Main topics relevant to the second exam.

Thursday, November 20, 2014
6:45 PM

Elementary Arithmetic:

- Division algorithm.

 \[a \mathbb{Z} + b \mathbb{Z} = \text{gcd}(a,b) \mathbb{Z} \]

- \(a \mid bc \) and \(\text{gcd}(a,b)=1 \) \(\implies \) \(a \mid c \)

- Unique factorization and \(\nu_p \).

- Congruences and \(\mathbb{Z}_n \).

- Group of units \(\mathbb{Z}_n^\times \).

- Chinese Remainder Theorem

 \[\mathbb{Z}_{mn} \longrightarrow \mathbb{Z}_m \times \mathbb{Z}_n, \ [a]_{mn} \mapsto ([a]_m, [a]_n) \]

 is a well-defined bijection. It is also a homomorphism.

- Euler \(\varphi \) function:

 \[\varphi(mn) = \varphi(m) \varphi(n) \quad \text{if} \quad \text{gcd}(m,n)=1. \]

 \[\varphi(p^k) = p^k - p^{k-1}. \]

Group theory:

- Definition, uniqueness of the identity and inverse of an element.
• Subgroup criteria.
 • Group generated by a set.
 • Cyclic groups:

* Any subgroup of \(\mathbb{Z} \) is of the form \(d \mathbb{Z} \) where
 either \(d = 0 \) or \(d \) is the smallest positive
 number of this subgroup.

 In particular any subgroup of \(\mathbb{Z} \) is cyclic.

* Let \(G = \langle g \rangle \).
 • \(I_0 = \{ n \in \mathbb{Z} \mid g^n = e \} \) is a subgroup of \(\mathbb{Z} \).
 • If \(|G| < \infty \), then \(I_0 = |G| \mathbb{Z} \).

* Order \(o(g) \) of \(g \).

* Important properties of order:
 • \(\mathbb{Z}_{o(g)} \rightarrow \langle g \rangle , [m]_{o(g)} \mapsto g^m \) is well-defined
 bijection. It is also a homomorphism
 • \(o(g) = |\langle g \rangle| \).
 • \(g^n = g^m \iff n \equiv m \pmod{o(g)} \).
 • \(o(g^m) = \frac{o(g)}{\gcd(o(g),m)} \).
\[ab = ba \quad \Rightarrow \quad o(ab) = o(a) \cdot o(b) \]
\[\gcd(o(a), o(b)) = 1 \]

- A finite group \(G \) is cyclic

\[\exists g \in G, \quad o(g) = |G| \]

- Group Actions.

- Orbits: TFAE
 1. \(x_1 \in O(x_2) \)
 2. \(O(x_1) \cap O(x_2) \neq \emptyset \)
 3. \(O(x_1) = O(x_2) \)

- \(G/X := \{ O(x) \mid x \in X \} \) is a partition.

- Lagrange Theorem

\[|G| = |H| \cdot |G/H| \quad \text{if} \quad H \leq G \]

and \(G \) is a finite group.

- Index of \(H \) in \(G \) = \([G : H] = \frac{|G|}{|H|} \).

- \(G \smallsetminus x, x \in X \Rightarrow \)

 1. \(G_x := \{ g \in G \mid g \cdot x = x_g \leq G \} \)

 2. \(G/G_x \rightarrow O(x) \)

\[H \rightarrow G/H, \quad Hg \mapsto g^{-1}H \quad \text{is a well-defined bijection.} \]
\[gG_x \mapsto g \cdot x \]

is a well-defined bijection.

3. \(|O(x)| = [G : G_x] \).

- How to understand the action of a finite cyclic group via Schreier cycles.

The vertices in each cycle give us an orbit of \(\langle g \rangle \). So their size divide \(o(g) \).

- \(H \triangleleft G \) left multiplication: orbits are called right cosets.
- \(G \triangleleft G \) by conjugation: orbits are called conjugacy classes.

- Symmetric Group:

 - Any permutation can be uniquely written as a product of disjoint cycles.
 - Any permutation is a product of transpositions.
- Even and odd permutation.

- \(\text{Sgn}: S_n \rightarrow \{\pm 1\} \) and \(A_n \)

- Two important equations:

\[
(a_1, a_2, \ldots, a_n)(a_n, a_{n+1}, \ldots, a_{n+k}) = (a_1, a_2, \ldots, a_n, a_{n+1}, \ldots, a_{n+k})
\]

and \(\tau \cdot (a_1, a_2, \ldots, a_n) \cdot \tau^{-1} = (\tau(a_1), \ldots, \tau(a_n)) \)

- \(o(C_1 \cdot C_2 \cdot \ldots \cdot C_n) = \text{lcm}(k_1, k_2, \ldots, k_n) \)

where \(C_i \) are disjoint \(k_i \)-cycles.