1 (5 pts). Define what it means for a set G with a binary operation $*$ to be a group.

Solution. The set G with binary operation $*$ is a group if (i) $*$ is associative, that is $(a * b) * c = a * (b * c)$ for all $a, b, c \in G$; (ii) there exists an identity element $e \in G$ such that $(a * e) = a = (e * a)$ for all $a \in G$; and (iii) for all $a \in G$ there exists an element $b \in G$ (called the inverse of a) such that $a * b = e = b * a$.

2 (10 pts). Let G be an Abelian group. Let $H = \{ a \in G \mid o(a) \text{ is a finite odd integer} \}$. Prove that H is a subgroup of G.

Solution. To see that a nonempty set H is a subgroup, it is enough to prove that for $a, b \in H$, we have $ab \in H$ and $a^{-1} \in H$. That is, we need to check that H is closed under products and closed under inverses.

Note that $H \neq \emptyset$, because $o(e) = 1$ and hence $e \in H$.

First, if $a \in H$ then $m = o(a)$ is odd. Then $a^m = e$, so $(a^{-1})^m = (a^m)^{-1} = e$ as well. This implies that the order $o(a^{-1})$ must be a divisor of m. Since m is odd, all of its divisors are also odd, so $o(a^{-1})$ is odd and thus $a^{-1} \in H$. (Actually it is easy to see that $o(a^{-1}) = o(a)$ but we don’t need this).

Next if $a, b \in H$ with $m = o(a)$ and $n = o(b)$, then since $ab = ba$, we get that $(ab)^{mn} = a^m b^m = (a^n)^m (a^n)^m = e$. Thus $o(ab)$ must be a divisor of mn. Since m and n are odd, mn is odd, and so any divisor of mn is odd. Thus $o(ab)$ is odd and so $ab \in H$ as well. This proves that H is a subgroup using the two-step subgroup test.

3. Let G be a group and consider the function $\phi : G \to G$ given by the formula $\phi(x) = x^{-1}$.

(a) (5 pts). Prove that ϕ is one-to-one and onto.

(b) (5 pts). Prove that ϕ is an isomorphism if and only if the group G is Abelian.
Solution. (a). If \(\phi(x) = \phi(y) \), then \(x^{-1} = y^{-1} \). Then \(y = xx^{-1}y = xy^{-1}y = x \). Thus \(\phi \) is one-to-one.

Given \(x \in G \), we have \(xx^{-1} = e = x^{-1}x \) and thus by the definition of inverses we have \((x^{-1})^{-1} = x \). Thus \(\phi(x^{-1}) = x \) and hence \(\phi \) is onto.

(b). Suppose that \(G \) is Abelian. Then for all \(x, y \in G \), \(\phi(xy) = (xy)^{-1} = (yx)^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y) \). Thus by definition \(\phi \) is a homomorphism of groups. Since \(\phi \) is one-to-one and onto by part (a), then \(\phi \) is an isomorphism by definition.

Conversely, if \(\phi \) is an isomorphism then we have \(y^{-1}x^{-1} = (xy)^{-1} = \phi(xy) = \phi(x)\phi(y) = x^{-1}y^{-1} \), for all \(x, y \in G \). Thus \(yx = yxy^{-1}x^{-1}xy = yxx^{-1}y^{-1}xy = xy \) for all \(x, y \in G \).

4 (10 pts). Let \(G = \mathbb{Z} \) be the group of integers under addition. Prove directly that every subgroup of \(G \) is of the form \(m\mathbb{Z} = \{mq | q \in \mathbb{Z} \} \) for some \(m \geq 0 \). (Do not quote the theorem that subgroups of cyclic groups are cyclic. Prove it directly, as you did when this was a homework exercise.)

Solution. If \(H = \{0\} \) is the trivial subgroup, then \(H = 0\mathbb{Z} \). So assume now that \(H \neq \{0\} \). Since \(H \) is closed under inverses, if \(a \in H \) then \(-a \in H \). Thus \(H \) contains some positive number, and we can define \(m \) to be the smallest positive number in \(H \). Now if \(a \in H \), then we can write \(a =qm + r \) in the division algorithm, with \(0 \leq r < m \). Since \(m \in H \), we have \(qm \in H \) since \(H \) is a subgroup (recall that \(qm \) means \(\underbrace{m + m + \cdots + m}_q \) if \(q \) is positive, \(\underbrace{(-m) + (-m) + \cdots + (-m)}_q \) if \(q \) is negative, and \(0m = 0 \)). Since \(a \in H \), we get \(r = a - qm \in H \). Thus contradicts the choice of \(m \) unless \(r = 0 \). Thus \(a = mq \) and so \(a \in m\mathbb{Z} \). So \(H \subseteq m\mathbb{Z} \). Conversely, since \(m \in H \) we get \(qm \in H \) for all \(q \in \mathbb{Z} \) as already noted and so \(m\mathbb{Z} \subseteq H \). Thus \(H = m\mathbb{Z} \).

5. For each of the following groups, decide if the group is cyclic or not and justify your answer.

(a) (5 pts). \(\mathbb{Z}_9^\times \).

(b) (5 pts). \(\mathbb{Z}_3 \times \mathbb{Z}_3 \).

Solution.
(a). \mathbb{Z}_9^\times is cyclic. We have $\mathbb{Z}_9^\times = \{[1]_9, [2]_9, [4]_9, [5]_9, [7]_9, [8]_9\}$. Then considering the powers of $[2]$, we have $[2]^1 = [2] \neq [1], [2]^2 = [4] \neq [1], \text{ and } [2]^3 = [8] \neq [1]$. Since $o([2])$ must divide $|\mathbb{Z}_9^\times| = 6$, we have $o([2]) = 1, 2, 3, \text{ or } 6$. But $o([2])$ cannot be 1, 2, or 3 by the calculation above, so $o([2]) = 6$. This implies that $[2]^0 = [1], [2], [2]^2, [2]^3, [2]^4, [2]^5$ are all distinct and so give all 6 elements of the group. Thus $\mathbb{Z}_9^\times = \langle [2] \rangle$ is generated by a single element and so is cyclic.

(b). This group is not cyclic. For example, we can use the formula for the order of an element in a direct product. If $[a] \in \mathbb{Z}_3$, then we know that $o([a]) = 1 \text{ or } 3$, since $|\mathbb{Z}_3| = 3$. Then if $([a], [b]) \in \mathbb{Z}_3 \times \mathbb{Z}_3$, we have $o(([a], [b]) = \text{lcm}(o([a]), o([b]))$ as proved in class or in the textbook. But the least common multiple of two divisors of 3 is at most as large as 3, so all elements of $\mathbb{Z}_3 \times \mathbb{Z}_3$ have order at most 3. On the other hand, $|\mathbb{Z}_3 \times \mathbb{Z}_3| = 9$, so if it were cyclic the group $\mathbb{Z}_3 \times \mathbb{Z}_3$ would have to have an element of order 9.