]

where \{i, j, k\} = \{1, 2, 3\}.

Hamilton’s Ricci flow is given in these parameters as

\[\frac{dx_i}{dt} = -2r_i x_i. \]

The goal is to say what happens to positive sectional curvature or Ricci curvature under the above non-linear ODE.
Sectional Curvature

- We note that the set of metrics with $x_i = x_j$ is preserved under the Ricci flow.
Sectional Curvature

- We note that the set of metrics with $x_i = x_j$ is preserved under the Ricci flow.
- So we will start with a metric with $x_1 = x_2 = 1$. Under these conditions we consider the change in $\frac{x_3}{x_1}$ under the flow.
Sectional Curvature

- We note that the set of metrics with $x_i = x_j$ is preserved under the Ricci flow.
- So we will start with a metric with $x_1 = x_2 = 1$. Under these conditions we consider the change in $\frac{x_3}{x_1}$ under the flow.
- A direct calculation shows that for $d = 2, 4, 8$

\[
\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = -2 \frac{x_3(t)}{x_1(t)} (r_3 - r_1) = \frac{-2d(1 - \frac{x_3}{x_1})(4 \frac{(d-1)}{d} - \frac{x_3}{x_1})}{x_1^2}.
\]
Sectional Curvature

- We note that the set of metrics with $x_i = x_j$ is preserved under the Ricci flow.
- So we will start with a metric with $x_1 = x_2 = 1$. Under these conditions we consider the change in $\frac{x_3}{x_1}$ under the flow.
- A direct calculation shows that for $d = 2, 4, 8$

$$\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = -2 \frac{x_3(t)}{x_1(t)} (r_3 - r_1) = \frac{-2d(1 - \frac{x_3}{x_1})(4 \frac{(d-1)}{d} - \frac{x_3}{x_1})}{x_1^2}.$$

- Hence if $0 < \frac{x_3(t)}{x_1(t)} < 1$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} < 0$, if $1 < \frac{x_3(t)}{x_1(t)} < 4 \frac{d-1}{d}$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} > 0$ and if $\frac{x_3(t)}{x_1(t)} > 4 \frac{d-1}{d}$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} < 0$. That is the line through $1, 1, 1$ is repelling fixed point and that through $1, 1, 4 \frac{d-1}{d}$ is an attractor.
Sectional Curvature

- We note that the set of metrics with $x_i = x_j$ is preserved under the Ricci flow.
- So we will start with a metric with $x_1 = x_2 = 1$. Under these conditions we consider the change in $\frac{x_3}{x_1}$ under the flow.
- A direct calculation shows that for $d = 2, 4, 8$

$$\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = -2 \frac{x_3(t)}{x_1(t)} (r_3 - r_1) = \frac{-2d(1 - \frac{x_3}{x_1})(4\frac{d-1}{d} - \frac{x_3}{x_1})}{x_1^2}.$$

- Hence if $0 < \frac{x_3(t)}{x_1(t)} < 1$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} < 0$, if $1 < \frac{x_3(t)}{x_1(t)} < 4\frac{d-1}{d}$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} > 0$ and if $\frac{x_3(t)}{x_1(t)} > 4\frac{d-1}{d}$ then $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} < 0$. That is the line through $1, 1, 1$ is repelling fixed point and that through $1, 1, 4\frac{d-1}{d}$ is an attractor.
- The lines through $1, 1, 1$ and $1, 1, 4\frac{d-1}{d}$ give the full set of Einstein metrics among the metrics with $x_1 = x_2$.
This implies that if \(1 < \frac{x_1(0)}{x_3(0)} < 4 \frac{d-1}{d} \) then we have
\[
\lim_{t \to +\infty} \frac{x_1(t)}{x_3(t)} = 4 \frac{d-1}{d}
\]
under the Ricci flow.
This implies that if \(1 < \frac{x_1(0)}{x_3(0)} < 4 \frac{d-1}{d} \) then we have
\[
\lim_{t \to +\infty} \frac{x_1(t)}{x_3(t)} = 4 \frac{d-1}{d}
\]
der under the Ricci flow.

Since \(\frac{4}{3} < 4 \frac{d-1}{d} \) for \(d = 2, 4, 8 \) we we have
This implies that if $1 < \frac{x_1(0)}{x_3(0)} < 4 \frac{d-1}{d}$ then we have

$$\lim_{t \to +\infty} \frac{x_1(t)}{x_3(t)} = 4 \frac{d-1}{d}$$

under the Ricci flow.

Since $\frac{4}{3} < 4 \frac{d-1}{d}$ for $d = 2, 4, 8$ we we have

Theorem

For all three examples the Ricci flow deforms certain metrics of strictly positive sectional curvature to metrics with some strictly negative sectional curvature.
This implies that if \(1 < \frac{x_1(0)}{x_3(0)} < 4 \frac{d-1}{d}\) then we have
\[
\lim_{t \to +\infty} \frac{x_1(t)}{x_3(t)} = 4 \frac{d-1}{d}
\]
under the Ricci flow.

Since \(\frac{4}{3} < 4 \frac{d-1}{d}\) for \(d = 2, 4, 8\) we we have

Theorem

For all three examples the Ricci flow deforms certain metrics of strictly positive sectional curvature to metrics with some strictly negative sectional curvature.

We also note that since the Ricci tensor is positive definite for \(1, 1, s\) and \(0 < s \leq 4 \frac{d-1}{d}\) this implies that the flow cannot change the signature of the Ricci tensor if it starts with strictly positive curvature and \(x_1 = x_2\).
Ricci curvature

We assume \(x_2 > x_1 > x_3 > 0 \) and scale to \(x_1 = 1, x_2 = 1 + r, x_3 = s \) with \(r > 0 \) and \(0 < s < 1 \).

\[
\begin{align*}
 r_1 x_1 &= \frac{-2rd - dr^2 + (10d - 8)s + (10d - 8)rs - ds^2}{2(1 + r)s}, \\
 r_2 x_2 &= \frac{dr + dr^2 + (10d - 8)s - ds^2}{2s}, \\
 r_3 x_3 &= \frac{(8d - 8) + (8d - 8)r - dr^2 + ds^2}{2(1 + r)}.
\end{align*}
\]
Ricci curvature

- We assume $x_2 > x_1 > x_3 > 0$ and scale to $x_1 = 1, x_2 = 1 + r, x_3 = s$ with $r > 0$ and $0 < s < 1$.

$$r_1 x_1 = \frac{-2rd - dr^2 + (10d - 8)s + (10d - 8)rs - ds^2}{2(1 + r)s},$$

$$r_2 x_2 = \frac{dr + dr^2 + (10d - 8)s - ds^2}{2s},$$

$$r_3 x_3 = \frac{(8d - 8) + (8d - 8)r - dr^2 + ds^2}{2(1 + r)}.$$

- If $0 < r < 8$ only the first can change sign: positive definite Ricci curvature if and only if

$$r < \sqrt{1 + 8s^2} - (1 - 3s), d = 2$$

$$r < \sqrt{1 + 15s^2} - (1 - 4s), d = 4$$

$$r < \sqrt{1 + \frac{77}{4}s^2} - \left(1 - \frac{9}{2}s\right), d = 8.$$

since all of these expressions are < 8 if $0 < s < 1$.

N. Wallach () flag varieties 1/19 8 / 17
To change the signature we start with a point with \(r_1 = 0 \) and hope that
\[
\frac{dr_1}{dt} = -2 \sum r_i x_i \frac{dr_1}{dx_i} < 0.
\]
This works for \(d = 2, 4, 8 \) respectively if
To change the signature we start with a point with \(r_1 = 0 \) and hope that \(\frac{dr_1}{dt} = -2 \sum r_i x_i \frac{\partial r_1}{\partial x_i} < 0 \). This works for \(d = 2, 4, 8 \) respectively if

\[
0 < s < 1 - \sqrt{\frac{5}{8}} = 0.20943058...
\]

\[
0 < s < \frac{30 + 5\sqrt{21} - 3\sqrt{5(21 + 4\sqrt{21})}}{30} = 0.361437...
\]

\[
0 < s < \frac{693 + 11\sqrt{2737} - 7\sqrt{22(511 + 9\sqrt{2737})}}{616} = 0.389089...
\]

Theorem
For all the examples the Ricci flow of a metric with positive definite Ricci tensor can flow to one with signature \((d, 2d) \).
To change the signature we start with a point with \(r_1 = 0 \) and hope that
\[
\frac{dr_1}{dt} = -2 \sum r_i x_i \frac{dr_1}{dx_i} < 0.
\]
This works for \(d = 2, 4, 8 \) respectively if
\[
0 < s < 1 - \sqrt{\frac{5}{8}} = 0.20943058...
\]
\[
0 < s < \frac{30 + 5\sqrt{21} - 3\sqrt{5(21 + 4\sqrt{21})}}{30} = 0.361437...
\]
\[
0 < s < \frac{693 + 11\sqrt{2737} - 7\sqrt{22(511 + 9\sqrt{2737})}}{616} = 0.389089...
\]

Theorem

For all the examples the Ricci flow of a metric with positive definite Ricci tensor can flow to one with signature \((d, 2d)\).
Finally we consider the flow from positive sectional curvature to indefinite Ricci. Here we have two results. The first is due to Böhm and Wilking in the 12 dimensional example. Our proof uses some of their ideas.
Finally we consider the flow from positive sectional curvature to indefinite Ricci. Here we have two results. The first is due to Böhm and Wilking in the 12 dimensional example. Our proof uses some of their ideas.

Theorem

There exist homogeneous metrics of strictly positive sectional curvature on the 12 and 24 dimensional examples that deform under the Ricci flow to metrics with some negative Ricci curvature.
Finally we consider the flow from positive sectional curvature to indefinite Ricci. Here we have two results. The first is due to Böhm and Wilking in the 12 dimensional example. Our proof uses some of their ideas.

Theorem

There exist homogeneous metrics of strictly positive sectional curvature on the 12 and 24 dimensional examples that deform under the Ricci flow to metrics with some negative Ricci curvature.

Theorem

If g_0 is a homogeneous Riemannian structure on the 6 dimensional example with strictly positive sectional curvature then under the Ricci flow it retains strictly positive Ricci curvature.
We continue with the assumption $x_2 > x_1 > x_3 > 0$ so $\frac{x_2}{x_1} = 1 + r$ and $\frac{x_3}{x_1} = s$ with $r > 0$ and $0 < s < 1$.
We continue with the assumption $x_2 > x_1 > x_3 > 0$ so $\frac{x_2}{x_1} = 1 + r$ and $\frac{x_3}{x_1} = s$ with $r > 0$ and $0 < s < 1$.

\[r' = \frac{-2(x_2'x_1 - x_1'x_2)}{x_1^2} = 2(1 + r)(r_1 - r_2) = g(d, r, s) \]
We continue with the assumption $x_2 > x_1 > x_3 > 0$ so $\frac{x_2}{x_1} = 1 + r$ and $\frac{x_3}{x_1} = s$ with $r > 0$ and $0 < s < 1$.

\[
r' = \frac{-2(x'_2 x_1 - x'_1 x_2)}{x_1^2} = 2(1 + r)(r_1 - r_2) = g(d, r, s)
\]

\[
s' = \frac{-2(x'_3 x_1 - x'_1 x_3)}{x_1^2} = h(d, r, s).
\]
We continue with the assumption $x_2 > x_1 > x_3 > 0$ so \(\frac{x_2}{x_1} = 1 + r \) and \(\frac{x_3}{x_1} = s \) with \(r > 0 \) and \(0 < s < 1 \).

\[
r' = \frac{-2(x'_2 x_1 - x'_1 x_2)}{x_1^2} = 2(1 + r)(r_1 - r_2) = g(d, r, s)
\]

\[
s' = \frac{-2(x'_3 x_1 - x'_1 x_3)}{x_1^2} = h(d, r, s).
\]

\[
g(d, r, s) = \begin{cases}
-4 \frac{r}{s}(2 + r - 3s), & d = 2 \\
-8 \frac{r}{s}(2 + r - 4s), & d = 4 \\
-8 \frac{r}{s}(4 + 2r - 9s), & d = 8
\end{cases}
\]
The function $h(d, r, s)$ can be expressed as:

$$h(d, r, s) = \begin{cases}
4 \left(\frac{1-s}{1+r} \right)(-2 - 3r + s), & d = 2 \\
8 \left(\frac{1-s}{1+r} \right)(-3 - 4r + s), & d = 4 \\
8 \left(\frac{1-s}{1+r} \right)(-7 - 9r + 2s), & d = 8
\end{cases}.$$
\[h(d, r, s) = \begin{cases} 4 \frac{1-s}{1+r} (-2 - 3r + s), d = 2 \\ 8 \frac{1-s}{1+r} (-3 - 4r + s), d = 4 \\ 8 \frac{1-s}{1+r} (-7 - 9r + 2s), d = 8 \end{cases} \]

If \(0 < s < 1\) and \(r > 0\) then \(h(d, r, s) < 0\). We can thus think of \(r\) as a function of \(s\) in this range and have

\[r'(s) = \frac{r'(t)}{s'(t)} = \frac{r}{s} f(d, r, s) \]
\[h(d, r, s) = \begin{cases}
4 \frac{1-s}{1+r} (-2 - 3r + s), & d = 2 \\
8 \frac{1-s}{1+r} (-3 - 4r + s), & d = 4 \\
8 \frac{1-s}{1+r} (-7 - 9r + 2s), & d = 8
\end{cases} \]

If \(0 < s < 1\) and \(r > 0\) then \(h(d, r, s) < 0\). We can thus think of \(r\) as a function of \(s\) in this range and have

\[r'(s) = \frac{r'(t)}{s'(t)} = \frac{r}{s} f(d, r, s) \]

\[f(d, r, s) = \frac{g(d, r, s)}{h(d, r, s)} = \frac{1 + r}{1 - s} \begin{cases}
\frac{2 + r - 3s}{2 + 3r - 5s}, & d = 2 \\
\frac{2 + r - 4s}{3 + 4r - 7s}, & d = 4 \\
\frac{4 + 2r - 9s}{7 + 9r - 2s}, & d = 8
\end{cases} \]
Lemma

Suppose that we have a solution to the Ricci flow with initial condition $s_0 > 0$, $r(s_0) > 0$ and $r(s)$ is defined for $0 < s_1 \leq s \leq s_o$.

1. If $f(d, r(s), s) \geq C > 0$ in this range then we have

$$r(s) \leq s^C \frac{r(s_0)}{s_0^C}, s_1 \leq s \leq s_o.$$

2. If $0 < f(d, r(s), s) \leq C$ in this range we have

$$r(s) \geq s^C \frac{r(s_0)}{s_0^C}, s_1 \leq s \leq s_o.$$
Lemma

If \(d = 2 \) then \(r_2, r_3 > 0 \) if \(0 < s < 1 \) and \(0 < r < 2(1 + \sqrt{2}) \).

Lemma

If \(d = 2, 0 < s < 1 \) and \(r(s) > s \) then \(r'(s) > 0 \). Suppose that \(0 < s_0 < 1, s_0 < r(s_0) \leq 2s_0 \) and \(0 < s_1 < s_0 \) is such that \(r(s) \) is defined and \(r(s) > s \) for \(s_1 \leq s \leq s_0 \). Then \(r(s) < 2s \).

The point here is that the smallest value of \(C \) in the calculus lemma is 1.
We have seen that the condition for some negative Ricci curvature is
\[r > \sqrt{1 + 8s^2} - (1 - 3s) > 3s. \]
We have seen that the condition for some negative Ricci curvature is

\[r > \sqrt{1 + 8s^2} - (1 - 3s) > 3s. \]

The condition for positive sectional curvature is

\[r < \frac{s - 2 + 2\sqrt{1 - s + s^2}}{3} < \frac{s^2}{3}. \]
We have seen that the condition for some negative Ricci curvature is
\[r > \sqrt{1 + 8s^2} - (1 - 3s) > 3s. \]

The condition for positive sectional curvature is
\[r < \frac{s - 2 + 2\sqrt{1 - s + s^2}}{3} < \frac{s^2}{3}. \]

The Lemma above implies that under this condition \(r(s) \) can never pass \(2s \).
We have seen that the condition for some negative Ricci curvature is
\[r > \sqrt{1 + 8s^2} - (1 - 3s) > 3s. \]

The condition for positive sectional curvature is
\[r < \frac{s - 2 + 2\sqrt{1 - s + s^2}}{3} < \frac{s^2}{3}. \]

The Lemma above implies that under this condition \(r(s) \) can never pass \(2s \).

This completes the argument for the case \(d = 2 \).
For $d = 4$ or 8 we begin with to be determined values of $s > 0$ and $r > 0$ under the blue graph.
For $d = 4$ or 8 we begin with to be determined values of $s > 0$ and $r > 0$ under the blue graph.

Our argument (as in the case of Bohm-Wilking) works only when s is very small.
For $d = 4$ or 8 we begin with to be determined values of $s > 0$ and $r > 0$ under the blue graph.

Our argument (as in the case of Bohm-Wilking) works only when s is very small.

One finds that in these cases one can take $C = \frac{5}{6}$ so

$$r(s) \geq s^{\frac{5}{6}} \text{Const.}$$

for s sufficiently small and since $s \to 0$ along the Ricci flow hence along the flow $\frac{r}{s}$ becomes arbitrarily large.