DIAMETER OF HOMOGENEOUS SPACES: AN EFFECTIVE ACCOUNT
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ABSTRACT. In this paper we prove explicit estimates for the size of small lifts of points in
homogeneous spaces. Our estimates are polynomially effective in the volume of the space
and the injectivity radius.

1. INTRODUCTION

Let G be a semisimple Lie group and let I' C G be an arithmetic lattice, e.g. G = SLy(R)
and I' = SLy4(Z). Reduction theory provides a description of a (weak) fundamental domain
for I' in G. Among other things, it relates the injectivity radius at a point x € G/T to the
size of a small lift for x in G. In general, however, these estimates are only up to a compact
subset of G; in particular, when I' is a uniform (cocompact) lattice in G one does not obtain
explicit estimates on the diameter of G/T.

In this paper we provide an explicit estimate for the size of a small lift in G of a point
x € G/T'; our estimates are polynomial in the injectivity radius at = and in a certain measure of
the arithmetic complexity of I' which is closely related to the volume of G /T, see Theorem

It is plausible that some of the arguments involved in reduction theory can be effectivized;
this paper however takes an alternative route. The proofs here rely on a uniform spectral
gap for arithmetic quotients in the case of semisimple group; see e.g. [14, [5, 20] for a similar
approach. We then prove and utilize an effective Levi decomposition, in §3] and §4] to allow
for groups which may not be semisimple.

It is worth mentioning that when I is a cocompact lattice, the dependence of our estimates
on the injectivity radius may be omitted, see §6.12} The reader may compare this to the
analysis in [5], where similar estimates for the isometry groups of rank one symmetric spaces
are proved. However, our multiplication constants are allowed to depend on the number N
which is defined in §I.1] — this number can be thought of as a notion of dimension for the
arithmetic datum that defines I.

The main results are first formulated and proved (in in the adelic language. Then we
deduce the results for the S-arithmetic case — in particular for the case of semisimple Lie
groups — from the adelic setting. In addition to providing a uniform treatment, the adelic
language has the advantage that we may bring to bear the seminal works of Prasad [24] and
Borel and Prasad [3], a la [11], to avoid assuming any splitting conditions in Theorem
In we discuss some corollaries of this theorem in the S-arithmetic setting; see namely
Theorem and the discussion following it.

1.1. The notion of an algebraic datum. In the following, A denotes the ring of adeles
over Q. We let ¥ = {oo} U {p: pis a prime} denote the set of places of Q, and let ¥ be the
set of finite places. We sometime write ¥, for the set containing the infinite place. We will
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denote places in ¥ by v, w, ... and places in Xt by p, ¢, .... In this notation, we often write Q,
to denote R or Q.
Throughout, we assume fixed the following datum (G, ¢):

(1) A connected algebraic Q-group G whose solvable radical is unipotent, i.e. R(G) =
R.(G).

(2) We will always assume G to be simply connected.

(3) An algebraic homomorphism ¢ : G — SLy defined over Q, with a central kernel.

Condition (1) is equivalent to Hom(G, G,,) = {1}. In particular, we get that Homg(G, G,,) =
{1}, hence G(A)/G(Q) has a G(A)-invariant finite measure.

Set X = SLy(A)/SLy(Q); we let volx denote the SLy(A)-invariant probability measure
on X. Let G =1(G(A)) and Y = +«(G(A)/G(F)) C X. Let uy (or simply p when there is no
confusion) be a G-invariant probability measure on Y. Let m be a Haar measure on G which
projects to p under the orbit map.

1.2. A height function on X. For any v € X, we will abusively let || ||, denote the maximum
norm (with respect to the standard basis) both on QY and on slx(Q,). For any w € AN we

set
c(w) := [T llwollo-

vEY

Thanks to the product formula, we have c(rw) = c(w) for all » € Q, w € AN. Moreover, for
all w € QN — {0}, c(w) is an integer and c(w) > 1.
We define the height function ht : SLy(A) — RT by

(1.1) ht(g) := max{c(gw)™': 0 #w € QV}.

This function is SL x(Q)-invariant, hence induces a function on X which we continue to denote
by ht. That is: for any x € X we put ht(z) = ht(g) where g € SLy(A) is so that z = gSLy(Q).

For every p € ¥ we let || ||op,» (or simply || ||op when there is no confusion) denote the
operator norm on SLy(Q,), induced using the norm || ||, on QY. For any g € SLy(Q,) define

lg] := max{lgllop, g™ llop}-

1.3. Complexity of homogeneous sets. An intrinsic notion of volume of the datum (G, )
was defined and utilized in [I1]; we recall the definition here.

Fix an open subset 2 C SLy(A) that contains the identity and has compact closure (see
for our choice for €2). Set

(1.2) vol(Y) :=m(GnQ)~ L.

Evidently this notion depends on €2, but the notions arising from two different choices of
) are comparable to each other, in the sense that their ratio is bounded above and below.
Consequently, we drop the dependence on (2 in the notation. See [11l §2.3] for a discussion of
basic properties of the above definition.

1.4. Height of rational subspaces. Let W C sly(Q) be a d-dimensional subspace, so AYW
is a rational line in A?sly(Q). This line is diagonally embedded in A%s[x(A), and we do not
distinguish between this diagonal embedding and the line.

We endow A%sly(Q,) with the maximum norm with respect to the basis obtained by
collecting the d-fold wedges of (distinct, ordered) elements of the canonical basis of sy (Z).
In this section, we will again use || ||, to denote this norm.
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Let vw denote a primitive integral vector on AW — this vector is obtained by fixing a
Z-basis for W Nsly(Z). Define

(1.3) ht(W) := [[vw | oo

This is independent of the choice of the basis; moreover, because we used the max norm in
the above definition, ht(W) is an integer. Alternatively, ht(W) may be defined as follows.
Let {e1,...,eq} be a Q-basis for W. Then

ht(W) =[] llex A+ Aedll,

where the product is taken over all places of Q. In view of the product formula, the above is
independent of our choice of the rational basis for W.
Given a Q-subgroup H of SLy we define

(1.4) ht(H) := ht(Lie(H)) = [[val|oo,

where vy is a primitive integral vector as above. If H is a Q-subgroup of G instead, we set
ht(H) = ht(«(H)).

The volume of an adelic orbit defined in is closely related to the height function. This
relationship is easy to describe for unipotent groups and was studied in [I1, App. B], under
the assumption that G is semisimple.

We now define the height of Y to be

(1.5) ht(Y) := max{ht(G), vol(Y)}.
The following theorem is the main result of this paper.

1.5. Theorem. There exists some k1 > 0 depending only on N, and for any datum (G,¢) as
in there exists some p € Xy with

p K (log ht(Y))2,

so that the following holds. For each g € G(A), there exists some v € G(Q) such that
1(g7)q € SLN(Zyg) for all primes q # p,

[1(97)oo| < (loght(Y)™ and |e(g7)p| < ht(e(g) FPhe(Y FFE.
Moreover, the implicit multiplicative constants depend only on N.

The existence of such a prime p relies on Prasad’s volume formula [24], see for more
details.

1.6. The S-arithmetic setting. Let S C X be a finite subset which contains the infinite
place. We will write Qg for [, g Qy, and Zg will denote the ring of S-integers.
Define htg : SLy(Qg) — RT by

hts(g) := max {([T,es lgwlle) ™ : 0 # w e Zg } .
For any S as above, define Ag (or simply A if there is no confusion) by
Ag := the projection of G(Q) N (G(@S) x Tlpes L—l(SLN(Zq)) to G(Qg);

note that Ag is a lattice in G(Qg).
Let g € SLy(Qg) be an open set which contains the identity and has compact closure.
Put Y = 1(G(Qg)/A) and define
1

vol(Y) = ms (:(G(Qs)) N s) ",
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where mg is a Haar measure on +(G(Qg)) normalized so that mg(Y) = 1.

1.7. Theorem. Let (G,t) be as in . Let S be a finite set of places of Q which contains
the infinite place. For every v € S, let G, be a semisimple algebraic Q,-group. Assume

(1) G, and G are isomorphic over Q; in particular, G is semisimple and G, is simply

connected.

(2) The group G(Qs) = [[,c5 G(Qu) = [[,cg Gu(Qy) is not compact.

There ezists a constant ko > 0 depending only on N and a constant C' > 1 which depends
on G(Qg) and N, but not on G, so that the following holds. For every g € G(Qg) there
ezists some § € A such that

1(g8)| < Chts((g)FEvol(Y

This theorem will be proved in §6} see in particular Theorem [6.6] where Theorem [1.7] is
restated and proved. We will also discuss some other corollaries of Theorem in §0]

Let us highlight two features of the above theorem. First, note that once N is fixed the
dependence on the lattice A in the estimates is only through its covolume vol(f/). Second, the
above estimates use vol(Y') instead of vol(Y"); the fact that vol(Y") and vol(Y') are polynomially
related to each other is a consequence of deep results by Prasad and Borel and Prasad [24, [3],

see §6.3]

Acknowledgements. We would like to thank E. Lindenstrauss for helpful discussions.

2. NOTATION AND PRELIMINARIES

2.1. Notation. Throughout the paper, X, A, etc. will be as in In particular, A =
H;ez Q, where []" denotes the restricted direct product with respect to Z, for p € % ¢. Given
an element g in SLy(A) (or in sly(A), AV, etc.), we write g, for the v-th component of g.

If S C ¥ is a finite set of places containing the infinite place, Zg will denote the ring of
S-integers, that is Zg = {r € Q| |r|, <1 for v ¢ S}. On the other hand, Qg will denote the
product [],c4@Q,. There are canonical inclusions Q C A, Q C Qg, Qg C A, etc. which will
often be omitted from the notation.

For any finite place p € Xy, F, = Z,/pZ, is the finite field of order p. Let |z|, denote

the absolute value on Q, normalized so that |p|, = 1/p. Flnally, let Qp denote the maximal
unramified extension of Qp, Z denote the ring of integers in Qp, and IF denote the residue

field of Zp. Note that IFp is the algebraic closure of F,,.

Recall that, for any place v € %, || ||, denotes the maximum norm both on QY and sl (Q,)
with respect to their standard bases. When there is no ambiguity, we may drop the subscript
v. For this norm, we denote By, (g,)(7) the ball in 5[y (Q,) of radius 7 centered at 0.

Let (G, ) be an algebraic datum, as described in[L.1] For any v € ¥, let g, = Lie(G(Qy)).
Using the embedding dt : g, — sIny(Q,), we pull back the norm || ||, to a norm on g, which
we continue to denote by || ||, (or || |loo, || [|p)- For these norms, we define By, () to be the

ball in g, of radius r centered at 0.
For every v € ¥, we let G, = 1(G(Qy)); in particular, G = ¢(G(R)).

In the sequel, the notation A < B means: there exists a constant ¢ > 0 so that A < ¢B;
the implicit constant ¢ is permitted to depend on N, but (unless otherwise noted) not on
anything else. We write A < B if A < B < A. If a constant (implicit or explicit) depends on
another parameter or only on N, we will make this clear by writing e.g. <, <y, ¢(G), etc.
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The exponents k, are allowed only to depend on N. We also adopt the x-notation from [12].
We write B = A if B = ¢A**, where £ > 0 and ¢ depend only on N, unless it is explicitly
mentioned otherwise. Similarly one defines B < A*, B > A*. Finally, we also write A < B*
if A* < B < A* (possibly with different exponents).

2.2. Injectivity radius in X. Given n > 0, put =, := exp(By(r)(n)). Throughout, we
assume 7)o is small enough so that exp : By, (r)(m0) — Zy, is a diffeomorphism. For any
n >0, let

Q1= 2, < ([[Stv(zy)).
Xy

We fix Q = Q,; this set will be the one used to measure the volume of (G, ¢), as described in

91.3
For z € X, define 7, : SLy(A) — X by 7,(9) = gz; when z = e we simply write 7 for 7.
For every 0 < n < 19, define

(2.1) X, :={x € X : 1, is injective when restricted to Q,}.
If n > no, set X;; =0. Let ¥, :=Y N X,,.
2.3. Lemma. There exists some constant k3 > 0 so that the following holds.

(1) For any g € SLn(A) we have g € X (g)Eal-
(2) If gSLn(Q) € X, then ht(g) < nd,

Proof. Let g € SLy(A). First note that by strong approximation for SLy, there exists some
Y € SLy(Q) so that

97 = (9o (9)) € SLa(R) x (I, SLn(Zy))-
Further, using the reduction theory of SLy(R), there exists some 41 € SLx(Z) so that geoy1 =
kau, where k € SOn(R), a = diag(a;) is diagonal with positive entries satisfying aiaz;ll <
2/v/3, and u = (u;;) is unipotent upper triangular with |u;;| < 1/2. Note that
_ 1((2/V3)N -1
|aua™|op < 5 <((2//\@)))_1 + 1) <1
for any a and u as above.

Let v = 491, where 77 denotes the diagonal embedding on 47 in SLy(Q) C SLy(A). Then,
since 1, € SLy(Zy) for all p, we have

(2.2 g7 = (kau, (3,)) € SLy(R) x (I, SLn(Z,)).
For w € QV, we have
c(gyw) = [[(kaw)wllo - (I, l1gpwll»)
= || (kaua™ ") aw|| - (Hp Hpr) since g, € SLn(Zp)
(2.3) = [Jaw]| s - (Hp Hw||p) since k € SOn(R), ||aua_1||op < 1.

Moreover, we have ||aw||s < (max; a;)||w|s = |a]-||w]|co, and thus also |a|!w||s < |law]]so-
Therefore, (2.3)) implies that

(2.4) laf ~e(w) ! < c((gy)w) " < Jalc(w) L,
Now for w an appropriate basis vector, we have

law||5 = (mina;) ™" = maxa; ' = [la™ |lop,
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and since deta = 1, we have |la™1||op > HaHé}/)(N_l). For such w, it thus follows from ({2.3])
that c((gy)w)~t > |a|/N=1. Together with (2.4)), this shows
(2.5) )"/ N1 <« ht(g) = max{c(Ad(gy)w) "' : 0 £ w € sly(Q)} < |al.
Now if instead w € sl (Q), we have
[Ad(a)w]le < (Hﬁxaia}l)!\wlloo < lal?[[wloc-
In the same way as above, since k € SOy (R) and |laua™!||op < 1, there is some ¢ < 1 such
that for any n > 0,

Ad(k(aua™")a) ™ Bay ) (1) € Ad(a) ™ Baty() (en) C Baty ) (clal*n).
Applying the exponential map yields
(k(aua™Y)a)'Z,(k(aua™)a) C Ecjal2n-
Therefore, we have
v 1g7 197 N SLy(Q) C ((kau) 'E,kau N SLy(Z)) x (Hp SLn(Zy))
C (Zejapy N SLN(Z)) x (T, SLN(Zp)).

In particular, if 7 < [a|~2, then v~ 'g7'Q,g7 N SLy(Q) = {1}. That is: g € Xy -2 for
perhaps another constant ¢/ > 0. This implies the claim in (1) in view of (2.F).

To see (2) in the lemma, let 7 > 0 and suppose gSLy(Q) € X,,. Let v € SLx(Q) be so that
g7 is as in . For any w € sly(R) in the appropriate root space, we have
~1
j

26) > N a) (X0l = N72al - )

Because k € SOy (R), |laua™||op < 1, we may scale w so that
w e Ad(kaua_l)_lBs[N(R) (n)
while keeping ||w||s > 1. With this choice for w, we have
Ad(a)_lw € Ad(kau)_lBs[N(R) (n),

(@)l = (minaia;") e = (maxaia; e

that is, exp(Ad(a)~'w) € (kau)~'E,kau. In consequence,
(2.7) |Ad(a)  wle < 1.

Indeed, otherwise, we would be able to pick Ad(a)™'w to be an elementary matrix, for which
we would have

exp(Ad(a)'w) € ((kau)™'Z,kau x I, SLn(Zp)) N SLy(Q)
="' gy NSLN(Q).

This contradicts the fact g71Q,g N SLy(Q) = {1}. In virtue of our choice for w, (2.6), and

(2.7) , we have
laln < Ja] - [w]|oo < [[Ad(a) w]lo < 1.

Finally, in view of (2.5)), this immediately implies
ht(g) < la] <7~

and concludes the proof of the lemma. O

1
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2.4. Remark. In the definition (|L.1]) of the height, instead of using the action of SLy(A) on
AN, one~could have acted on sly(A) via the adjoint action. More precisely, one could have
defined ht : SLy(A) — RT by

ht(g) := max{c(Ad(g)w) " : 0 # w € sly(Q)},
where the function c is given by the same expression c(w) := [ [ ¢y, [|wy |- The proof of lemma

can be used to show that |a| < ht(g) < |a|? (with a as in (2.2)), and in consequence that
ht(g) < ht(g) < ht(g)*"~1.

The two heights are thus polynomially related, and for the purpose of Theorem they can
be used interchangeably.

2.5. Elements from Bruhat-Tits theory. We recall a few facts from Bruhat-Tits theory,
see [28] and references there for the proofs. Let G be a connected semisimple group defined
over Q. Let p be a finite place, then

(1) For any point o in the Bruhat-Tits building of G(Q), there exists a smooth affine

group scheme 67(,0) over Z,, unique up to isomorphism, such that: its generic fiber

is G(Qp), and the compact open subgroup Qi,(f) (Zp) is the stabilizer of o in G(Q,),
see [28, 3.4.1].

(2) If G splits over Q, and o is a special point, then the group scheme Qﬁg)) is a Chevalley
group scheme with generic fiber G, see [28] 3.4.2].

(3) red, : 051(,0) (Zp) — %(0) (Fp), the reduction mod p map, is surjective, see [28, 3.4.4].

(4) ij(o) is connected and semisimple if and only if o is a hyperspecial point. Stabilizers
of hyperspecial points in G(Q,) will be called hyperspecial subgroups, see [28, 3.8.1]
and [24], 2.5].

If G is quasi-split over Q,, and splits over @, then hyperspecial vertices exists, and they
are compact open subgrou/p\s of maximal volume. Moreover a theorem of Steinberg implies
that G is quasi-split over Q, for all p, see [28] 1.10.4].

It is known that for almost all p the group G is quasi-split over Qy, see [23, Theorem 6.7].
Moreover, for almost all p the groups K, are hyperspecial, see [28] 3.9.1].

3. SMALL LEVI DECOMPOSITION IN LIE ALGEBRAS

Recall from that || || denotes the (archimedean) max norm both on Q" and on sl (Q)
with respect to the standard basis. Note that if u,v € sl (Q), we have ||[u, v]|| < ||ull/||v].

If g is a subalgebra of s[x(Q), and B = {uq,...,up} is a Z-basis of gNsly(Z), we can also
endow g with the max norm || ||z in the basis B. For any u € g we have

(max [fus )~ H|ul) < [lulls < (max Jus|) ul.
In this section we prove the following.

3.1. Proposition. There exists some kq > 0 with the following property. Let g C sly(Q) be
a Lie subalgebra and let v = R(g) be its radical. Further, let | C g be a reductive subalgebra
with [Nt = {0} (it may be that | = {0} ). Assume that ht(g) < T and ht(l) < T. There exists
a Levi decomposition g = h @ v with [ C h, so that

ht(h) < TEA  agnd  ht(r) < TE4,

where the implied constants depend only on N.
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Roughly speaking, the proof of the proposition is based of the following phenomenon: a
consistent system of linear equations with integral coefficients which are bounded by T has a
solution of norm < T™.

Let us also note that if R(G) = R,(G) and g = Lie(G), the condition [Nt = {0} holds
true for any reductive subalgebra.

3.2. Systems of integral linear equations. For the convenience of the reader, in this
section we record some lemmas which provide estimates on the size of solutions of systems of
linear equations with integral coefficients.

We note that the following lemmas aim for good polynomial bounds. If one is content with
a rough polynomial bound, one could easily prove

21 < VN = D)1 (maxag; ) ¥

in the first lemma and the bound |[v;|| < N max; ||u;|| in the third lemma — these rough
bounds suffice for our applications as well.

Lemma (Siegel’s lemma). Let A = (a;j) be a M x N-matriz (N > M) of full rank, with
integer coefficients a;;, and

{Z;-Vzlaz‘jszo iZl,...,M

the associated linear system. There exists a basis {(z},...,2%) |l =1,...,N — M} of the
space of solutions of the system satisfying xé € Z and |l‘é| < +/|det AAT| forl=1,...N— M.

Proof. See [2, Thm. 2]. O

Lemma (Siegel’s lemma for inhomogeneous equations). Let

{Zé‘vzlaijxj:bi i=1,...,M

be a consistent system of M linear equations in N > M wvariables, with integer coefficients
aij. Then the system has a solution (4,..., %) with y;,d € Z and

max{|yil, |d|} < (maxaig|)”.

Proof. The lemma is deduced from [19, Thm. 2 and 3]. First, by assumption, the system has
a solution (£,..., 4%) in QN. Set P = {p € Xy : p|z for some 1 <i < N} U {oo}. Then [19,
Thm. 2 and 3] apply to our system and the set P of places, and yield a solution of the system
with bounded height.

The bound on the height is independent of P, and in our setting, it readily translates to a

polynomial bound on max;{|y;l, |z} O

Lemma (extracting small Z-bases). Let V' be a vector space over Q endowed with a norm ||-||
and let Vz be a free Z-submodule of V' which spans V' over Q. Given a basis {ui,...,un} of V
over Q lying in Vyz, there exists a subset {v1,...,on} of Vg with the property that {v1,...,v;}
is a Z-basis of (Qui + -+ + Qu;) N Vz and |loil| < >7%_, |lujl| fori=1,...,N.

Proof. Let {v1,...,un} be a Z-basis of Vz and A = (a;;) be the integer matrix such that
(u1,...,un) = (vi,...,un)A. Up to a change of the basis {vi,...,vx}, we may assume that
A is in Hermite normal form, i.e., A is upper triangular, all its entries are non-negative, and
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in a given column, the entry on the diagonal is strictly bigger than the other ones. We then
have

Uy = a11v1

U = a12V1 + a22vV2

Um = A1mV1 + -+ + AGNNUN.-

If we (Qui + -+ Qu;) N Vz, we may write w = Zjvzl Ajv; with A; € Z. Now

i N
w— Ny = Y Aj € (Qui 4+ +Qu;) N (Quit1 + -+ + Quy) = {0},
j=1 j=it1

and it follows that w = Z§:1 Ajvj, e {vi,..., v} is a Z-basis of (Qui + -+ + Qu;) N V7.

Lastly, regrouping terms and taking norms in the system above yields

lor|| = Ll <y |
loa | = Le2=arzoil <y | + oy |
]| = Tem=ernen = e NNl gy | 4 ]| 4 . on .
The lemma follows by combining all the inequalities. U

3.3. Proof of Proposition We need to find a Levi decomposition g = h @ ¢, where t is
the radical of g, and Z-bases {w1,...,w,} of hNsly(Z), and {v1,..., vy} of tNsly(Z) which
satisfy that

lvil| < T and ||w;|| < T for all 4, j.

If [ # 0, let {@,...,%} be a Z-basis for [ N sly(Z) with ||u;|| < T*. Extend this to a
Q-basis B = {i,...,4n} C gNsly(Z) for g with ||@;]| < T* for all i. By the extracting
small Z-bases lemma in there exists a Z-basis B = {a; ...,y } for g N sly(Z) so that
||a;|| < T for all i and {ay,...,4;} is a Z-basis for (Qu; + - - - + Qu;) Nsly(Z). In particular,
{t1,...,%} is a Z-basis for [Nsly(Z) if [ # 0.

Note that the structure constants {afj} of g in the basis {u;} are bounded:

k A N PN
(3.1) max |agj| = [[[as, 45l < (max|]]) - [I[dhs, @] < T*.

As B is a Z-basis for g N sly(Z), the {afj} are integers.

Step 1. Bounding ht(t).

Let k denote the killing form of g. Recall that the radical v = R(g) is the orthogonal
complement of the derived algebra [g, g] for k. Thus t is given in the basis B by the solutions
(yi) of the system

M
k(Zyiﬁz‘,[ﬂj,ﬁk]> =0, jk=1,...,M.
=1

The coefficients of this system are < T™*. Thus, after removing redundant equations from the
system, we may apply Siegel’s lemma combined with extracting small Z-bases lemma from
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and obtain the following. There exists a Z-basis {v1,...,vn} of v N sly(Z), so that
lvill 3 < T*. In consequence, we get that

(3.2) loall << (mac g ) - floill g < T

Step 2. A basis for g adapted to [, v, and [v,t].

Let {v1,...,vm} be a Z-basis of vt N sly(Z) as constructed above. We first gather a basis
of [v,v] among {[v;,v;] | 4,5 = 1,...,m}, then extend this to a Q-basis, C, of v by adding an
appropriate subset of {v1,...,v,,} to it. Finally, we extend C to a Q-basis, B, of g by adding
an appropriate subset of {4y, ..., 4y} to C. Note that if [ # 0, we may obtain {4y, ...,4} C B
because [Nt = {0}.

Now applying the extracting small Z-bases lemma from yields aZ-basis B = {uy,...,up},
of gNsln(Z) so that
1) || < T
2) {u1,...,up} is a Z-basis for [r,v] Nsly(Z).

3) {u1,...,un} is a Z-basis for t Nsly(Z).

4) {u1,...,Um4} is a Z-basis for ([ ) Nsly(Z).

In particular, {u;/41,...,un} projects to a basis of t/[r,t]. Let us write D := {u,11 +
[e,¢],. .., um + [t,t]}.

Also note that for 1 <¢ <l and 1 <j < m+1, there are ¢;; € Z with |¢;;| < T™* so that
for each 1 < ¢ < k we have

m-+l

(3.3) U; = Z CijUsj-
j=1

Step 3. Finding a Levi subalgebra § with small height.

We argue by induction on 44(t), the derived length of the radical v. When /4(t) = 0, g is
semisimple, and it suffices to set h = g.

Therefore, let us assume that ¢4(t) > 1. Define

E ={f € End(g,t/[r,t]) : f satisfies (a), (b), and (c)},

where End(g, t/[t,t]) denotes the set of Q-linear maps from g to t/[t,t], and

(a) I Ckerf,
(b) f restricts to the canonical projection t — t/[t, t],
(¢) f([u,v]) =[u+ [t,¢], f(v)] + [f(u),v + [¢,t]] for all u,v € g.
If § is a Levi subalgebra of g which contains [, then the canonical projection g =t PH h —

t/[t,t] (whose kernel is precisely [v,t] @ b) belongs to E. Now, since [ is reductive, there exists
a Levi subalgebra b so that [ C b, see [21]. Therefore, E # ().

Claim. If f € E, then ker f is a Lie subalgebra of g whose radical is [v,t].

Proof of the claim. First note that in view of (c) above, ker f is a subalgebra. Also, it is clear
from (b) that [v,t] C R(ker f).

To see the converse, note that v+ ker f = g, hence v+ R(ker f) is an ideal of g. Moreover,
v+ R(ker f) is solvable. Therefore, R(ker f) C vtNker f = [t, t], where the last equality follows
from (b). O

In view of the claim, if b is a Levi subalgebra of ker f with [ C b, then
(3.4) g=t+kerf=v+(r,tr]®h) =rdh.
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That is: b is a Levi subalgebra of g and [ C b.

The strategy now is to find some f € E with ht(ker(f)) < T*. Then the above observation
and inductive hypothesis will yield the desired Levi subalgebra.

We now turn to the details. First note that in view of (a), (b) and (c), we have that E is
the set of solutions f € End(g,t/[t,t]) of the inhomogeneous system

flu;)) =0 i=1,...,m
Jui) = u; + [v, 1] i=m/'+1,....,m
f(i;) =0 i=1,...,1

S(lwi,ws]) = [us + [v, o], flu)] + [f(wi),w + [vx]) 45 =1,..., M.

In view of and we have the following. When f is written in the basis of End(g, t/[t, t])
associated to B and D, the above system becomes a linear system whose coefficients are inte-
gers bounded in absolute value by < T™.

Since E is not empty, after perhaps removing redundant equations, we may apply Siegel’s
lemma for inhomogeneous equations in and get the following. There is a solution f whose
matrix in the bases B and D has rational entries, with numerator and common denominator
c < T*. Put f' = cf, so that the matrix of f’ in the bases B and D has integer coefficients
of size <« T™.

At last, another application of Siegel’s lemma and extracting small Z-bases lemma in
to f yields that ker f Nsly(Z) has a Z-basis {w1,...,w, } satisfying

|lwil| < T* 1<i<n

Recall from the claim that [ C ker f, R(ker(f)) = [t,t], and £4([t,t]) < £q(t). Hence by the
inductive hypothesis, ker f has a Levi subalgebra, b, with ht(h) < T™.
In view of (3.4)), this finishes the proof of Step 8 and the proposition. O

4. CONSEQUENCES OF EFFECTIVE LEVI DECOMPOSITION

Recall from that we fixed the following.

(1) A connected, simply connected, algebraic Q-group G whose solvable radical is unipo-
tent, i.e., R(G) = R,(G) =: R.
(2) An algebraic homomorphism ¢ : G — SLy defined over Q with a finite central kernel.
Also recall that py (or simply p) denotes the G = ((G(A))-invariant probability measure
onY = 1(G(A)/G(F)). Let mg (or simply m) be a Haar measure on G which projects to u
under the orbit map.
In this section, we will use the results from §3[to find a good Levi decomposition for ¢(G).
Then we will relate the notion of height of Y (see to the heights of orbits similarly
defined using the radical and our fixed Levi subgroup.

4.1. Finding a good Levi subgroup. Let g’ C sly(Q) (resp. t/) denote the Lie algebra of
t(G) (resp. of t(R)). Set T := ht(g’).

Let b’ be a Levi subalgebra of g’ given by proposition [3.1]applied to g/, so that ht(h’) < T*.

Let H' be the subgroup of ((G) with Lie(H') = §’. Then H' is a Levi subgroup of +(G),
and we have ((G) = H . (R).

We now discuss similar decompositions over Q and also A. First note that, since R =
R, (G), H' is semisimple (not just reductive), and we have H'(A) N «(R)(A) = {1}.

Set H = ~'(H'). Since ¢ has finite central kernel, H is a semisimple Q-subgroup of G
isogenous to H'; thus H is a Levi Q-subgroup of G. Moreover, G(Q) = H(Q)R(Q). Indeed,



12 A. MOHAMMADI, A. SALEHI GOLSEFIDY, AND F. THILMANY

in the exact sequence
1 - R(Q) —» G(Q) - H(Q) — HY(Q,R)

associated to the quotient G/R = H, the term H!(Q,R) vanishes because R. is unipotent.
Hence G(Q) — H(Q) is onto.

The same argument applied to the group ¢(G) shows that «(G)(Q) = +(H)(Q)¢(R)(Q).

The above also implies that

G(A) =H(A)R(A).

Indeed, since G(Q) = H(Q)R(Q), the embedding H — G is a section defined over Q of
the quotient map G — H. Hence G(A) — H(A) is surjective, see [29, §1.2], and we get
G(A) = H(A)R(A) as was claimed.

Applying ¢, this yields t(G(A)) = «(H(A))(R(A)).

4.2. Product structure of Y, uy, and mg. Let prg : G — H be the map which is induced
from the natural projection G — G/R. More explicitly, given g € G, we have the unique
decomposition
g =gugr where gy € H and gr € R;

then pryz(g) = gm-

Let pry : G — H := ((H(A)) be the induced map, given by pry(g) = gg, where g =
grgr € ((H(A))(R(A)).

Put Yg := «(H(A)/H(Q)). The map pry induces a map Y — Yg given by ¢(¢9)SLy(Q) —
1(gr)SLn(Q) for g € G(A). To see this, suppose t(g7 'g2) € SLy(Q) for some g1, g2 € G(A).
Then ¢(g; 'g2) € «(G)(Q) = «(H)(Q)u(R)(Q), hence

((g0)m (g2)m) = (g7 '92)m) € «(H)(Q) C SLn(Q).

We continue to denote the map so induced from Y to Yy by pry.
Put R :=((R(A)) and Yg := «(R(A)/R(Q)); we have a fibration

YR‘—>Y

ler

Yu

The fiber over ¢(h)SLy(Q) € Yy is pry; (¢(R)) = t(h)(R(A))SLy(Q), the translate of Yi by
t(h).

Let g (resp. ) be a R-invariant (resp. H-invariant) probability measure on Yg (resp. Yzr).
Let i1 be the measure on Y defined by

/Y fdp= /y ) ( i f(hTSLm@))duR(r)) dpurr (h).

Since H is semisimple, the modulus of the action of H on up is trivial. Thus i is a
G-invariant probability measure on Yg; that is: i = py.

Let my and mp be Haar measures on ((H(A)) and «(R(A)) which project to pgy and ug,
respectively. The measure m on G given by the product of my and mpg is a Haar measure.
Moreover, m projects to the invariant probability measure i = py on Y via the orbit map.
Therefore, mg = m is the product of my and mg.

4.3. Lemma. There exists some kg5 so that

vol(Yr ¥ <« ht(R) < vol(Yg).
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Proof. Recall that ¢ is an isomorphism on R. For every prime p, put
Cp = 17 (R/(Q)) NSLn(Z,));

C), is a compact open subgroup of R(Q),). By the strong approximation theorem for unipotent
groups, we have

R(4) = (R(R) x [[, C,)R(Q).
In other words, for every g € R(A) there exists some vy € R(Q) so that
970 = (Joo, (9p)) € R(R) x T, Cp-

Recall now that log(¢(R(R)) N SLy(Z)) C (v N 5 sln(Z)) for some integer D depending
only on N. Let {v1,...,v,} be a Z-basis for v N 4 sly(Z). For every § > 0, put

Fy := {hoo € UR(R)) : hoo = exp(D_ civy), |es| < 83} x [ e(Cp)-

Note that,
FsNSLy(Q) C SLn(Z);

therefore, in view of the choice of D, for small enough § < 1 we have Fs N SLy(Q) = {e}.
Also, note that Fs = Fé_l; and if § < 1 is small enough, hh' € F,s for any h,h’ € Fy.
Altogether, we get that Fs injects into Yg for all small enough § < 1.
Recall that mp is a Haar measure on ((R(A)) normalized so that pr(Yr) = 1; also recall
that = exp(Bsiy (k) (m0)) % [], SLN(Zp). Therefore,

mr(t(R(A) NQ) < |Jur A=+ Avg| 7L
Since |lvg A -+ A vy < ht(R), we get from the above that
ht(R) < vol(Yr) = mp(t(R(A)) N Q)L
To see the other inequality, let g € R(A). Let 79 € R(Q) be so that
970 = (Joo; (9p)) € R(R) X T, Cp-
There exists some 41 € 1~ (exp(t' N N!sly(Z))) so that
|t(gooh1)| < ht(R)"

for some k independent of g. Note that ¢(51) € «(R(R)) N SLx(Z), hence 41 € R(Q).
Let 1 be the diagonal embedding of 47 in R(A). Then since (1) € SLy(Z), we get that

9707 = (Joo; (Gp))71 = (G915 (p)) € R(R) x [], Cp.

Since we can cover {g € R(R) : |:(g)] < ht(R)"} with < ht(R)* translates of ((R(R)) N
exp( By, (r)(1M0)), we get that

me(t((R(A))NQ) > ht(R) ™.
Therefore, vol(Yr)* < ht(R); the proof is complete. O

4.4. Lemma. There exist kg so that the following holds. For any g € G we have
ht(G) Bl ht (¢ fF8 < ht(pry(g)) < ht(G)Eht(g ),



14 A. MOHAMMADI, A. SALEHI GOLSEFIDY, AND F. THILMANY

Proof. Recall our notation G’ = +(G) and the Levi subgroup H' of G’ from §4.1l Put
R = «(R) = Ry(G’). If R' = {1}, then R = {1} and there is nothing to prove. Therefore,
let us assume that R’ is a nontrivial unipotent Q-subgroup of SLy.

Let P C SLy be the parabolic subgroup associated to R’ as in [4]. That is: Uy = R’ and
U; is defined inductively by R, (Nsr, (U;—1)). Then U; C Ngr,,, (U;—1) and U;_; C U;. This
process terminates after d < N? steps and gives rise to a parabolic subgroup, P, with the
following properties.

(1) ht(P) < ht(R)*.
(2) R C Ry(P) = W.
(3) NSLN (R/) cP.
In view of (1) and Proposition we have ht(W) < ht(P)* < ht(R)*. Moreover, by (3) we
have G’ C P.
Let Fp denote the flag defined by W as follows. Let Vy = QY, and for any m > 0, let

Vi = Q-span{w; ... wpuv :v € QN w; € Lie(W)}.

Then {V,,} forms a descending chain of subspaces of QVV; let M < N be so that Vy; # 0 but
Vir+1 = 0. Further, note that ht(V,,) < ht(R)* for each 0 <m < M.

There exists some 6 = (%) € SLny(Q) with |a;], |bij| < ht(R)* so that §Fp = Fy where
Fo is a standard flag, i.e., Fq is a flag corresponding to a block upper triangular parabolic
subgroup Py. One could construct one such ¢ as follows: for each ¢ > 0 let V! be a complement
of Vayr41—i in Va—; (in particular, V) = Var), chosen so that ht(V]) < ht(R)* for all i.

Let us put Qo = [Py, Po]Ry(Po). The group R, (Py) is unipotent upper triangular and
since SW4o~! C Ry (Py), we have dR/6~! C Ry (Py). Further, §H'§~! C Qg since H' is perfect
and normalizes R’.

Let g € G C G'(A); write g = gggr where gy € ((H(A)) and gr € t(R(A)) — recall that
pry(g) = gr. We will use the reduction theory of SLy to compute an Iwasawa decomposition
for representatives of gz := dgd~! and § := §gd~! in a Siegel fundamental domain.

Decompose gp as a product of a block-diagonal matrix in Qp and an element in R, (Py).
Then using the reduction theory of SLy for each block matrix and the fact that R, (Pp) is
normal subgroup of Qq, we have the following. There exists some 79 € Qo(Q) so that

(4.1) g0 = (kau, (gr,)) € SLy(R) x ([T, SLn(Zy))

where k£ € SOn(R), a = diag(a;) is diagonal with az-aijrl1 <2/v/3, and u = (u;;) is unipotent
upper triangular with |u;;| < 1/2 (see also the proof of Lemma [2.3).

Let us write gg = 0gré ' € Ry(Pg)(A). Let v1 € SLy(Q) be unipotent upper triangular,
such that

(u, ())vg Grrom = (', (uy,))
with v’ = (uj;) and |uj;| < 1/2, and uj, € SLy(Zp). This, in view of (4.1)), gives
97 = gudry = da10( "dryomn) = (ka, (gir,)) (u, (€))7 ' Gryom

(4.2) = (kau', (95 pup)) € SLn(R) x ([T, SLn(Zy))
where v = y71.

As was discussed in the proof of Lemma the decompositions in (4.1) and (4.2)) imply
that

la|* < ht(gy) < |al* and |al* < ht(g) < |al*.

Recall now that ¢ = §71¢d and gy = 6§ 'gyé where § = (%) € SLy(Q) with |aj], |bij| <
ht(R)* < ht(G)*. The claim thus follows. O
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4.5. Proposition. There exist k7 and kg with the following property.
(1) (vol(Yzr) vol(Yr))F2 < ht(Y) < (vol(Yir) vol(Yg) ).
(2) (bt(Yi) ht(Yr) 2 < ht(Y) < (ht(YVy) ht (V)P

Proof. Recall definitions of vol(-) and ht(-) of an algebraic data from (|1.2)) and (1.5)), respec-
tively.

We first show that part (2) follows from part (1). Indeed by Lemma we have ht(R) <
vol(YRr); hence, ht(Ygr) < vol(Yg). Moreover, by [11, App. B] we have ht(H)* < vol(Yz);
hence, vol(Yr)* < ht(Yy) < vol(Yy)*.

We now turn to the proof of part (1) in the proposition.

The upper bound. Because multiplication is Lipschitz (or alternatively, by the Baker-
Campbell-Hausdorff formula), perhaps after changing 79, we have Q,,-Q,, C Z,, % Huezf SLn(0y) =
¢y, for some ¢ depending only on N, hence

(W(E(A)) N 2,) - ((R(A)) N2,) € o(G(A)) N Qe
In view of our discussion in the measure of the left hand side is
ma(((HA)NQ,) - RA)NQ)) = mu(L(HA) N Q) - me(L(RA)) N Q).
On the other hand, by [11, §2.3], we have
ma (L(G(A)) N Q) <y ma (L(G(A)) NQy,).
Altogether, it follows that
vol(Y) < m (e(G(A)) N Qo) ™
< mpg ((HA) N Q)" - me(L(R(A)) N Q) ~
= VOI(YH) VOI(YR).
To conclude the upper bound estimate, it thus suffices to show that
ht(G) < (vol(Yg) vol(Yg))™.

To see this first note that since g = h @ v, we have ht(G) < (ht(H)ht(R))*. Now by
Lemma [1.3] we have ht(R) < vol(Yg). Moreover, by [11, App. B] we have ht(H)* < vol(Yy).
The claim follows.

1

The lower bound. For the lower bound estimate, we will use notation from the proof of
Lemma in particular, G’ = «(G), H' is a Levi subgroup of G’ and R’ = R,,(G’). Recall

ag

from the proof of Lemma that there exists some § = (ﬁ) € SLy(Q) with |asj], [bi;] <
ht(R)* and a block upper triangular parabolic subgroup Py C SLy so that

0G0 c Py and OR/6! C Ry (Po).

Recall also that h’ = Lie(H’), and that Qo = [P, PoJRw(Po). We define M to be the block
diagonal Levi subgroup of Q.

Apply Proposition[3.1] with Ad(8)h’ C Lie(Qo). Therefore, there exists some Levi subgroup
M’ C Qg so that

SH'6"' ¢ M’ and ht(M') < ht(G)*.

Let B = {v1,...,v4} be a Z-basis for Lie(Ry,(Po)) N sly(Z) with ||v;|]] < 1. Similarly,
let C = {wy,...,wn} (resp. C' = {w,...,w),}) be Z-bases for Lie(M) N sly(Z), (resp.
Lie(M') Nsly(Z)) with |lw;|| < 1 and |lw}| < ht(G)*.
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Recall that any two Levi subgroups of Qg are conjugate to each other by an element in
Ru(Ppy). Writing these equations (in the Lie algebra) in the bases C and C’ in terms of
B we get the following. There exists some u = (u;;) € Ry (Po)(Q) with u;; = (%) and

|cijl, |dij| < ht(G)* so that uM'u~! = M.

Altogether, there exist some § = (é;;/bi;) € SLy(Q) with |dg], |bi;] < ht(G)* so that
(4.3) SH'S"'c M and OR'6 C Ry (Py).
Put G = 6.(G(A))0~!, and define H, R similarly. Having in mind our notations G
L(G(Qy)), etc., we write similarly G, = 6.(G(Q,))d !, etc.

Let h € SLy(Zp) N Qp. We can write h = hoh; where hy € SLy(Zp,) "M and h; €
SLn(Zp) N Ry (Py). In consequence, we have
(4.4) ép N SLn(Zy) = (ﬁp n SLN(ZP))(RP NSLy(Zp))
for all primes p. Conjugating (4.4} by 571, we get

Gp N6, SLy(Z,y)o, = (Hy N 6y, "SLn (Z,)dp) (R N 0, SLi (Z,)3y).

In particular, the image, I, of the product map from (H, N SLy(Z,)) x (R, N SLy(Z))) into
G contains G, N SLy(Zy) N 5;ISLN(ZP)5P for all primes p. Therefore,
(4.5) mGp(Ip) > mg, (Gp N SLn(Zy))/ Jp

where J, = [SLn(Z,) : SLn(Zp) N 5;18LN(ZP)5P] for all primes p.

Since 0 = (a4;/bij) € SLx(Q) with |ai;l, |bi;| < ht(G)*, we have
(4.6) [L, Jp < ht(G)*

We also need an estimate for the real place. Let 0 < 1 < 19 be a constant which will
be determined in the following. Suppose g € ¢«(G(A)) N2, and write g = (goo, (gp))- By
definition, g, = exp w for some w € g’ ® R with ||w| < n. By Proposition and our choice
of i, we can write w = wy +wy with wy € h R, wy € Y @R and ||wy ||, |Jwe || < ht(G)*n*.
We pick 7 in such a way n < ht(G)™*, so that the above implies

[[wy [, lwe || < eno

for some € which will be specified momentarily.

Using the Baker-Campbell-Hausdorff formula and the fact that t/ is an ideal of g’, we see
that the Levi component (geo),(H(R)) Of goo is just exp(wy). Therefore, if ¢ < 1 is chosen
small enough, we get that (geo),(E(R)) € Zny and (goo ), (R(R)) € Znp- In consequence, we we
have

(4.7) M@ (Goo NEp,) < ht(G)* mp, (Hoo NEpy)mp. (Roo NEyy).
Altogether, we have
vol(Y) vol(Yg) = my (L(H(A) N Q) tmy (L(R(A) nQ)~t

(
BD <« ht(G)*me.. (Goo NEyy) M1, (me, (1))
B3~ < nt(G)* vol(Y) TT, Jp
B9 <« nt(G)* vol(Y)
LI~ « ht(v)*.

This implies the lower bound estimate and finishes the proof. O
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5. PROOF OF THEOREM [[.5

We now combine the results from previous sections to complete the proof of Theorem [1.5
— the idea is to use the effective Levi decomposition of §4] to reduce the problem to the case
of semisimple and unipotent groups.

5.1. Semisimple case. In the next paragraphs, we prove (a slightly finer version of) The-
orem under the assumption that G is semisimple. Therefore, until the end of G is
assumed to be a connected, simply connected, semisimple group. Under these assumptions
the following was proved in [11].

5.2. Proposition. There ezists a prime p and a parahoric subgroup K, of G(Qp) so that the
following hold.
(1) p < (log(vol(Y)))?.
(2) G is quasi-split over Q, and split over @,, the mazimal unramified extension of Qp;
further, K, is a hyperspecial subgroup of G(Qp).
(3) Let &), be the smooth Z,-group scheme associated to K, by Bruhat-Tits theory (see.
The map ¢ extends to a closed immersion from &, to SLy.
(4) There exists a homomorphism 6, : SLy — &, so that the projection of 6,(SL2(Qp))
into each Qp-almost simple factor of G(Qp) is nontrivial.

Proof. Parts (1) and (2) are proved in [I1], §5.11]; part (3) is proved in [I1], §6.1]; part (4) is
proved in [I1} §6.7]. O

Let p be as in Proposition and let 6, be as in Proposition (4) We define the one-
parameter unipotent subgroup

w: Q= 0,(5L(@) by u() =0, ((3 1))
Note that in view of Proposition [5.2f2) and (3) we have
(5.1) ()] < (14 [t]p)"

5.3. Property 7. Recall that G is quasi-split over QQ,; in particular, all of the almost simple
factors of G are QQp-isotropic. Our proof relies on the uniform spectral gap; this deep input
has been obtained in a series of papers [16] 22l 26, [15], 6, [7, 13]. In particular,

e using [22, Thm. 1.1-1.2] when G(F,,) has property (1), and
e applying property (7) in the strong form, see [7], [I3], and also [I1}, §4], in the general
case,

we have the following.

5.4. Theorem (Property (7)). Let o be the probability G(A)-invariant measure on G(A)/G(Q).
The representation of SLa(Qyp) via 6, on

Li(o) == {f € L*(G(A)/G(Q),0) : [ fdo =0}

is 1/M -tempered. That is: the matriz coefficients of the M -fold tensor product are in L**¢(SLa(Q,))
for all € > 0.

It follows from the above theorem that for any fi, fo € C>°(G(A)/G(Q)) we have

(5.2 Wi foba = [ fido [ Fado] < (1 1) PIS(R)S(f),
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where S is a certain Sobolev norm. We refer to [II, App. A] for the definition and the
discussion of the Sobolev norm S.

Let > 0 and put Eg, := exp(By.. (7)) C G(R). For every prime g, let K, := ¢~ (SLy(Z,))
G(Qq). Put Qg :=Eg,, x Hzf K, C G(A). We set Qg = Qg y, see

5.5. Theorem (Semisimple version of Theorem [1.5)). There ezists some kg9 depending only on
N, and for any datum (G,.) with G semisimple, there exists some p € Xy with

p < (log(vol(Y)))?,

so that the following holds. For any g € G(A), there exists some v € G(Q) such that
g7 = hihhg, where hi, hy € Qg and h € G(Qp) with

lu(h)| < ht(e(g)) Edvol (Y yE2.
Moreover, the implicit multiplicative constants depend only on N.

Proof. Recall that m is the Haar measure on G which projects to py. Let A be the Haar
measure on G(A) so that t,A = m. By [11], §5.9] there exists some M > 1 depending only on
dim G so that

(5.3) 1/M < A(G(A)/G(Q)) < M.

In view of the definition of vol(Y'), this implies that vol(Y) < A\(Qg)~!

Let n be a positive constant. For any g € G(A) put [g] = ¢gG(Q); assume ¢([g]) € X,,.
We claim that if h,h' € Qg are so that h[g] = h[g], then h™ 1R/ € Z(Q), where Z := Z(G)
denotes the center of G. To see this, apply ¢ to the equation h[g] = h'[g]. Using the definition
of X,, and the fact (Qg,) C Oy, we get that t(h) = «(h’). Hence, h='h' € Z(A); moreover
h='h' =g 'h='h'g € G(Q). Thus h~'h' € Z(Q) as claimed. This claim in particular implies
that 7y : Qg — G(A)/G(Q) defined by mg(h) := hlg] is at most #Z(Q)-to-one on Qg .

By [1I, App. A], there exists a function f € C>°(G(A)) with the following properties:

e 0<f<1,

e for all h ¢ Qg we have f(h) = 0 and for all h € Qg /2 we have f(h) =1,

o S(f) <™
For every g € G(A) with «([g]) € X, define fi; € CZ(G(A)/G(Q)) as follows. If [¢] €
7). DUt S (9) = X ooty £ i (] & 7 (G, define £([g')) = 0. Then

(1) 0< fig <#Z(Q) < 1,
(2) f([d]) =0 for all [¢'] & 79)(Qa,,) and fig([g']) > 1 for all [¢] € 7y)(Qq,5/2)
3) S(fig) <n™~
Recall the measure o from Theorem By (5.3), we have that [ fi;do < [ fidA.
The set Qg can be covered by < n™* translates among {h€dg /2 : h € G(A)}. Since A is
G(A)-invariant, this implies that A\(Qac) < 77 *A(Qg,y/2)- Thus,

(5.4) /f[g] do < /f[g] dA > )\(QGJ]/Q) > n* VOI(Y)_I7

here, we used properties (1) and (2) of fi;, and the fact vol(Y) =< A(Qg) ™"
Apply (5.2) with f1 = fi and fa = f;. Using property (3) of f1 and fa, we get that

55 O 2o~ [ frdo [ fodo] < (L1t
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We get from (5.5) and (5.4]) (which also holds for f;) that if |¢|, > vol(Y)*n™*, then

(5.6) (u(t)f1, f2)o # 0.

This implies in particular that if [t|, > vol(Y)*n™*, then the following holds. There exist
hi,hy € G(A) so that fi([h1]) # 0, f2([hy ' g]) # 0, and

(5.7) () G(Q) = hy' 9G(Q).

In view of the fact that Qg , = Qéln, it follows from the above and property (2) that h; € Qg 4.

Finally, we choose t so that (5.6 holds while |¢|, < vol(Y)*n™*. In this way, by (5.1)) we
have [¢(u(t))] < (14 |t]p)* < vol(Y)*n~*. In view of (5.7)), by taking h; and hg as above and
h = u(t), the proof of Theorem is complete. O

Before proceeding to the proof of general case, we need the following

5.6. Lemma. There exists some k19 so that the following holds. Let R be a unipotent Q-
group, given with an embedding « : R — SLy. Let S C X be a finite set of places containing
the infinite place; put ps := max{p € SNXs}. Letv € S. For any g € R(A), there exists
some v € R(Q) so that

(g7) = (hs, (hq)qgs) € SLn(Qs) x H SLn(Zg),
qgs
|he| < PEORt(REID, and for every w € S — {v}, we have |h,| < P

Proof. The proof is, mutatis mutandis, part of the proof of Lemma We briefly recall the
argument for the convenience of the reader. For every prime ¢, put

Cq = 1 («(R(Qq)) N SL (Zy))-
By the strong approximation theorem for unipotent groups, we have
R(A) = (R(Qg) x [Tyes Cy)R(Q).
Hence, there exists some 79 € R(Q) so that
970 = (93 (9g)qgs) € R(Qs) X [[,¢5 Cq-

Fixing a Zg-basis for t(Qg) N sly(Zs), we have the following. There exists some 4; €

1" exp(t(Qg) N N!sln(Zg))) so that hg = 1(gs1) satisfies
|hy| < psht(R)* and |hy| < p§ for w e S — {v}.

Note that ¢(91) € «(R(Qs)) N SLy(Zs), hence 41 € R(Q).

Let 1 be the diagonal embedding of 47 in R(A). Then since ¢(§1) € SLy(Zg), we get that

gy = @Sa (gq)qus)’Yl = (QS%, (gq)tﬂS) € R(QS) X Hqgs Cq-

The claim thus follows with v = ~vgv1. O
5.7. Proof of Theorem Let g € G(A) and write ¢ = gggr where gy € H(A) and

gr € R(A); recall that pry(g) = gu.
First, we apply Theorem i.e. the semisimple case, to the pair (H,¢,). In view of

Lemma we have ((gnG(Q)) € X, for n := rglht(:(gxr)) B Thus, there exist some
Y0 € H(Q) and some p < (log vol(YH))2 so that the following holds. There are h € H(Q,)
and hi, he € Qy C Qg such that ggyg = hi1hhs and

|lu(h)| < 7B vol (Vi D,
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This estimate implies that

lu(h)| < ht(e(gm))* vol(Yi)* since 1 = ra|ht (¢(gpr)) =
< ht(G)* ht(e(g))* vol(Ye)* by Lemma [£.4]
< ht(G)*ht(e(g)) ht(Y)* by Prop.
(5.8) < ht(e(g))* ht(Y)* by (L.5).
Also note that by Proposition we have
(5.9) p < (logvol(Y))? < (loght(Y))™.

Apply Lemma with S = {o0,p} and v = p to the element v, *gryo € R(A); we get the
following. There exists some v, € R(Q) for which

(a) ¢l 1lgmo'71) € SL(Zq) for all primes g # p,
(b) |L(76191~27071)oo| < p*, and
(©) 10y tgr0m1)p| < p* ht(R)* < p* ht(G)*.

Set v =71 € G(Q). Let us write
(5.10) (Go0s Gps (90)ags) = t(97) = t(gm0)e(vg ' grYOM)-
The above estimates then imply that

(1) By (a) and h; € Qgq, i = 1,2, we have g, € SLn(Z,) for all primes ¢ # p.
(2) By (b) and h; € Qg, i = 1,2, we have

[Goo] < [e(hahha)oo] - 15 grY071)0| < B
< (loght(Y))” by (5.9)
(3) For the prime p, we have
19| < e(hhh2)y|[e(vg grA0m)p|

< ht(e(g))* ht(Y)*p* ht(G)* by and (c)
< ht(e(g))* ht(Y)* ht(G)* by
< ht(e(g)) ht(Y)* by (L.5).
The proof is complete. O

6. S-ARITHMETIC QUOTIENTS

In this section, we discuss some implications of the statement and the proof of Theorem
in the local setting. The main results are stated in Theorem which deals with the case of
semisimple groups and Theorems and which can be thought of as effective versions of
the strong approximation theorem.

6.1. The setup. Let L C SLy be a Q-group so that R(L) = Ry(L). Let S C X be a finite
set of places containing the infinite place. Define

L:= H L(Q,) and [:=®yesh,
veS
where [, := Lie(L)(Q,).
Let R = R, (L). Fix a Levi subgroup H of L so that ht(H) < ht(L)*, see Proposition
We let H denote the simply connected covering of H. Put L = H x R, where the action of
H on R factors through the action of H via the natural covering map ' : H — H. By the
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construction of I:, 7’ extends to an epimorphism 7 : L — L with finite central kernel, given
by m(g9) = m(9a9r) = 7' (951)9r, where g € H and gr € R.

Let L := n(L(Qg)); then L is a normal subgroup of L and L/L is a finite abelian
group — it is worth mentioning that this finite group can be identified with a subgroup

of [Ts H'(Qu, Z(H)).

6.2. Two notions of complexity. For every ¢ € X; put K, = 7 '(SLg(Z,)). Define the
subgroups A and I' of L(Qg) as follows:

(6.1) A := the projection of L(Q) N (L(Qg) x [Tyzs Kq) to L(Qs),

and I' := le(SLd(ZS)). Note that A is a normal subgroup of I'; moreover, both A and I" are
lattices in L(Qg).
Put Z :=7(L(A)/L(Q)). Similarly define

Z :=n(L(Qs)/A) = L/L N SLy(Zs) = L/x(T).
As was done in we define vol(Z) = mg(LNQs) ™" where Qg = Z,, x [Ties— (oo SLa(Zq)

and myg is a Haar measure on L(Qg) normalized so that mS(Z ) = 1. Here and in what follows,
we abuse the notation and denote m,v simply by v, for any measure v.

~ A

We also put ht(Z) = max{ht(L), vol(Z)}.

6.3. Proposition. There exist k11, k12, and k13 so that for all L as z'n with vol(Z) > 1,
we have the following.

(1) oasl " (20 < ht(Z) < reyafht (22,

(2) If L is semisimple or unipotent, then

Lyol(Z ) < vol(Z) vol(Z)El—Z'
Proof. We first prove part (2) above.
First note that if L is unipotent, then L = L and the same argument as in Lemma plies

that ht(L)* < vol(Z) < ht(L). The claim in this case follows from this and Lemma
We now assume that L is semisimple. In this case we will actually prove

(6.2) leasl vol(Z)ET < vol(Z)  kyglvol(Z)
when vol(Z) is large enough. )

Let A denote the Haar measure on L(A) normalized so that A(Z) = 1. By [I1], §5.9] there
exist some M > 1 depending only on dim L so that

(6.3) 1/M < ML(A)/L(Q)) < M.

Since L is simply connected and L(Qg) is not compact, we have

L(A) = (L(Qs) x [, Kq) L(Q).

Write A = [[y; Ay and set Ag := [[¢ Av. In view of the above and the definition of A, see (6.1)),
we get the following.

(6.4) AL(A)/L(Q)) = As(L(Qs)/A) - TTygs A(Kq)

1The discussion in [11] §5.9] assumes that Lis Q-almost simple; since L is simply connected and semisimple,
we can decompose L = L; --- L, as a direct product of Q-almost simple factors and apply the argument to
each factor separately.
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Recall furthermore that

(6.5) vol(Z) = A(m(L(A) N Q)™ = Ag(L N Q) ™" - T g5 Ag(m(EKy))
From , , and we get that
(6.6) As(L(Qs)/A) = M'As(L N Q) - vol(Z)

where M’ € [1/M, M].
We can now make the following computation.
(6.7) As(L(Qs)/T) = As(L(Qs)/A) - [T : A]7
= M'A\s(LNQs)-vol(Z) - [ : A by
Perhaps by enlarging M to account for the effect of the central kernel of 7, we have
As(L/m(T)) = M"As(L(Qg)/T) for some M” € [1/M, M]. Therefore, writing the definition
of vol(Z) in terms of the measure \g, we have

(6.8) vol(Z) = As(L/x(D)) - As(L N Qs) "
= M"As(L(Qs)/T) - As(LNQs)
= Mvol(Z)- [T : A" by (6.7)

where M € [1/M?, M?].

We now apply the discussion in [I1l §5.12], see also [3] and [1, Cor. 6.1], with A = A and
A = T — note that the only role S plays in the argument in 11l §5.12] is for the use of
the strong approximation theorem. It is proved in the proposition in [I1, §5.12], see also the
intermediate steps (5.10) and (5.13) in loc. cit., that there exists some 0 < k14 < 1 such that

(6.9) [T : A] < vol(Z)F4

provided that vol(Z) > 1.

In consequence, and imply (6.2) with =1 and = M?; this finishes
the proof of (2).

We now use the estimate in (2) to prove (1). First recall our Levi decomposition L = HR;
recall also that L(Q) = H(Q)R(Q) and L(Q,) = H(Q,)R(Q,) for all v € .

Define I'y = ()~ L(SL4(Zs)), and define T'g similarly. Following the above notation, put
Zy = n(H(Qg)/Tg) and Zr = m(R(Qs)/T'r); also put A=TpyT'r CT.

Let v be the Haar measure on L(Qg) normalized so that v(L(Qg)/A) = 1; similarly, let v
and v be Haar measures on ﬁ(QS) and R(Qg) normalized so that uH(I:I(QS)/FH) =1 and
vr(R(Qg)/T'r) = 1, respectively. In view of the product structure of A and I:(QS), we may
argue as in and get that v is given as the product of vy and vg.

The above normalizations of vy and vg and the definitions of Zy and Zg imply that

vol(Zx) = vir (m(H(Qs)) N Q) " and vol(Zg) = va(m(R(Qs)) N 2s) . Let us put
vol, (2) := v(n(L(Qs)) N Qs) .

Using the product structure of v again, we may now argue as in the proof of Proposition
and get that

(6.10) (vol(Zw) vol(Zr))* < ht,(Z) < (vol(Zu) vol(Zr)),
where ht, (Z) = max{ht(L), vol,(Z)}.
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We now compare vol,(Z) and vol(Z). Using the notation in the proof of Proposition
see in particular (4.5)), we have the following.
(6.11) A < J] Jg < [ Jo < (L)%
qgS by

the first inequality follows from the definition of A, I', and .J,,, the second inequality follows
since J; > 1 for all ¢, and the third inequality is (4.6]).

Recall that mg denotes the Haar measure on L(Qg) normalized so that mg(L(Qg)/T") = 1.
We have

vol(Z) = mg(r(L(Qs)) N Qs) " = v(x(L(Qs)) N Qs) ' [T: A]7L,
This, together with , implies that

vol, (Z) ht(L)™ < vol(Z) < vol,(Z),
which in turn gives
(6.12) ht, (Z2)* < ht(Z) < ht,(Z).

Now in view of part (2), the upper and lower bound in (6.10)) are =< (vol(Zp) vol(ZR))*.
Moreover, Proposition [4.5(1) gives

(6.13) (vol(Zp) vol(Zr))™ < ht(Z) < (vol(Zp) vol(Zg))™.
The claim in part (1) follows from (6.10]), (6.12)), and (6.13). O

We now turn to the consequences of Theorem in the S-arithmetic setting when applied
to the datum (L, 7). Recall that we defined

hts(g) = max {([s lgwl)~" : 0 # w € Z¢}

for any g € SL4(Qg). )
For any set S of places and any g € SLy(Qg) (resp. g € L(Qg)), we write § := (g, (€)q¢s) €
SL4(A) (resp. € L(A)).

6.4. Lemma. For any g € SLg(Qg) we have
ht(g) = hts(g).

Proof. This is a consequence of the product formula as we now explicate. For every w € Q¢,
let w be a primitive integral vector on Q - w. First observe that

c(gw) = H [gowlle = H | Go]] by the product formula
b )
= [Tllgewllo TT @1l gg=¢€ q¢&5
S q¥S
= H |gv0][ o w is primitive integral.
S

This shows that ht(g) < htg(g).
To see the reverse inequality, notice that if w € Z%, then |lw|l, < 1 for any ¢ ¢ S. This

implies that
[Tllgewlle =TT lgowllo TT llwll = T T 1gowlle = e(gw)
S S

q¢sS =
and in turn that htg(g) < ht(g). O
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In the following, we use the same notation for the diagonal embedding of elements of SL;(Q)
in SLg(A) and in SLy(Qg); which embedding is relevant will be indicated by the context.

6.5. Theorem. There exists k15 so that the following holds. Let the notation be as in §6.3
There exists some

p < (log Vol(Z))2
with, the following property. For any g € L(Qg), there exists some v € L(Q) so that (v)q €
SL4(Zg) for all ¢ ¢ SU{p} and
[m(97)0] < hts(m(g) P Lt (2
for allv e S. Moreover, if p € S, then

[m(7)pl < hts(m(g) FEhe (2,

Proof. In view of part (1) of Proposition it suffices to prove the above estimates with
ht(Z) replaced by ht(Z).

In view of Lemma and of Theorem applied to (L,7) and § € L(A), there exists
some 7 € L(Q) so that 7(jv), satisfies the estimate stated in the theorem for all v € S, and
7(g7)q € SL4(Zg) for all ¢ ¢ {oco,p}. Therefore, m(7y), € SLa(Zy).

Now if p € S, then 7w(g7v), = 7(7)p, and the desired estimate follows from Theorem O
We now state and prove a reformulation of Theorem using the above notation.

6.6. Theorem. Let the notation be as in §6.3; further, assume that
(1) L is semisimple, and
(2) L = L(Qg) is not compact.

There exist k16 and some C = C(L) so that the following holds. For any g € L(Qg) there
exists some § € A, see (6.1]), so that

[m(96)u| < Chts(m(g)FEvol(Z ymd

forallv e S.
Proof. In view of part (2) of Proposition it suffices to prove the above estimates with
ht(Z) replaced by ht(Z).

As in the proof of Theorem we will deduce this theorem from an adelic statement. Let
w € S be a place so that L(Qy) is not compact. The required adelic statement here is an
analogue of Theorem where G in the notation is replaced by L and the place p is replaced
by w.

Fix a Q,-representation (with finite kernel) 6,, : SL2(Q,) — L(Q,). We define the one-
parameter unipotent subgroup

w: Qu — B (SLa(Qu)) by u(t) = by <<é D) .
Note that
(6.14) lu(t)] < C1(1 + [t]w)*

for some C; depending on 6,, and hence on L. . .
Moreover, it follows from [13, Thm. 1.11] that for all fi, fo € C°(L(A)/L(Q)) we have

(6.15) <u(t)f1,f2)o—/f1 da/ﬁda] < (1+ [thy) " 2MS(£)S(fa),
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where S is a certain Sobolev norm and o is the probability L(A)-invariant measure on
L(A)/L(Q).

One now repeats the proof of Theorem [5.5| replacing (5.1) with (6.14]) and (5.2]) with (6.15)
to get the following. For any g € L(A), there exist hy, hy € Qy ,and h e L(Qy) with

[w(h)] < Cht(r(g)) Evol(Z =

such that gﬁ(@) = h1hhoL(Q); the constant C' depends on L and d.
Let g € L(Qg) and apply the above discussion to g. Then using the above and Lemma
there exists some h € L(Q,,) with

[w(h)| < Chts(n(g)) Evol(Z),

two elements hy, hy € Q2 . and some 7y € L(Q) so that gy = hihhy. If ¢ € S, then (7(§7))q =
7(Y)q € SL4(Zq). The claim thus follows with ¢ =~ (thought of as an element in A). O

6.7. The adjoint action. We now turn to a version of Theorem [6.5] where htg(g) is replaced
by a height function defined using the adjoint representation of L on .

First, we need some more notation. For all v € 3, let || ||, denote the maximum norm
on slg(Q,) with respect to the standard basis. Using this family of norms, we define ht(L)
analogously to what was done in

Fix a Z-basis B = {v1,...,vn} for Lie(L) Nsl3(Z) with [|vi||cc < ht(L)*. Using this basis,
we identify Lie(L) Nsly(Z) with ZV and Lie(L) with Q"; in this way, SL(Lie(L)) is identified
with SLy. We also let || ||, denote the maximum norm with respect to B on Lie(L)(Q,).
To avoid confusion, we will keep the index g for functions defined using these norms, e.g. we
write ¢ and htg (although after the above identifications, they correspond precisely to the
notions introduced in .

Let Ady, : L — SLy denote the adjoint representation. We sometimes write Ady, or simply
Ad for Ady, if there is no confusion. Put cg(w) := [[g ||wy ||, for all w = (w,) € L.

Let [(Zg) := INsly(Zg); note that [(Zg) is invariant under the adjoint action of LNSL4(Zg).
For every g € L, we define

htr(g) := max{cg(Ad(g)w)™' : 0 # w € (Zg)}.

The function hty, is L N SL4(Zg)-invariant, so it defines a function on L/L N SL4(Zs) which
we continue to denote by hty .

As before, we put |g| = max{||g|[,|lg ||} for all g € SLy(Q,), where || || is the operator
norm on SLx(Q,) with respect to some fixed norm on QJ, say the max norm with respect
to the standard basis. ~ .

Let R = Adp(R). Put G = H x R/, where the action of H on R’ factors through the
action of Ady,(H) via Adg, o 7/, where 7/ : H — H is the natural covering map.

The adjoint action on L induces a homomorphism ¢ : G — SLy with finite central kernel,
given by

Wgggr) = AdL(' (95))9R-

In accordance to §1.1, we set ¥ 1= ((G(A)/G(Q)) C SLn(A)/SLy(Q). Define Y as in
by replacing the pair (L, 7) with (G,:) and SLy by SLy; similarly fix an open subset
Qg C SLy(Qg), and define vol(Y') using Qg C SLy(Qg). We put

htz(Y) = max{ht(L), vol(Y)} and htz(¥) = max{ht(L), vol(Y)}.
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Additionally, there is an epimorphism ¢ : L — G given by gngr — 9 AdL(g9r), whose
kernel is contained in Z(R~), hence is unipotent. As was argued in this implies that L(Q)
surjects onto G(Q), and L(Q,) surjects onto G(Q,) for all v € X.

L—" L
|G |a
G —— SLy
As before, for every g € L(Qg) we write § = (g, (¢)4¢s) € L(A) and we write
(6.16) 9= up(9) = (Adr(m(9)), (e)pgs) € L(G(A)).

In what follows, the notation will confound the implicit diagonal embeddings of L(Q) in L(Qg)
and in L(A). Which embedding is relevant will be indicated by the context.

6.8. Lemma. There exists some k17 so that the following holds. For any g € L we have
ht (L) Eht/ (9) < htp((AdL(g), (€)y¢s)) < ht(LFDhty(g)

Proof. For g € L, set § := (AdL(g), (€)p¢s) € SLn(A). For any w € QV, let @ be a primitive
integral vector on Q - w. First, observe that

cg(gw) H | gvw!| B0 H | v @ || B,w by the product formula
b
= H IAd(g)v@lse - TT @5,
S pe€S
= H I|Ad(g) since w is primitive integral
S
> [ [ 1Ad(g)valo - [ ] (max o)™ [Ilo < (max [[villo) - [ |50
S S
> [ lAd(g)u]], - (max [Jvg]| o) " since v; € sl4(Z)
g (2
(6.17) > ht(L) *cg(Ad(g)w) because ||vi]|co < ht(L)*.
From this, it follows that
htp(g) = max{cs(guw) " : 0 # w € QN} see (L)
< ht(L)* max{cs(Ad(g)@) ' : 0 # w € QV} by (6.17)
< ht(L)* max{cg(Ad(¢)w) ™ : 0 # w € Z§}
= ht(L)* hty(g).

Similarly, since for every w € Z% and all ¢ ¢ S we have ||w||g, < 1, we get

CS Ad H ||Ad vav

> ht(L)~ HHAd 9)ow||B.

HHAd Jowliso [T llwllq

q¢s
= ht(L) *cp(jw).
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This implies the lower bound hty(g) < ht(L)* htg(g). O
6.9. Theorem. There exists some kig so that the following holds. Let L be any Q-subgroup
of SLg with R(L) = Ry (L) and let L, (G,t), etc. be as in . There exists some prime
p K (log htB(Y))2 with the following property. For any g € i:(@g), there exists some y € f;(@)
so that t(p(7))q € SLN(Zg) for all g ¢ S U {p} and

|((97))o] < bt (m(g) P htp (Y FE
for allv e S. Moreover, if p &€ S, then

[1(p(1)pl < Dty (m(g) bt (Y
Proof. In view of part (1) of proposition in it suffices to prove the above estimates with
htp(Y) replaced by htp(Y).

Let g € L(Qs) and write ¢ = gygr where gy € H(Qs) and gr € R(Qg).
In virtue of (3.1)), we have that htp(ad (Lie(L))) < ht(L)*. Since Lie(:(G)) = Lie(Ad(L)) =
ad (Lie(L)), this means that htg(G) < ht(L)*. Lemma [4.4] thus yields

(6.18) hts(L) " ht(g)* < hts(gm) < ht(L)* htg(g)*.

As before, we write Yz = «(H(A)/H(Q)). Let p < (log Vol[;(YH))2 be as in Theorem
applied to (H, Ul )s so that (combined with Lemma we have the following. There exists
some o € H(Q) so that if we put h' = (R, hy,, (hy)gesuipy) = du0, then t(p(h'))y € SLy(Zy)
for all ¢ & {00, p}, |t(p(h))so] <p 1 < ht(L)*, and

(e (h'))p| <5 htg(gr)* volg(Ye)*

< ht(L)* ht(§)* volg(Yr)* by (6.18)

< ht(L)*htr(7(g))* volg(Yer)* by Lemma
(6.19) < htr,(7(g)) htp(Y)* by Proposition
Also by Proposition we have
(6.20) p < (logvol(Yy))? < (loghts(Y))".

Apply Lemma with the set of places {oo} and v = oo to the element 7 LGRr0 to obtain
some 71 € R(Q) such that

(a) m(v5 *dryom1) € SLa(Z,) for all primes ¢, and
(b) |7((vg ' GrY071)oe)| < ht(R)* < ht(L)*.

Since (v, 'grY0)g = € for all ¢ € S, item (a) above implies that 7(y1), € SL4(Z,) for all
q¢S.

Put v =971 € E(Q) and write
