The third problem set: due 10/30/14.

1. Let a and b be two positive integers. Prove that

\[
\frac{a}{\gcd(a,b)} \quad \text{and} \quad \frac{b}{\gcd(a,b)}
\]

are relatively prime.

2. Let $SL_2(\mathbb{Z}) := \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{Z} \}$ and $ad - bc = 1$

(i) Prove that, if $x \in SL_2(\mathbb{Z})$, then $\exists y \in SL_2(\mathbb{Z})$

such that $xy = yx = I$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(ii) Prove that, if $x_1, x_2 \in SL_2(\mathbb{Z})$, then

\[x_1 x_2 \in SL_2(\mathbb{Z})\]

(Remark: You are proving that $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$.)

3. Let $SL_2(\mathbb{Z})$ be as in problem 2. Prove that

\[\{ x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mid x \in SL_2(\mathbb{Z}) \} = \{ \begin{bmatrix} a \\ b \end{bmatrix} \mid \gcd(a, b) = 1 \}
\]

4. Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. Suppose

\[a^d \equiv 1 \pmod{n} \quad \text{and} \quad a^2 \not\equiv 1 \pmod{n}\]
for \(1 \leq i < d \).

Prove that \(a^m \equiv 1 \pmod{n} \iff d \mid m \).

(Remark. \(d \) is called the multiplicative order of \(a \) modulo \(n \). In some books, it is denoted by \(\text{ord}_n(a) \).)

5. (i) Use problem 4 to prove the following:

\[
\begin{align*}
\text{gcd}(m,n) &\iff a^m \equiv 1 \pmod{d} \\
&\iff a^n \equiv 1 \pmod{d}
\end{align*}
\]

(ii) Use problem 4 to prove that

\[k \mid m \Rightarrow a^{k-1} \mid a^m \cdot \]

(iii) Use parts (i) and (ii) to prove

\[\text{gcd}(a^n-1, a^m-1) = a^{\text{gcd}(m,n)} - 1. \]

(Hint: For part (ii) notice that \(a^k \equiv 1 \pmod{a^{k-1}} \).)

6. Let \(\mathbb{Z}_n^\times := \{ [a]_n \in \mathbb{Z}_n^\ast \mid \exists a' \in \mathbb{Z} \text{ s.t. } [a]_n \cdot [a']_n = [1]_n \} \).

Prove that \((\mathbb{Z}_n^\times, \cdot) \) is a group.
In class we proved that the function
\[\mathbb{Z}_{mn} \xrightarrow{f} \mathbb{Z}_m \times \mathbb{Z}_n \]
\[[a]_{mn} \longmapsto ([a]_m, [a]_n) \]
is a bijection if \(\gcd(m,n) = 1 \).

7. (i) Prove that for any \(x, y \in \mathbb{Z}_{mn} \) we have
\[f(x + y) = f(x) + f(y) \]
and \[f(x \cdot y) = f(x) \cdot f(y) \]
(In \(\mathbb{Z}_m \times \mathbb{Z}_n \), we add and multiply componentwise.)

(ii) Let \(\mathbb{Z}_{mn}^\times \) be as in Problem 6, and
\[(\mathbb{Z}_m \times \mathbb{Z}_n)^\times := \{ (a, b) \mid \exists (a', b') \in \mathbb{Z}_m \times \mathbb{Z}_n \text{ s.t. } (a, b) \cdot (a', b') = ([a]_m, [b]_n) \} \]
Prove that \(f \) induces a bijection between
\[\mathbb{Z}_{mn}^\times \text{ and } (\mathbb{Z}_m \times \mathbb{Z}_n)^\times . \]
(We already know \(f \) is 1-1; you have to show \(f \) is also onto when \(x \in \mathbb{Z}_{mn}^\times \).)
8. Let \(m \) and \(n \) be two relatively prime integers.

And \((\mathbb{Z}_m \times \mathbb{Z}_n)^x \) be as in Problem 7.

(i) Prove that \((\mathbb{Z}_m \times \mathbb{Z}_n)^x = \mathbb{Z}_m^x \times \mathbb{Z}_n^x \).

(ii) Use Problem 7 and part (i) to conclude

\[
|\mathbb{Z}_{mn}^x| = |\mathbb{Z}_m^x| \cdot |\mathbb{Z}_n^x|.
\]

(iii) Prove that \(|\mathbb{Z}_p^x| = p^{k-1}(p-1) \) if \(p \) is prime

(iv) Use parts (ii) and (iii) to prove

\[
|\mathbb{Z}_{p_1^{k_1} \cdots p_m^{k_m}}^x| = \prod_{i=1}^m p_i^{k_i-1} (p_i - 1)
\]

where \(p_1 < \cdots < p_m \) are primes and

\(k_1, \ldots, k_m \in \mathbb{Z}^+ \).