Lecture 27: Cauchy and \(p, q \)

Let \(p \) and \(q \) be primes, \(p < q \), \(p \nmid q - 1 \). Let \(G \) be a finite group.

\[
|G| = pq \quad \implies \quad G \cong \mathbb{Z}_{pq}.
\]

\(\exists N \trianglelefteq G, |N| = q \) \]

Remark 1. The assumption of existence of \(N \) is NOT needed. Using Sylow theorems, one can prove this.

2. Whenever we are asked to show \(G \cong \mathbb{Z}_n \), we need to show that \(G \) is cyclic. Since we have proved that a cyclic group of size \(n \) is isomorphic to \(\mathbb{Z}_n \).

3. To show a group of size \(n \) is cyclic, we have to find an element of order \(n \).

Pf. Let \(e \neq b \in N \implies o(b) \neq 1 \) and \(o(b) \mid |N| \)
(by Lagrange)
\[o(b) = q \quad (\text{as } q \text{ is prime}) \]

\[|\langle b \rangle| = o(b) = q = |N| \Rightarrow \langle b \rangle = N \leq G. \]

By Cauchy’s theorem, \(\exists a \in G, \quad o(a) = p \).

If we show that \(ab = ba \), then since \(\gcd(o(a), o(b)) = 1 \),

\[o(ab) = o(a) o(b) = pq, \]

which implies \(G \) is cyclic. And so \(G \cong \mathbb{Z}_{pq} \).

\(\langle b \rangle \leq G \Rightarrow \exists i, \quad ab^{-1}a = b^i \),

\[0 \leq i \leq q-1 \]

And \(i \neq 0 \) as otherwise \(ab^{-1}a = e \Rightarrow b = a^{-1}a = e \)

which is a contradiction.

\[\underbrace{a b \quad a^{-1} \quad a b \quad a^{-1} \ldots \quad a b \quad a^{-1}}_{j \text{ times}} = b^i \]

\[a^k b^{-k} a^k = a^{k-1} (a b a^{-1}) a^{-(k-1)} \]

\[= a^{k-1} b^i a^{-1} \]

\[= (a^{k-1} b a^{-1})^i \]

\[= b^i \]

\[= b \]
repeating \(b = a^p b a^{-p} = b \)

\[
\Rightarrow \quad b = a^p b a^{-p} = b
\]

Recall \(g^l = g^k \iff l \equiv k \mod o(g) \).

\[
\Rightarrow \quad 1 = i^p \mod o(b) \Rightarrow [i]_q^p = [1]_q
\]

\[
\Rightarrow \quad o([i]_q) \mid p \text{ in } \mathbb{Z}_q^x
\]

\[
\Rightarrow \text{ either } o([i]_q) = 1 \text{ or } o([i]_q) = p.
\]

On the other hand \(o([i]_q) \mid |\mathbb{Z}_q^x| \) by Lagrange.

Recall \(\mathbb{Z}_n^x = \text{the group of units} \)

\[
= \{ [a]_n \mid \gcd(a, n) = 1 \}
\]

\[
|\mathbb{Z}_n^x| = \varphi(n) \text{ and } \varphi(q) = q - 1.
\]

Since \(p \nmid q - 1 \), \(o([i]_q) = 1 \Rightarrow [i]_q = [1]_q \)

\[
\Rightarrow i = 1 \Rightarrow ab = ba \text{ and we are done}. \quad \square
\]