Lecture 17: orbits and the action of cyclic groups

Proposition \(G \subset \mathcal{X} \) and \(x_0 \in \mathcal{X} \). Then

(i) \(G_{x_0} := \{ g \in G \mid g \cdot x_0 = x_0 \} \) is a subgroup.

(ii) \(\theta: G / G_{x_0} \rightarrow O(x_0), \quad \theta(g G_{x_0}) = g \cdot x_0 \)

is a well-defined bijection.

Proof. (i) \(e \cdot x_0 = x_0 \Rightarrow e \in G_{x_0} \Rightarrow G_{x_0} \neq \emptyset \)

So by Subgroup Criteria we have to check the following

\[g_1, g_2 \in G_{x_0} \Rightarrow g_1^{-1} g_2 \in G_{x_0} \]

\[g_1 \cdot x_0 = x_0 \Rightarrow g_1 \cdot x_0 = g_2 \cdot x_0 \Rightarrow (g_1^{-1} g_2) \cdot x_0 = x_0 \]

\[g_2 \cdot x_0 = x_0 \]

\[\Rightarrow g_1^{-1} g_2 \in G_{x_0} \]

(ii) well-defined.

\[g_1 G_{x_0} = g_2 G_{x_0} \Rightarrow g_1 = g_2 h \text{ for some } h \in G_{x_0} \]

\[\Rightarrow g_1 \cdot x_0 = (g_2 h) \cdot x_0 \]

\[\Rightarrow g_1 \cdot x_0 = g_2 \cdot (h \cdot x_0) \]
\[g_1 \cdot x_0 = g_2 \cdot x_0 \Rightarrow (g_1^{-1} g_2) \cdot x_0 = x_0 \]
\[\Rightarrow g_1^{-1} g_2 = h \in G_{x_0} \]
\[\Rightarrow g_2 = g_1 h \in g_1 G_{x_0} \]
\[\Rightarrow g_2 G_{x_0} = g_1 G_{x_0}. \]

\text{Onto} \quad \text{It is clear from the definition of } O(x_0). \]

\text{Cor.} If \(G \) is a finite group, then
\[|O(x_0)| = |G : G_{x_0}| \mid |G|. \]

\text{Pf.} By the previous Proposition, \(|O(x_0)| = |G/G_{x_0}| \mid |G| \)
which is \(|G : G_{x_0}| \) by definition. And we have already proved \(|G| = |G_{x_0}| \cdot [G : G_{x_0}] \Rightarrow \]
\[|O(x_0)| \mid |G|. \]

Since the set of left cosets is of particular importance, let's summarize its properties:
• \(g_1 H = g_2 H \iff g_1 g_2^{-1} \in H \).

• \(H g_1 = H g_2 \iff g_1 g_2^{-1} \in H \).

How does a cyclic group act on a set?

Let's assume \(\langle a \rangle \) is a finite group of order \(d \).

Suppose \(\langle a \rangle \cap X \). How does orbits "look like"?

\[
\begin{align*}
x_0 & \rightarrow a.x_0 & \rightarrow a^2.x_0 & \rightarrow a^3.x_0 & \rightarrow \ldots
\end{align*}
\]

At some point we should come back as \(a^d = e \)
and so \(a^d.x_0 = x_0 \). And so we get a cycle.

1. Size of this cycle divides \(d \).

2. Either this cycle is the entire \(X \),
or take \(x_1 \) in \(X \) outside this cycle
and repeat.

So \(X \) is disjoint union of bunch of cycles
(whose size divides \(d \)) and \(a \) just "rotates" points.
On these cycles.

Schreier directed graphs: \(G = \langle S \rangle \cup X \)

Vertices = \(X \)

\((x_1, x_2)\) is an edge if \(\exists s \in S \) s.t. \(x_2 = s \cdot x_1 \)

So in the case of finite cyclic group we get the above cycles.

We also discussed the following examples:

1. \(S_n \cup \{1, 2, \ldots, n\} \).

\(G_n := \) stabilizer of \(n \)

\[= \{ \sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \mid \sigma(n) = n \} \]

So \(|G_n| = (n-1)! \). \(G_n \) is more or less \(S_{n-1} \).

\(O(n) = \{1, 2, \ldots, n\} \).
\[[S_n : G_n] = \frac{|S_n|}{|G_n|} = \frac{n!}{(n-1)!} = |O(n)|. \]

2. \(G \trianglelefteq G \) by conjugation, i.e.

\[g \cdot g' := gg'g^{-1}. \]

- \(O(g') = \{ gg'g^{-1} \mid g \in G \} = C_G(g') \)
 is called the conjugacy class of \(g' \).

- \(gg'g^{-1} \) is called a conjugate of \(g' \).

- Stabilizer of \(g' = \{ g \in G \mid gg'g^{-1} = g' \} \)
 \[C_G(g') = \{ g \in G \mid gg' = g'g \} \]
 is called the centralizer of \(g' \) in \(G \).

So we have \(|C_G(g')| = [G : C_G(g')] \).