Lecture 23: group homomorphism

Recall. \(\phi : G \to H \) is called a group homomorphism if
\[
\phi(g_1 g_2) = \phi(g_1) \phi(g_2).
\]

Basic Properties

- \(\phi(e) = e \); \(\phi(g^{-1}) = \phi(g)^{-1} \); \(\phi(g^n) = \phi(g)^n \);
- \(o(\phi(g)) | o(g) \) if \(o(g) < \infty \);
- \(\text{Im}(\phi) = \{ \phi(g) | g \in G \} \subseteq H \);
- \(\ker(\phi) = \{ g \in G | \phi(g) = e \} \subseteq G \);
- \(N \leq G \) is called a normal subgroup if
 \[
 \forall g \in G, \quad gNg^{-1} = N.
 \]
- \(\text{Im} \phi = H \iff \phi \) is an epimorphism
- \(\ker \phi = \{ e \} \iff \phi \) is a monomorphism

The main part of the argument was
\[
\phi(g_1 g_2) = e \iff \phi(g_1^{-1} g_2) = e
\]
\[
\iff \phi(g_1^{-1} g_2) = e
\]
\[\iff g_1^{-1} g_2 \in \ker \phi \]
\[\iff g_1 \ker \phi = g_2 \ker \phi. \]

Proposition. Let \(\phi : G \to H \) be a group homomorphism.

Then \(\overline{\phi} : G/\ker \phi \to \text{Im} \ \phi, \)
\[\overline{\phi} (g \ker \phi) = \phi(g) \]
is a well-defined bijection.

Proof. The above argument shows that \(\overline{\phi} \) is well-defined and 1-1. And by the definitions of \(\text{Im}(\phi) \) and \(\overline{\phi} \), it is clear that \(\overline{\phi} \) is onto.

Cor. Let \(G \) be a finite group, and \(\phi : G \to H \) be a group homomorphism. Then
\[|G| = |\ker \phi| |\text{Im} \ \phi|. \]

Proof. By the previous proposition, we have
\[|G/\ker \phi| = |\text{Im} \ \phi|. \]
By Lagrange theorem,
\[|G/\ker \phi| = \frac{|G|}{|\ker \phi|}. \]
Can any normal subgroup be kernel of a homomorphism?

\(N \trianglelefteq G \). We'd like to find a group \(H \) and a group homomorphism \(\phi : G \to H \) s.t. \(N = \ker \phi \).

Since we can restrict ourselves to \(\text{Im}(\phi) \), \(\omega \log \),
we can look for an epimorphism: \(H = \text{Im} \phi \). So the above Proposition says that \(H \) can be identified with \(G/\ker \phi \)

\(= \frac{G}{N} \) as a set. Can we make \(\frac{G}{N} \) into a group in a "natural" way?

\[(g_1N) \cdot (g_2N) := (g_1g_2)N\]

Proposition Let \(N \trianglelefteq G \). Then \((g_1N) \cdot (g_2N) = (g_1g_2)N \)

is a well-defined group operation. And \(\pi : G \to \frac{G}{N}, \pi(g) := gN \)

is an onto group homomorphism and \(\ker \pi = N \).

Pf. \underline{well-defined.} \(g_1N = g_1'N \) \(\Rightarrow \) \(g_1g_2N = g_1'g_2N \)

\(g_2N = g_2'N \)
\[g_1N = g_1'N \implies g_1 = g_1'n_1 \]
\[g_2N = g_2'N \implies g_2 = g_2'n_2 \]
\[
(g_1'g_2')^{-1} (g_1g_2) = g_2'^{-1} g_1'^{-1} g_1 g_2 \\
= g_2'^{-1} g_1'^{-1} g_1' n_1 g_2 n_2 \\
= (g_2'^{-1} n_1 g_2') n_2 \in N.
\]

Associativity
\[
(g_1N \cdot g_2N) \cdot g_3N = (g_1g_2)N \cdot g_3N \\
= (g_1g_2g_3)N \\
= g_1N \cdot (g_2g_3)N \\
= g_1N \cdot (g_2N \cdot g_3N)
\]

Identity
\[N \cdot gN = gN \cdot N = gN \]

Inverse
\[gN \cdot g'^{-1}N = g'^{-1}N \cdot gN = N. \]

\[
\pi(g_1g_2) = (g_1g_2)N = g_1N \cdot g_2N = \pi(g_1) \cdot \pi(g_2)
\]

\[q \in \ker \pi \iff \pi(q) = N \\
\iff gN = N \\
\iff g \in N. \]
The First Isomorphism Theorem

Let \(\phi : G \to H \) be a group homomorphism. Then

\[
\overline{\phi} : G / \ker \phi \to \text{Im} \phi,
\]

\[
\overline{\phi} (g \ker \phi) = \phi(g)
\]

is an isomorphism.

\[\begin{proof}
\text{We already know that } \overline{\phi} \text{ is a bijection. So it is enough to show it is a group homomorphism:}
\end{proof}\]

\[
\overline{\phi} (g_1 \ker \phi \cdot g_2 \ker \phi) = \overline{\phi} (g_1 g_2 \ker \phi)
\]

\[
= \phi(g_1 g_2)
\]

\[
= \phi(g_1) \phi(g_2)
\]

\[
= \overline{\phi} (g_1 \ker \phi) \overline{\phi} (g_2 \ker \phi).
\]

\[\square\]

Exp. \(\mathbb{R} / \mathbb{Z} \) is isomorphic to \(S^1 := \{ z \in \mathbb{C} \mid |z| = 1 \} \).

\[\begin{proof}
\mathbb{R} \to S^1
\end{proof}\]

\[
\phi \text{ is an epimorphism}
\]

\[
\ker \phi = \mathbb{Z}.
\]
Exp. \(\langle g \rangle \) is a finite group \(\Rightarrow \) \(\langle g \rangle \cong \mathbb{Z}_{o(g)} \).

\[\text{Pr.} \quad \mathbb{Z} \rightarrow \langle g \rangle \quad \text{ker } \phi = \{ n \in \mathbb{Z} \mid g^n = e \} = o(g) \mathbb{Z} \]

\(n \mapsto g^n \)

is a group homomorphism.

\[\Rightarrow \mathbb{Z}/o(g) \mathbb{Z} \cong \langle g \rangle \]

\[\Rightarrow \mathbb{Z}_{o(g)} \cong \langle g \rangle. \]

Exp. \(\mathbb{R}^{x} / \mathbb{Q}^{1,-1} \cong \mathbb{R}^{+} \).

\[\text{Pr.} \quad x \mapsto x^2 \]

\(\text{ker } \phi = \mathbb{Q}^{\pm 1} \).

Exp. \(\mathbb{Z} \times \mathbb{Z} / \langle (0,1) \rangle \cong \mathbb{Z} \)

\((x, y) \mapsto x \)

Exp. \(\mathbb{Z} \times \mathbb{Z} / \langle (1,1) \rangle \cong \mathbb{Z} \)

\((x, y) \mapsto x-y \)

Exp. \(\mathbb{Z} \times \mathbb{Z} / \langle (2,2) \rangle \) is NOT cyclic.

\[\text{Pr.} \quad \text{it is generated by } (a,b) + \langle (2,2) \rangle. \]

\[\Leftrightarrow \forall (x,y) \in \mathbb{Z} \times \mathbb{Z} \exists n \in \mathbb{Z} \text{ st.} \]
\[(x, y) \in n(a, b) + \langle (2, 2) \rangle\]

\[\iff \exists n, m \in \mathbb{Z} \text{ s.t. } (x, y) = n(a, b) + m(2, 2)\]

\[\iff \forall x, y \in \mathbb{Z}, \begin{bmatrix} a & 2 \\ b & 2 \end{bmatrix} \begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}\]

has an integer solution

\[\iff \begin{bmatrix} a & 2 \\ b & 2 \end{bmatrix}^{-1}\]

exists and has integer entries

\[\iff \det \begin{bmatrix} a & 2 \\ b & 2 \end{bmatrix} = \pm 1 \Rightarrow 2a - 2b = \pm 1\]

which is a contradiction.