Name:

PID:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Show that $\mathbb{Z}_{12} \times \mathbb{Z}_9$ is not cyclic.

2. (10 points) Let $G = \langle a \rangle$ be a finite group of size n. Show that
 $$|\{g \in G\mid o(g) = n\}| = \phi(n).$$

3. Let H be a subgroup of $G = \langle a \rangle$.
 (a) (5 points) Show that $I_H := \{m \in \mathbb{Z} \mid a^m \in H\}$ is a subgroup of \mathbb{Z}.
 (b) (5 points) Show that H is cyclic.

4. (10 points) Let G be a finite group, p be a prime, and X be a finite set. Suppose G acts from left on X, and $|G| = p$. Show that for any $x \in X$ either x is a fixed point, i.e. for any $g \in G$ we have $g \cdot x = x$, or the size $|O(x)|$ of the orbit of x is divisible by p.

 Hint: Think about the connection between $O(x)$ and the stabilizer subgroup G_x. And use Lagrange!

5. Let $\sigma = \left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 8 & 1 & 2 & 5 & 3 & 4 & 7
\end{array}\right)$.
 (a) (3 points) Write σ as a product of disjoint cycles.
 (b) (5 points) Find $o(\sigma)$. Justify your answer.
 (c) (2 points) Are there a 3-cycle c and a 5-cycle c' such that $o(cc') = 8$ (not necessarily disjoint)? Justify your answer. (This part has nothing to do with the first two parts!)

6. (10 points) (EXTRA CREDIT) Can the following arrangement happen in the 15-puzzle? Justify your answer.

 \[
 \begin{array}{cccc}
 2 & 1 & 4 & 3 \\
 6 & 5 & 8 & 9 \\
 7 & 14 & 10 & 11 \\
 12 & 13 & 15 \\
 \end{array}
 \]

 (Hint:

 1. Think about permutations in S_{16}.
 2. What is a single slide as a permutation?
 3. What can you say about the number of slides to get to this arrangement?)

 Good Luck!