Let R be a semisimple ring. Then

$$R = \bigoplus_{i=1}^{k} I_i,$$

where I_i are minimal left R-modules. After relabeling I_i, we can and will assume that

$$R = \bigoplus_{i=1}^{l} \left(\bigoplus_{j=1}^{n_i} I_{i,j} \right),$$

such that $I_{i,j} \cong I_{i,j'}$ for any $1 \leq j \leq j' \leq n_i$ and $I_{i,j} \neq I_{i',j'}$ for any $i \neq i'$.

(By the way, this implies that $R \cong \bigoplus_{i=1}^{l} \left(I_{i,1}^{n_i} \right)$.)

@ Let $\phi \in \text{Hom}_R(I_{i,1}, R)$. Prove that

$$\text{Im}(\phi) \subseteq M_i := \bigoplus_{j=1}^{n_i} I_{i,j}.$$

(b) Prove that if $\phi \in \text{End}_R(R)$, then, for any i,

$$\phi(M_i) \subseteq M_i,$$

where $M_i := \bigoplus_{j=1}^{n_i} I_{i,j}$. (Hint: Use part @.)

© Prove $\text{End}_R(R) \cong \bigoplus_{i=1}^{l} \text{End}_R(M_i)$ as two rings.
6. Prove that $\text{End}_R(M_i) \cong M_{n_i}(D_i)$ where $D_i = \text{End}_R(I_{i,1})$ is a division ring.

7. Prove that $R \cong \bigoplus_{i=1}^{d} M_{n_i}(D_i)^{op}$.

(Hint: $\text{End}_R(R) \cong R^{op}$.)

(For a given ring $(A,+,\cdot)$, its opposite ring $(A^{op},+,\cdot)$ is a ring with the same underlying additive group and its multiplication is defined as follows:

$x \cdot y = y \cdot x$)

Exp 1. A commutative $\Rightarrow A = A^{op}$.

Exp 2. $A = M_n(F) \Rightarrow A \cong A^{op}$

$x \mapsto x^T$ where x^T is the transpose of x.

Exp 3. $\tau: A \to A$ is called an involution if

1. $\tau^2 = \text{id}_A$.
2. $\tau(x+y) = \tau(x) + \tau(y)$.
3. $\tau(xy) = \tau(y) \cdot \tau(x)$.

If A has an involution, then $A \cong A^{op}$.
Exp 4. If D is a division ring, then D^{op} is also a division ring.

Exp 5. $M_n(D)^{op} \sim M_n(D^{op})$ [Similar to Exp 2.]

[As a result of this exercise, you see that any (left) semisimple ring is isomorphic to

$$M_{n_1}(D_1) \oplus M_{n_2}(D_2) \oplus \cdots \oplus M_{n_k}(D_k)$$

where D_i are division rings. One can prove that n_i and D_i are unique (up to isomorphism.) This is called Artin-Wedderburn theorem.]

2 [Expansion of Midterm Problem 3.]

Let R be a commutative ring and

$$GL_n(R) = \{ A \in M_n(R) \mid \exists B \in M_n(R) : AB = BA = I_n \}.$$

Prove that $A \in GL_n(R)$ if and only if $\det(A)$ is a unit in R.

(You can find the following useful:

1. For any commutative ring R, one can define

$$\det : M_n(R) \rightarrow R$$
(2) \det(I_n) = 1 \text{ and } \det(AB) = \det(A) \det(B).

(3) The \((i,j)\) minor \(A_{ij}\) of \(A\) is the determinant of the \((n-1)\times(n-1)\) matrix that results from deleting the \(i^{th}\) row and the \(j^{th}\) column. The adjoint \(\text{adj}(A)\) of \(A\) is an \(n\times n\) matrix whose \((i,j)\) entry is

\((-1)^{i+j} A_{ji}\).

Then \(A \cdot \text{adj}(A) = \text{adj}(A) \cdot A = \det(A) I_n\).

(b) Let \(R\) be a commutative ring and \(A, B \in M_n(R)\).

Prove that \(\text{Im}(A) \subseteq \text{Im}(B) \iff \exists X \in M_n(R): A = BX\).

\((\text{Im}(C) = \{ \sum_{i=1}^{n} R c_i^T \mid v^T \in R^n \})\)

(c) Let \(K\) be a field and \(R \subseteq K\) be a subring.

Assume \(A, B \in M_n(R)\) and \(\det(A) \neq 0\). Prove that

\(\text{Im}(A) = \text{Im}(B) \iff \exists P \in \text{GL}_n(R): A = BP\).

d) Let \(R\) be a commutative ring and \(P \in M_n(R)\). Prove that \(P \in \text{GL}_n(R)\) if and only if the columns of \(P\) form an \(R\)-basis of \(R^n\).
Let \(R \) be a commutative ring and \(A \in M_n(R). \)
Prove that \(\text{det}(A) R^n \subseteq \text{Im}(A). \)

Let \(K \) be a field and \(R \subseteq K \) be a PID.

Assume that \(A \in M_n(R) \) and \(\text{det}(A) \neq 0 \). Prove that

\[
\exists \vec{v}_1, \ldots, \vec{v}_n \in R^n \text{ and } q_1 | q_2 | \ldots | q_n \text{ s.t.}
\]

\[
(i) \quad R^n = R\vec{v}_1 \oplus \cdots \oplus R\vec{v}_n.
\]

\[
(ii) \quad \text{Im}(A) = Rq_1 \vec{v}_1 \oplus \cdots \oplus Rq_n \vec{v}_n.
\]

Conclude that \(\exists P_1 \in GL_n(R) \) s.t.

\[
\text{Im}(A) = \text{Im}(P_1 \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}).
\]

Now using (i), show that \(\exists P_1, P_2 \in GL_n(R) \) s.t.

\[
A = P_1 \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix} P_2.
\]

Let \(F \) be a field. If \(A \in M_n(F[x]) \) and \(\text{det}(A) \neq 0 \),
then

\[
\dim_F \left(\frac{F[x]^n}{\text{Im}(A)} \right) = \deg(\text{det} A).
\]
3. Prove that the following are equivalent:
 a. \(R \) is a (left) semisimple ring.
 b. Any left \(R \)-module is semisimple.
 c. Any left \(R \)-module is projective.
 d. Any left \(R \)-module is injective.

 (You do not have to show that a and b are equivalent.)

4. Let \(R \) be a ring and \(M \) be an \(R \)-module. Prove that
 i. \(M \) is free.
 ii. \(M \) is projective.
 iii. \(M \) is flat.
 iv. \(M \) is torsion-free, i.e. \(ax = 0 \) if \(0 \neq x \in M \) and \(a \in R \) is NOT a zero-divisor.

5. Prove that if \(R \) is a PID and \(M \) is a f.g. \(R \)-module, then i, ii, iii and iv are equivalent.
5. An abelian group G is called divisible if for any $a \in G$ and any $n \in \mathbb{Z} \setminus \{0\}$, $n \chi = a$ has a solution in G.

(a) Prove that a \mathbb{Z}-module G is injective if and only if G is divisible.

(b) Let G and H be \mathbb{Z}-modules and $\phi \in \text{Hom}_{\mathbb{Z}}(G, H)$. If G is divisible, then $\phi(G)$ is also divisible.

(c) If G_i are divisible, then $\bigoplus_{i \in I} G_i$ and $\prod_{i \in I} G_i$ are also divisible.

(d) Prove that any abelian group can be embedded into a divisible abelian group.

(Hint: $\bigoplus_{i \in I} \mathbb{Z}/\mathbb{K} \to \bigoplus_{i \in I} \mathbb{Q}/\mathbb{K}$.)

(e) Let J be a divisible abelian group. Prove that $\text{Hom}_{\mathbb{Z}}(R, J)$ is an injective R-module.

(f) Prove that any R-module can be embedded into an injective module.

(Hint: $\forall M: R$-mod $\exists J: \mathbb{Z}$-mod & divisible s.t.}
\[M \xrightarrow{f} \mathcal{J} \text{ as } \mathbb{Z}-\text{modules} \Rightarrow \]

\[M \simeq \text{Hom}_R(R,M) \xrightarrow{\cdot f} \text{Hom}_\mathbb{Z}(R,M) \xrightarrow{\cdot 1} \text{Hom}_\mathbb{Z}(R,\mathcal{J}) \cdot \]

6. Let \(P_1 \) and \(P_2 \) be projective \(R \)-modules. Prove that if

\[0 \to Q_1 \to P_1 \xrightarrow{\pi_1} M \to 0 \]

and

\[0 \to Q_2 \to P_2 \xrightarrow{\pi_2} M \to 0 \]

are short exact sequences, then

\[P_1 \oplus Q_2 \simeq P_2 \oplus Q_1. \]

(Hint. Consider \(N = \{ (x_1, x_2) \in P_1 \oplus P_2 \mid \pi_1(x_1) = \pi_2(x_2) \} \))