
OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

1. Week 1

1. (a) Prove that A := {a+ bi| a, b ∈ Q} is a subring of C.

(b) Prove that B :=
!"

a b
−b a

#
| a, b ∈ Q

$
is a subring of M2(Q).

(c) Prove that A and B are isomorphic.

Outline of solution. For parts (a) and (b) use the subring criterion. For part (c) prove that

f
%"

a b
−b a

#&
:= a+ bi

is a ring isomorphism. Notice that the main reason that f is a ring homomorphism is because"
0 1
−1 0

#2

= −I and i2 = −1. □

2. An element a of a ring A is called nilpotent if an = 0 for some positive integer n. Suppose A is a
unital ring and a ∈ A is nilpotent. Prove that 1A + a is a unit.

Solution. Let’s recall a useful equation (that you have seen when you learned about geometric series):
for every positive integer m (in every unital ring), we have

(1) (1− x)(1 + x+ · · ·+ xm) = 1− xm+1 , and similarly (1 + x+ · · ·+ xm)(1− x) = 1− xm+1

Now suppose A is a unital ring and y ∈ A is nilpotent and yn = 0 for a positive integer n. Then by
(1), we have that

(2) (1− y)(1 + y + · · ·+ yn−1) = 1− yn = 1, and similarly (1 + y + · · ·+ yn−1)(1− y) = 1.

Since A is closed under multiplication and addition, 1 + y + · · · + yn−1 ∈ A. Therefore (2) implies
that 1 − y is a unit in A. Finally we notice that if a is nilpotent, then an = 0 for some positive
integer n. Thus (−a)n = 0, which means −a is also nilpotent. Hence applying the above result for
y = −a we deduce that 1 + a is a unit in A. □

3. Suppose A and B are unital commutative rings.
(a) Prove that the identity of A×B is (1A, 1B).
(b) Prove that the group of units of A×B is equal to A× ×B×.

Solution. (a) Notice that for every (a, b) ∈ A×B, we have

(1A, 1B) · (a, b) = (1A · a, 1B · b) = (a, b), and (a, b) · (1A, 1B) = (a · 1A, b · 1B) = (a, b).

This implies that (1A, 1B) is an identity of A × B. We have proved that there is a unique identity
in a unital ring. Therefore 1A×B = (1A, 1B).

(b) Suppose (a, b) ∈ A× × B×. Then there are multiplicative inverses a−1 ∈ A and b−1 ∈ B.
Therefore

(a−1, b−1) · (a, b) = (a−1 · a, b−1 · b) = (1A, 1B) = 1A×B .

Similarly we have (a, b) · (a−1, b−1) = 1A×B . Hence (a, b) is a unit of A×B.
Now suppose (a, b) is a unit of A×B. This means there is (a′, b′) ∈ A×B such that

(a, b) · (a′, b′) = (a′, b′) · (a, b) = 1A×B .

1



2 OUTLINE OF SOLUTIONS OF SOME OF THE ASSIGNMENTS

Hence we obtain

(a · a′, b · b′) = (a′ · a, b′ · b) = (1A, 1B),

and so a · a′ = a′ · a = 1A and b · b′ = b′ · b = 1B , which implies that a ∈ A× and b ∈ B×. □

4. Suppose A is a unital commutative ring and p1A = 0 for a prime p. Let F : A → A,F (a) := ap.
Prove that F is a ring homomorphism.

Solution. We have to show that F preserves addition and multiplication; that means we have to
prove that for every a, a′ ∈ A we have

F (a+ a′) = F (a) + F (a′) and F (aa′) = F (a)F (a′).

This means we have to prove (a + a′)p = ap + a′p and (aa′)p = apa′p. Since A is commutative, we
immediately see that

(aa′)p = (aa′) · · · (aa′)' () *
p times

= (a · · · a' () *
p times

)(a′ · · · a′' () *
p times

) = apa′p.

To show that F preserves addition, we notice that since A is commutative we can use the binomial
expansion:

(3) (a+ a′)p =

p+

i=0

"
p

i

#
ai · a′p−i.

Next we notice that p! = i!(p− i)!
,
p
i

-
is a multiple of p and i!(p− i)! is not a multiple of p for integers

in the interval [1, p − 1]. Therefore by Euler’s lemma, p divides
,
p
i

-
. On the other hand, p1A = 0

implies that for every b ∈ A, we have

pb = p(1A · b) = (p1A) · b = 0,

and so if n is a multiple of p, then for every b ∈ A we have nb = 0.
As

,
p
i

-
is a multiple of p for every integer i in [1, p− 1], by the above discussion we deduce that

(4)

"
p

i

#
ai · a′p−i = 0

for every integer i in [1, p− 1]. By (3) and (4), we obtain

(a+ a′)p =

p+

i=0

"
p

i

#
ai · a′p−i = ap + a′p.

□

5. Describe all the ring homomorphism from Z× Z to Z.
Solution. Starting with the additive structure of Z× Z, we see the every element (m,n) ∈ Z× Z is
an Z-linear combination of (1, 0) and (0, 1). Therefore every ring homomorphism f : Z×Z → A (for
an arbitrary ring A) has the following property:

(5) f(m,n) = f(m(1, 0) + n(0, 1)) = mf(1, 0) + nf(0, 1).

So f is uniquely determined by its value at (1, 0) and (0, 1). Now that we have understood the
additive structure, we focus on multiplication. Suppose a1 := f(1, 0) and a2 := f(0, 1). Then we
apply f to the following multiplication table:

· (1,0) (0,1)
(1,0) (1,0) (0,0)
(0,1) (0,0) (0,1)

and using the fact that f preserves multiplication we obtain that
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· a1 a2
a1 a1 0
a2 0 a2

This means a21 = a1, a
2
2 = a2, and a1a2 = 0. One can check that these conditions are sufficient to

make f(m,n) = ma1 + na2 a ring homomorphism from Z to an arbitrary ring A. When A = Z (in
general for every integral domain), we see get the following possibilities for ai’s: either a1 = 0 or a1 =
1, either a2 = 0 or a2 = 1, and either a1 = 0 or a2 = 0. Altogether, we get the following possibilities
for a1 and a2: either a1 = a2 = 0, or a1 = 1 and a2 = 0, or a1 = 0 and a2 = 1. Therefore there are
three possible ring homomorphisms f1 : Z × Z → Z, f1(m,n) := 0, f2 : Z × Z → Z, f1(m,n) := m,
and f3 : Z× Z → Z, f1(m,n) := n. □

2. Week 2

1. (a) Prove that Q[
√
3] is a field.

(b) Prove that Q(Z[
√
3]) ≃ Q[

√
3] where Z[

√
3] := {a+ b

√
3| a, b ∈ Z} and Q(Z[

√
3]) is the field of

fractions of Z[
√
3]. (You can use without proof that Z[

√
3] is a subring of C.)

Outline of solution. (a) Using the subring criterion, one can see that Z[
√
3] and Q[

√
3] are subrings

of C. So to show Q[
√
3] is a field, it is enough to show that every non-zero element is a unit. Suppose

a+ b
√
3 is a non-zero element of Q[

√
3]. Since

√
3 is not rational, a− b

√
3 is not zero. Hence

(6)
1

a+ b
√
3
=

a− b
√
3

(a+ b
√
3)(a− b

√
3)

=
a

a2 − 3b2
− b

a2 − 3b2

√
3.

For a, b ∈ Q, we have that a
a2−3b2 ,−

b
a2−3b2 ∈ Q. Therefore (6) implies that a + b

√
3 is a unit in

Q[
√
3]. This shows that Q[

√
3] is a field.

(b) We follow the four step strategy explained in the lecture note. We have already proved that

Q[
√
3] is a field. Let f : Z[

√
3] → Q[

√
3], f(a+ b

√
3) := a+ b

√
3, and observed that f is an injective

ring homomorphism (the 2nd step). Then by the Universal Property of the Field of Fractions,

.f : Q(Z[
√
3]) → Q[

√
3], .f

%z1
z2

&
:= f(z1)f(z2)

−1

is an injective ring homomorphism (the 3rd step). In the final step, we should show that .f is

surjective. Notice that every element of Q[
√
3] is of the form k−1(m + n

√
3) for some integers

m,n, k. Then

k−1(m+ n
√
3) = .f

%m+ n
√
3

k

&
,

and so .f is surjective. This shows that .f is an isomorphism. □

2. Suppose p is an odd prime, and let A :=
!"

a b
−b a

# /// a, b ∈ Zp

$
.

(a) Suppose there are a0, b0 ∈ Z such that p = a20 + b20. Prove that A ≃ Zp × Zp.
(b) Suppose there is no x ∈ Z such that x2 ≡ −1 (mod p). Prove that A is a field.

Outline of solution. (a) The key point is to notice that

"
0 1
−1 0

#
should be sent to an element that is

a zero of x2 = −1 in the codomain. So we start by finding zeros of x2 = −1 in Zp. Since p = a20+ b20,
0 ≡ a20 + b20 (mod p). If b0 ∕≡ 0 (mod p), then b0 is a unit in Zp. Hence we get

(a0b
−1
0 )2 = −1 in Zp.

Next we argue that b0 ∕= 0 in Zp. If not, then b0 is a multiple of p. On the other hand, p = a20 + b20
implies that |b0|

√
p. The only multiple of b0 which is in the interval [−√

p,
√
p] is 0. Therefore b0 = 0,
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and so p = a20 which is a contradiction as p is prime. Altogether we deduce that there is e ∈ Zp such
that e2 = −1. Let

f : A → Zp × Zp, f
%"

a b
−b a

#&
= (a+ eb, a− eb).

One can easily check that f is a ring homomorphism. Since A and Zp × Zp have p2 elements, it is
enough to show that f is injective in order to deduce that f is a bijection. To show that f is injective,

we have to show that the kernel of f is trivial. Suppose

"
a b
−b a

#
∈ ker f . Then a+ eb = a− eb = 0.

Adding these equations, we obtain that 2a = 0. Since p is odd, we deduce that a = 0. Having a = 0
and a+ eb = 0, we get that b = 0. Therefore the kernel is trivial, which finishes the proof.

(b) One can check that A is commutative. So to show that A is a field, it is enough to prove that
every non-zero element of A is a unit. We know that

"
x y
z t

#"
t −y
−z x

#
=

"
xt− yz 0

0 xt− yz

#
,

whenever the entries are in a commutative ring. Hence for a, b ∈ Zp we have

(7)

"
a b
−b a

#"
a −b
b a

#
=

"
a2 + b2 0

0 a2 + b2

#
.

If a2 + b2 ∕= 0 in Zp, then it has a multiplicative inverse in Zp and by (7) we obtain that
"

a b
−b a

#−1

= (a2 + b2)−1

"
a −b
b a

#
∈ A.

So it only remains to show that a2 + b2 ∕= 0 if either a ∕= 0 or b ∕= 0. To the contrary, let’s assume
that a2 + b2 = 0 and without loss of generality let’s assume that a ∕= 0. Then a is a unit in Zp, and
so b2 = −a2 implies that

(a−1b)2 = −1,

which contradicts the assumption that x2 = −1 does not have a zero in Zp. □

3. Find the characteristic of Zm1
× Zm2

× · · ·× Zmk
where mi’s are positive integers.

Outline of solution. As it is proved in the lecture, if the additive order of 1A is finite, then the
characteristic of A coincides with the additive order of 1A. The identity of Zm1

× · · · × Zmk
is

([1]m1 , · · · , [1]mk
). The following help us to find the additive order of this element:

n([1]m1 , · · · , [1]mk
) =([0]m1 , · · · , [0]mk

)

⇔∀i, n[1]mi = [0]mi

⇔∀i,mi|n
⇔ lcm(m1, . . . ,mk)|n.

Hence the smallest positive such n is lcm(m1, . . . ,mk). □

4. Suppose p is prime and a is a non-zero element of Zp. Prove that xp − x+ a has no zero in Zp.

Solution. By the Fermat’s little theorem, for every b ∈ Zp we have bp = b. This means the value of
xp − x+ a at x = b is bp − b+ a = a ∕= 0. Hence xp − x+ a has no zero in Zp.

□

5. (a) Show that x2 − 5 does not have a zero in Q[
√
2].

(b) Prove that Q[
√
2] is not isomorphic to Q[

√
5].
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Outline of solution. Suppose to the contrary that there are a, b ∈ Q such that (a+ b
√
2)2 = 5. Then

we have

(8) (a2 + 2b2) + (2ab)
√
2 = 5.

Since
√
2 is irrational, from (8) we deduce that

(9) a2 + 2b2 = 5 and 2ab = 0.

This implies that either a = 0 or b = 0. If a = 0, then by (9) we have that 2b2 = 5 which is a

contradiction as
0
5/2 is irrational. Similarly if b = 0, then by (9) we have that a2 = 5 which is a

contradiction as
√
5 is irrational.

(b) Suppose to the contrary that there is a ring isomorphism f : Q[
√
5] → Q[

√
2]. Then f(1) ∕= 0

(it is injective) and f(1)2 = f(1). Hence f(1) = 1. Hence for every integer n we have f(n) = n.

Now notice that f(
√
5)2 = f(5) = 5. This contradicts part (a) as f(

√
5) ∈ Q[

√
2] would be a zero of

x2 − 5. □

3. Week 3

1. Find all the primes p such that x+ 2 is a factor of

x6 − x4 + x3 − x+ 1

in Zp[x].

Solution. By the factor theorem we know that x + 2 is a factor of f(x) := x6 − x4 + x3 − x + 1 in
Zp if and only if f(−2) = 0 in Zp. This later happens if and only if p divides

f(−2) = (−2)6 − (−2)4 + (−2)3 − (−2) + 1 = 64− 16− 8 + 2 + 1 = 43.

Since 43 is prime, we deduce that the only possible p is 43. □

2. Find a zero of x3− 2x+1 in Z5 and express is as a product of a degree 1 and a degree 2 polynomial.

Solution. One can see that 1 is a zero of this polynomial. By the long division algorithm, we divide
x3 − 2x+ 1 by x− 1, and get that

x3 − 2x+ 1 = (x− 1)(x2 + x− 1).

□

3. Recall that in earlier using the binomial expansion we have proved that (x − 1)p = xp − 1 in Zp[x]
when p is an odd prime. Use this result to show that

"
p− 1

i

#
≡ (−1)i (mod p)

for an odd prime p and an integer i in the range [0, p− 1].

Proof. We have that

(10) xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ 1).

By (10) and (x− 1)p = xp − 1, we have

(11) (x− 1)p = (x− 1)(xp−1 + xp−2 + · · ·+ 1).

Since Zp is an integral domain, so is Zp[x]. Hence the cancellation law holds in Zp[x]. Therefore by
(11), we have

(12) (x− 1)p−1 = xp−1 + · · ·+ 1.
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This means the coefficients of xi in the left hand side and in the right hand side are equal:

(−1)p−1−i

"
p− 1

i

#
≡ 1 (mod p).

Since p is odd, (−1)p−1 = 1 and the claim follows. □

4. Let ω := −1+
√
−3

2 , and let Z[ω] be the image of the evaluation map φω : Z[x] → C.
(a) Prove that Z[ω] = {a+ bω| a, b ∈ Z}.
(b) Show that the field of fraction of Z[ω] is {a+ bω| a, b ∈ Q}.
(Notice that ω2+ω+1 = 0. Deduce that ω+ω = −1 and ωω = 1 where ω is the complex conjugate
of ω. Using these equations, deduce that (a+ bω)(a+ bω) = a2 − ab+ b2.)

Outline of solution. (a) We know that Z[ω] is the smallest ring which contains Z and ω. Also notice
that every subring of C that contains Z and ω, also contains A := {a + bω | a, b ∈ Z} as a subset.
So if we show that A is a ring, we deduce that A = Z[ω]. You can use the subring criterion to show
that A is a subring.

(b) Step 1. We show that F := {a+ bω | a, b ∈ Q} is a field. First using the subring criterion, one
can show that this is a subring of C. Next we show that every non-zero element of F is a unit:

1

a+ bω
=

a+ bω

a2 − ab+ b2
=

a− b(ω + 1)

a2 − ab+ b2
=

a− b

a2 − ab+ b2
− b

a2 − ab+ b2
ω ∈ F.

Step 2. Let f : Z[ω] → Q[ω], f(z) := z be the natural embedding.

Step 3. By the universal property of field of fractions, there is an embedding .f : Q(Z[ω]) → Q[ω]
such that

.f
%z1
z2

&
= f(z1)f(z2)

−1 = z1z
−1
2 .

Step 4. We show that .f is surjective. Every element of Q[ω] is of the form r+sω
t for some integers

r, s, and t. Then
r + sω

t
= .f

%r + sω

t

&
.

□

5. In the setting of problem 4, Let N : Z[ω] → Z≥0, N(z) := |z|2.
(a) Show that we can view N as a norm function of Z[ω], and deduce that Z[ω] is a Euclidean

domain. (Hint. Use the tiling given in Figure 1 to prove the division property of Euclidean
domains)

(b) Prove that Z[ω] is a PID.

Proof. (a) Notice that N(a+ bω) = (a+ bω)(a+ bω) = a2 − ab+ b2 ∈ Z≥0 for every a, b ∈ Z. We also have
that N(z) = 0 if and only if |z| = 0. Hence N(z) = 0 if and only if z = 0.

For every z1 ∈ Z[ω] and z2 ∈ Z[ω] \ {0}, consider the complex number z1
z2
. This complex number belongs

to one the hexagon in the tiling. Let q ∈ Z[ω] be the center of this hexagon. Then z1
z2

− q belongs to the

hexagon in the tiling whose center is 0. Hence
/// z1z2 − q

/// < 1. Let

r := z2

%z1
z2

− q
&
= z1 − qz2.

Then |r| < |z2|. As z1, z2, and q are in Z[ω], we have that r ∈ Z[ω]. Overall we found r, q ∈ Z[ω] such that

z1 = qz2 + r and N(r) < N(z2).

This means that Z[ω] is a Euclidean domain.

(b) We know that every Euclidean domain is a PID. □
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Figure 1. This tiling shows that every complex point after a shift by an element of Z[ω]
can be moved to the central hexagon.

4. Week 4

1. Prove that |Zm[x]/〈
1n

i=0 aix
i〉| = mn if an ∈ Z×

m.

For every f(x) ∈ Zm[x], by the long division there are unique q(x), r(x) ∈ Zm[x] such that

f(x) = q(x)(

n+

i=0

aix
i) + r(x) and deg r < n.

Notice that since the leading coefficient of
1n

i=0 aix
i is a unit, we can apply the long division. So

every element f(x)+ 〈
1n

i=0 aix
i〉 can be uniquely written as r(x)+ 〈

1n
i=0 aix

i〉 for some polynomial

r(x) ∈ Zm of degree less than n. Notice that r(x) =
1n−1

i=0 bix
i for some bi ∈ Zm. For each i, there

are m choices for bi. Hence there are mn polynomials of degree less than n in Zm[x]. This implies
that ///Zm[x]/

2 n+

i=0

aix
i
3/// = mn.

2. Let

c3 : Z6[x] → Z3[x], c3

% n+

i=0

[ai]6x
i
&
=

n+

i=0

[ai]3x
i,

φ−1 : Z3[x] → Z3, φ−1(f(x)) := f(−1), and

ψ : Z6[x] → Z3, ψ(f(x)) := φ−1(c3(f(x))).

You have already seen that c3 and φ−1 are surjective ring homomorphisms, and so you can deduce
that ψ is also a surjective ring homomorphism.
(a) Use the factor theorem, to show that kerφ−1 = 〈x+ [1]3〉.

We have that f(x) ∈ kerφ−1 if and only if −1 is a zero of f . By the factor theorem, −1 is a
zero of f if and only if f(x) is a multiple of x+ [−1]3. The claim follows.
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(b) Prove that kerψ = 〈x+ 1, 3〉. (Notice that here 1 = [1]6 and 3 = [3]6.)

Since ψ = φ−1 ◦ c3, by part (a) we have that f ∈ kerψ if and only if c3(f) is a multiple of
x+ [1]3. Since c3 is surjective, we have that f ∈ kerψ if and only if c3(f) = c3(x+ 1)c3(g) for
some g ∈ Z6[x]. Notice that c3(f) = c3((x+ 1)g) if and only if f(x) = (x+ 1)g(x) + 3h(x) for
some h ∈ Z6[x]. Altogether we have that f(x) ∈ kerψ if and only if f(x) ∈ 〈x + 1, 3〉. This
proves the claim.

(c) Prove that kerψ = 〈2x− 1〉.

Since 2x − 1 = 2(x + 1) − 3 ∈ 〈x + 1, 3〉, we have that 〈2x − 1〉 ⊆ 〈x + 1, 3〉. On the other
hand, 3(2x− 1) = 3 ∈ 〈2x− 1〉, which implies that x+ 1 = 3x− (2x− 1) ∈ 〈2x− 1〉. Therefore
〈3, x+ 1〉 ⊆ 〈2x− 1〉. This completes the proof.

(d) Prove that Z6[x]/〈2x− 1〉 ≃ Z3.

Since c3 and φ−1 are surjective, so is ψ. Hence by part (c) and the first isomorphism theorem,
we obtain part (d).

(e) Explain why |Z6[x]/〈2x− 1〉| = 3 ∕= 61 does not contradict the first problem.

It is not a contradiction as the leading coefficient 2 of 2x − 1 is not a unit in Z6, but this
condition is needed in the first problem.

3. Find the minimal polynomial m 3√5(x) of
3
√
5 over Q.

We know that 3
√
5 is a zero of x3−5. We use the degree 2 or 3 irreducibility criterion, it is enough

to show that x3 − 5 does not have a rational zero. This is the case as 3
√
5 is not rational. So 3

√
5 is a

zero of the monic irreducible polynomial x3 − 5 ∈ Q[x]. Hence m 3√5,Q(x) = x3 − 5.

4. Suppose p(x) ∈ Q[x] is a degree 3 monic polynomial with no rational zeros. Let α ∈ C be a zero of
p(x). Prove that the minimal polynomial of α over Q is p(x).

By the degree 2 or 3 irreducibility criterion, p(x) is irreducible. Since α is a zero of p and p is
monic irreducible in Q[x], p(x) is the minimal polynomial of α over Q.

5. Suppose p is a prime more than 3 and p = a20 − a0b0 + b20 for some integers a0 and b0.

(a) Prove that x2 + x+ 1 has a zero [e]p in Zp such that p|a0 + b0e.

Considering p = a20 − a0b0 + b20 modulo p, we have 0 = a20 − a0b0 + b20 in Zp. If b0 ∕= 0 in Zp,
then it is a unit in Zp. In this case, we have

(b−1
0 a0)

2 − (b−1
0 a0) + 1 = 0,

which implies that −b−1
0 a0 is a zero of x2 + x + 1 in Zp. If b0 = 0 in Zp, then we deduce that

a20 = 0 in Zp. In this case, both a0 and b0 are multiples p. Therefore p2 divides a20−a0b0+b20 = p,

which is a contradiction. Hence e := −b−1
0 a0 in Zp is a zero of x2+x+1. Notice that a0+b0e = 0

in Zp.

(b) Let ω := −1+
√
−3

2 , and f : Z[ω] → Zp, f(a+ bω) := [a+ be]p, where e is given in part (a). Show
that f is a surjective ring homomorphism and a0 + b0ω ∈ ker f .

Check that f is a ring homomorphism. Since f(a) = [a]p for every a ∈ Z, f is surjective. We
have

f(a0 + b0ω) = [a0 + b0e]p = 0;
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and so a0 + b0ω ∈ ker f .

(c) Use the fact that Z[ω] is a PID, and prove that ker f = 〈a0 + b0ω〉.

Since Z[ω] is a PID, ker f is a principal ideal. Suppose that ker f is generated by z. Since
a0 + b0ω ∈ ker f , there is z′ ∈ Z[ω] such that a0 + b0ω = zz′. Recall that N : Z[ω] →
Z≥0, N(x) := |x|2 is a well-defined multiplicative function. Hence

p = N(a0 + b0ω) = N(z)N(z′).

As p is prime, either N(z) = 1 or N(z′) = 1. Notice that ω ∈ Z[ω]; and so for every x ∈ Z[ω] we
have that x ∈ Z[ω]. This implies that if N(x) = 1, then x is a unit in Z[ω]. Since f is surjective,
its kernel is a proper ideal. Hence z cannot be a unit. Therefore z′ is a unit, which implies that

ker f = 〈z〉 = 〈z′z〉 = 〈a0 + b0ω〉.

(d) Prove that
Z[ω]/〈a0 + b0ω〉 ≃ Zp,

This immediately follows from the previous steps and the first isomorphism theorem.

5. Week 5

1. Let I := 〈x, y〉⊳ C[x, y].
(a) Prove that I is a maximal ideal of C[x, y].

Let φ(0,0) : C[x, y] → C,φ(0,0)(f(x, y)) := f(0, 0) be the map of evaluation at (0, 0). Then φ(0,0)

is a ring homomorphism. For every c ∈ C, we have that φ(0,0)(c) = c, where c is viewed as a
constant polynomial. Hence φ(0,0) is surjective. Notice that φ(0,0)(x) = φ(0,0)(y) = 0. Hence

〈x, y〉 ⊆ kerφ(0,0). We also observe that xiyj ∈ 〈x, y〉 if either i ∕= 0 or j ∕= 0. Hence every
polynomial f can be written as

(13) f(0, 0) + xp(x, y) + yq(x, y)

for some p, q ∈ C[x]. Because of (13), we have that if f ∈ kerφ(0,0), then f ∈ 〈x, y〉. Altogether
we deduce that kerφ(0,0) = 〈x, y〉. Therefore by the first isomorphism theorem, we have that

C[x, y]/〈x, y〉 ≃ C,
Hence C[x, y]/〈x, y〉 is a field, which implies that 〈x, y〉 is a maximal ideal.

(b) Prove that I is not principal.

Suppose to the contrary that I is a principal ideal and it is generated by the polynomial f(x, y).
Then there are polynomials p, q such that x = f(x, y)p(x, y) and y = f(x, y)q(x, y). Viewing
these polynomials as elements of (C[x])[y], we can talk about their degree in terms of y. Since
C[x] is an integral domain, so is C[x, y]. Hence the degree of product is the summation of
degrees. Therefore

(14) degy x' () *
0

= degy f + degy p and degx y' () *
0

= degx f + degx q.

By (14) we obtain that degy f = degx f = 0. This means f(x, y) = c is a constant polynomial.
Therefore 〈f〉 is either {0} or C[x, y]. But neither of these options are possible as 〈f〉 = 〈x, y〉
is a maximal ideal by the first part.

2. Let D = Z[
√
−21] and N(z) := |z|2.
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(a) Prove that z ∈ D× if and only if N(z) = 1. Then deduce that D× = {−1, 1}.

(⇒) We have that N(zz′) = |zz′|2 = (|z||z′|)2 = |z|2|z′|2 = N(z)N(z′). Therefore

z ∈ D× ⇒ ∃z′ ∈ D, zz′ = 1 ⇒ ∃z′ ∈ D,N(zz′) = N(1) = 1 ⇒ N(z)N(z′) = 1.

Since N(z) and N(z′) are non-negative integers, N(z)N(z′) = 1 implies that N(z) = 1.
(⇐) If N(z) = 1, then zz = 1 where z is the complex conjugate of z. Notice that for z ∈ D, we
have that z ∈ D. Hence zz = 1 implies that z ∈ D×.
Suppose z = a + b

√
−21. We have proved that z ∈ D× if and only if N(z) = 1. Hence we

have to find all the integer solutions of a2 + 21b2 = 1. Notice if b is a non-zero integer, then
a2+21b2 ≥ 21. Therefore if a, b are integers and a2+21b2 = 1, then b = 0. This in turn implies
that a2 = 1. Thus the only integer solutions of a2 + 21b2 = 1 are a = ±1 and b = 0. Therefore
D× = {±1}.

(b) Prove that
√
−21 is irreducible in D.

Notice N(
√
−21) = 21. Hence by the first part, we have that

√
−21 is not a unit (and clearly

it is not zero). So to show it is irreducible it is enough to prove that
√
−21 = z1z2 for some

z1, z2 ∈ D implies that either z1 or z2 is a unit. Taking norm of both sides, we obtain that
21 = N(z1)N(z2). Therefore N(zi)’s are non-negative divisors of 21. If neither z1 nor z2 is
a unit, then by part (a) we deduce that either N(z1) = 3 or N(z2) = 3. Hence to show that√
−21 is irreducible, it is sufficient to argue why there is no z ∈ D such that N(z) = 3. This is

equivalent to showing that the equation a2 + 21b2 = 3 does not have an integer solution. We
again notice if b is a non-zero integer, then a2 + 21b2 ≥ 21. Hence for integer numbers a and
b, a2 + 21b2 = 3 implies that b = 0. In turn, we deduce that a2 = 3, which does not have an
integer solution.

(c) Show that D/〈
√
−21〉 is not an integral domain.

Notice that 3 × 7 = 21 = −
√
−21

√
−21 ∈ 〈

√
−21〉. Hence (3 + 〈

√
−21〉)(7 + 〈

√
−21〉) = 0

in D/〈
√
−21〉. If this quotient ring is an integral domain, then either 3 + 〈

√
−21〉 = 0 or

7+ 〈
√
−21〉 = 0. This means either there is z ∈ D such that 3 = z

√
−21 or there is z ∈ D such

that 7 = z
√
21. Taking the norm of all these elements, we deduce that either 9 = 21N(z) or

49 = 21N(z) for some z ∈ D. This is a contradiction as 21 ∤ 9 and 21 ∤ 49.

(d) Deduce that D is not a PID.

Suppose to the contrary that D is a PID. Then the ideal generated by an irreducible element
is maximal. Hence the ideal generated by

√
−21 should be a maximal ideal. The quotient ring

by a maximal ideal is a field. Therefore D/〈
√
−21〉 should be a field; in particular, it has to be

an integral domain. This, however, contradicts part (c).

3. Suppose p is prime and E is a field extension of Zp. Suppose there is α ∈ E which is a zero of
xp − x+ 1.
(a) Prove that xp − x+ 1 = (x− α) · · · (x− α− p+ 1).

Solution 1. Notice that 12Zp
= 1Zp = 1Zp1E , and so 1Zp = 1E . Therefore the characteristic

of E is equal to the characteristic of Zp, and it is p. Hence for every a, b ∈ E, we have that
(a+ b)p = ap + bp. This implies that for every i ∈ Zp we have

(α+ i)p − (α+ i) + 1 = αp + ip − α− i+ 1 = (αp − α+ 1) + (ip − i) = 0

where the last equality holds because of Fermat’s little theorem and the assumption that α ∈ E
is a zero of xp − x + 1. Therefore α,α + 1, . . . ,α + (p − 1) are p distinct zeros of xp − x + 1.
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By the generalized factor theorem (notice that since E is an integral domain, we are allowed to
use the generalized factor theorem), we have that

(15) xp − x+ 1 = (x− α)(x− α− 1) · · · (x− α− p+ 1)f(x)

for some f(x) ∈ E[x]. Comparing the degrees of both sides, we deduce that deg f = 0, and
so f(x) = c is a non-zero constant. Comparing the leading coefficients of (15), we obtain that
f(x) = c = 1. Hence

xp − x+ 1 = (x− α)(x− α− 1) · · · (x− α− p+ 1).

Solution 2. We have proved that xp−x = x(x−1) · · · (x−p+1) in Zp[x] ⊆ E[x]. Substituting

x− α for x, we obtain

(x− α)p − (x− α) = (x− α)(x− α− 1) · · · (x− α− p+ 1).

Since the characteristic of E is p, we have (x− α)p = xp − αp, and so

(16) (x− α)(x− α− 1) · · · (x− α− p+ 1) = xp − x− (αp − α).

Since α is a zero of xp − x+ 1, we have that αp − α = −1. Hence by (16), we obtain

xp − x+ 1 = (x− α)(x− α− 1) · · · (x− α− p+ 1).

(b) Prove that mα,Zp(x) = xp − x+ 1. (Hint. Use part (a) and mα,Zp(x)|xp − x+ 1.)

Since α is a zero of xp − x+ 1 ∈ Zp[x], the minimal polynomial mα,Zp(x) of α over Zp divides
xp − x+ 1. This means that there is p(x) ∈ Zp[x] such that

(17) mα,Zp
(x)p(x) = (x− α)(x− α− 1) · · · (x− α− p+ 1).

This means for every i ∈ Zp, we have that either mα,Zp
(α + i) = 0 or p(α + i) = 0. Next we

discuss why α+ i cannot be a zero of both of the factors mα,Zp(x) and p(x). Notice that for a
given i, if α+i is a zero of mα,Zp(x), then by the factor theorem there mα,Zp(x) = (x−α−i)f(x)
for some f(x) ∈ Zp[x]. This implies that

f(α+ i)p(α+ i) =
4

j ∕=i

((α+ i)− (α+ j)) ∕= 0.

This means we get a partition of the set of zeros {α + i | i ∈ Zp} into two sets. The first set
consists of elements that are zeros of mα,Zp

(x) and the second set consists of zeros of p(x). Now
using the generalized factor theorem and the fact that mα,Zp

(x) is a monic polynomial, after
comparing the degrees we deduce that

(18) mα,Zp(x) = (x− α− i1) · · · (x− α− ik)

for some subset {i1, . . . , ik}.
This part of the argument gets significantly simplified using the uniqueness of factorization and
the fact that degree one factors are irreducible: since mα,Zp(x) is a monic divisor of

(x− α)(x− α− 1) · · · (x− α− p+ 1),

it is a product of a subset of these irreducible factors. This immediately takes us to (18).1

From (18), we have that the coefficient of xk−1 in mα,Zp(x) is −(kα+ i1 + · · ·+ ik). As all the
coefficients of mα,Zp(x) are in Zp and ij ’s are in Zp, we deduce that kα ∈ Zp. If k ∕= p, then k is a
positive integer less than p. Hence it is a unit in Zp. Therefore kα ∈ Zp implies that α ∈ Zp. In
this case, by Fermat’s little theorem, we have that αp = α. This shows that αp−α+1 = 1 ∕= 0,
which means α cannot be a zero of xp − x+ 1, and we reach to a contradiction. Altogether we
obtain that k = p, which means that degmα,Zp(x) = p. Therefore mα,Zp(x) = xp − x+ 1.

1For the purposes of this HW assignment it is was OK to jus make this deduction with no further details.
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(c) Deduce that xp − x+ 1 is irreducible in Zp[x].

The minimal polynomial of every algebraic element over a field is irreducible. Since xp−x+1 =
mα,Zp(x), we deduce that xp − x+ 1 is irreducible in Zp[x].

4. Prove that f(x) := x5 − 15x3 + 10x2 − 21x+ 2021 is irreducible in Q[x]. (Hint: Use Problem 3)

Notice that f(x) modulo 5 is x5 − x + 1 which is irreducible by problem 3. Moreover f(x) is a
monic polynomial, and so by the mod-p criterion, we have that f(x) is irreducible in Q[x].

6. Week 6

(Thanks to Alex Mathers for providing these solutions.)

1. Suppose A is a Noetherian unital commutative ring and I is an ideal of A. Prove that A/I is
Noetherian.

We give two solutions: for both solutions we recall that every ideal of J̄ ⊳ A/I can be written in
the form J̄ = J/I for an ideal J ⊳A containing I.

Solution 1. Consider an ascending chain of ideals J̄1 ⊆ J̄2 ⊆ · · · of A/I. Per our remark, each
ideal J̄i can be written in the form J̄i = Ji/I for an ideal Ji ⊳ A containing I. Then we claim
Ji/I ⊆ Ji+1/I implies Ji ⊆ Ji+1: if a ∈ Ji then a + I ∈ Ji/I ⊆ Ji+1/I, so a + I = x + I for some
x ∈ Ji+1, and from this we see there is some y ∈ I ⊆ Ji+1 such that a = x+ y ∈ Ji+1.

With this in mind we see we have an ascending chain J1 ⊆ J2 ⊆ · · · of ideals of A, and applying
the Noetherian hypothesis we see there is some n0 such that Jn0

= Jn0+1 = · · · . From this we
conclude J̄n0 = J̄n0+1 = · · · , which proves A/I is Noetherian.

Solution 2. Recall a unital commutative ring is Noetherian if and only if every ideal is finitely
generated. Consider an ideal J̄ ⊳A/I, which per our remark above has the form J̄ = J/I for an ideal
J ⊳A containing I. Because A is Noetherian, the ideal J is finitely generated, say J = 〈x1, . . . , xn〉.
Then we claim J/I = 〈x1 + I, . . . , xn + I〉. The inclusion 〈x1 + I, . . . , xn + I〉 ⊆ J/I = J is clear.
On the other hand, if we take an element x+ I ∈ J/I where x ∈ J , we can find a1, . . . , an ∈ A such
that x = a1x1 + · · ·+ anxn. Then one sees that

x+ I = (a1 + I)(x1 + I) + · · ·+ (an + I)(xn + I) ∈ 〈x1 + I, . . . , xn + I〉.

2. Let α :=
0
1 +

√
3. Find the minimal polynomial of α over Q.

Notice α2 = 1 +
√
3, and therefore we have

3 = (α2 − 1)2 = α4 − 2α2 + 1,

and thus α is a root of x4−2x2−2. One sees this polynomial is irreducible in Q[x] with Eisenstein’s
criterion and therefore it is the minimal polynomial of α over Q.

3. Suppose f(x) and g(x) are monic integer polynomials. Prove that f(x)|g(x) in Q[x] if and only if
f(x)|g(x) in Z[x].

Clearly if f(x)|g(x) in Z[x], then f(x)|g(x) in Q[x]. On the other hand suppose f(x)|g(x) in
Q[x], say g(x) = f(x)q(x) for some q(x) ∈ Q[x]. By Gauss’s lemma we have α(g) = α(f)α(q), but
α(g) = α(f) = 1 by our hypotheses, so α(q) = 1, and from the definition of content one sees this
implies that q(x) ∈ Z[x].
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4. Suppose n is a positive odd integer. Prove that f(x) = (x − 1)(x − 2) · · · (x − n) − 1 is irreducible
in Q[x]. (Hint. Assume the contrary and first reduce it to the case where f(x) = g(x)h(x) for some
non-constant integer polynomials g(x) and h(x). Then consider f(i) for integer i in [1, n], and think
about g(x)2 − 1 and h(x)2 − 1.)

Suppose f(x) is not irreducible in Q[x], say f(x) = g(x)h(x) for some non-constant g, h ∈ Q[x].
Using Theorem 11.3.1 one can reduce to the case where g, h ∈ Z[x]. Because deg(g) + deg(h) =
deg(f) = n is odd, we have deg(g) ∕= deg(h), say without loss of generality deg(g) < deg(h). Then
one sees that

2 deg(g) < deg(g) + deg(h) = deg(f) = n.

Now notice for any i ∈ {1, 2, . . . , n}, we have f(i) = −1, so g(i) = ±1. As a result we see that the
polynomial g(x)2 − 1 vanishes at each i ∈ {1, . . . , n}, so it has at least n distinct roots. But g is
non-constant which implies g(x)2 − 1 is non-constant of degree 2 deg(g) < n, and comparing with
the fact that g(x)2 − 1 has n distinct roots we have a contradiction.

5. Suppose p is prime, f(x) ∈ Zp[x] is irreducible, and n := deg f .
(a) Let F := Zp[x]/〈f(x)〉. Prove that F is a field of order pn, which contains a copy of Zp.

Recall that Zp[x] is a PID because Zp is a field. Thus the fact that f(x) is irreducible in Zp[x]
implies that 〈f(x)〉 is a maximal ideal of Zp[x], and then Zp[x]/〈f(x)〉 is a field. To see it has
order pn one can apply Homework 4, Problem 1.

(b) Prove that α := x + 〈f(x)〉 is a zero of f(X) ∈ Zp[X] ⊆ F [X] (we consider the coefficients as
elements of the copy of Zp in F ).

Write f(x) = a0 + a1x + · · · + anx
n where ai ∈ Zp. Written as an element of F [X] we have

f(X) = (a0 + 〈f(x)〉) + (a1 + 〈f(x)〉)X + · · ·+ (an + 〈f(x)〉)Xn. Plugging in α we calculate

f(α) = f(x+ 〈f(x)〉)
= (a0 + 〈f(x)〉) + · · ·+ (an + 〈f(x)〉)(x+ 〈f(x)〉)n

= (a0 + a1x+ · · ·+ anx
n) + 〈f(x)〉

= f(x) + 〈f(x)〉
= 0 + 〈f(x)〉
= 0F .

This shows α is a zero of f .

(c) Prove that αpn

= α. (Hint: for α ∕= 0, consider the group F× of units of F .)

If α = 0 then the result holds. If α ∕= 0 then α ∈ F×, which is a group of order pn − 1 under
multiplication. Thus Lagrange’s theorem tells us that αpn−1 = 1, and multiplying by α gives
the result.

(d) Prove that f(X)|Xpn −X in Zp[X].

Notice α is a root of Xpn −X by part (c), and therefore mα,Zp
(X)|Xpn −X in Zp[x]. But also

notice that 1
an

f(X) is a monic irreducible polynomial in Zp[X] with α as a root, and hence
1
an

f(X) = mα,Zp(X). As a result one sees that f(X)|Xpn −X in Zp[X] as well.
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7. Week 7

(Thanks to Alex Mathers for providing most of these solutions.)

1. Suppose D is a UFD, and Q(D) is the field of fractions of D. For f(x) ∈ Q(D)[x], let f̄(x) := prim(f)
be the primitive form of f . Prove f ∈ Q(D)[x] is irreducible if and only if f̄ is irreducible in D[x].

Suppose f is reducible in Q(D)[x], say f(x) = g(x)h(x) for non-constant g, h ∈ Q(D)[x]. Then
because the prim function is multiplicative, we have f̄(x) = ḡ(x)h̄(x) where ḡ, h̄ are the primitive
forms of g, h. Because deg(ḡ) = deg(g) and deg(h̄) = deg(h), we see that f̄(x) is a product of
non-constant polynomials in D[x], in particular it is a product of non-units in D[x], so it is reducible
as well.

Now suppose f̄ is reducible in D[x], say f̄(x) = p(x)q(x) for some non-units p, q ∈ D[x] (remark:
we cannot immediate say from the definition that f̄(x) is a product of non-constant polynomials,
think about 2x in Z[x]). Then by Gauss’s lemma we have α(f̄) = α(p)α(q), and α(f̄) = 1 because
f̄ is primitive. Since p, q ∈ D[x], we have α(p),α(q) ∈ D, so α(p)α(q) = 1 tells us that α(p) and
α(q) are units in D, i.e. p and q are primitive polynomials. Now if one of them were constant, say p
constant, then we’d have p(x) = α(p) ∈ D×, contradicting the fact that p, q are non-units in D[x].
Thus p and q are non-constant, and then we have a factorization

f(x) = α(f)f̄(x) = α(f)p(x)q(x) = (α(f)p(x))q(x)

which shows that f factors into a product of non-constant polynomials in Q(D)[x], so it is reducible.

2. Prove that C[x, y]/〈xn + yn − 1〉 is an integral domain.

The quotient C[x, y]/〈xn + yn − 1〉 is an integral domain if and only if the ideal 〈xn + yn − 1〉
is a prime ideal of C[x, y]. This ideal is prime if and only if the element xn + yn − 1 is a prime
element of C[x, y], and because C[x, y] is a UFD this is the same as being an irreducible element of
C[x, y]. As a first step to show xn + yn − 1 is irreducible in C[x, y], we will view it as a polynomial
in (C[y])[x] and apply Eisenstein’s criterion (remark: notice we can apply Eisenstein’s criterion
because C[y] is a UFD). As an element of (C[y])[x], it is equal to xn + (yn − 1), i.e. it is monic with
constant term yn − 1 ∈ C[y]; we need to find a prime element p ∈ C[y] such that p|(yn − 1) and
p2 ∤ (yn − 1). For this we take p = y − 1. One has yn − 1 = (y − 1)(yn−1 + · · · + y + 1) in C[x, y],
so (y − 1)|(yn − 1), and because yn−1 + · · · + y + 1 does not have a root at 1, we see by the factor
theorem that (y−1) ∤ (yn−1+ · · ·+y+1), so (y−1)2 ∤ (yn−1). Thus the conditions for Eisenstein’s
criteria are satisfied for D = C[y] and p = y − 1.

The result of Eisenstein’s criterion is that xn + (yn − 1) cannot be written as a product of
polynomials of smaller degree in (C[y])[x]. Now suppose we have a factorization xn + yn − 1 =
f(x, y)g(x, y) for f, g ∈ C[x, y]. Then viewing these as elements of (C[y])[x], because xn + yn − 1
cannot be written as a product of polynomials of smaller degree in (C[y])[x], one of the two must be
constant, without loss of generality say f is constant (remark: this does not mean f ∈ C; we mean
f is constant as a polynomial in (C[y])[x], so f ∈ C[y]). By comparing leading coefficients (i.e. the
leading terms in as polynomials in x, because we are viewing these as elements of (C[y])[x]), because
xn + (yn − 1) is monic we deduce that f ∈ C[y]× = C; but then f is a unit in C[x, y] so this shows
xn + yn − 1 is irreducible.

Remark. Here is the right generalization of Eisenstein’s irreducibility criterion as it is formulated
in Theorem 12.2.1.
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Theorem (Eisenstein’s criterion for UFDs). Suppose D is a UFD, f(x) := anx
n + · · ·+ a1x+ a0 ∈

D[x] and p ∈ D is prime. If

p ∤ an, p|an−1, . . . , p|a0, and p2 ∤ a0,

then f is irreducible in Q(D)[x].

Combining Eisenstein’s irreducibility criterion for UFDs and problem 1 imply that if a monic
polynomial satisfies the conditions of Eisenstein’s irreducibility criterion, then it is irreducible in
D[x]. For future reference, you are allowed to use these formulations after carefully stating them.

3. Prove that x3 + 12x2 + 18x+ 6 is irreducible in (Z[i])[x].

We again use Eisenstein’s criterion for UFDs: our coefficient ring is D = Z[i] (which is a UFD
because we have proved it is a PID), and we will take p = 3 as our prime element. First we need
to show this is actually a prime element: recall the norm function N : Z[i] → Z≥0, N(z) := |z|2 is
multiplicative, and that N(z) = 1 ⇐⇒ z ∈ Z[i]×. We first notice that N(3) = 9 ∕= 1, so 3 /∈ Z[i]×,
and clearly 3 is non-zero, so 3 /∈ Z[i]× ∪ {0}.

Now suppose 3 = xy for elements x, y ∈ Z[i]. We have 9 = N(3) = N(xy) = N(x)N(y), and we
claim we cannot have N(x) = N(y) = 3; if this were the case then, writing x = a + bi for a, b ∈ Z,
we would have

3 = N(x) = N(a+ bi) = a2 + b2,

but notice 3 cannot be written as the sum of two squares in Z so this is impossible. Thus from
N(x)N(y) = 9 we have that either N(x) = 1 or N(y) = 1, and so either x or y is a unit in Z[i],
showing 3 is irreducible in Z[i].

Now we can continue with our proof: we wish to invoke Eisenstein’s criterion for the polynomial
x3 + 12x2 + 18x+ 6 and the prime element p = 3 in Z[i]; clearly 3 divides all the coefficients except
the leading term, and we need to see that 32 ∤ 6 in Z[i]: but if 9|6 in Z[i], then using multiplicativity
of the norm function one would have N(9)|N(6) in Z, i.e. 81|36 in Z, which we know does not hold.
Thus the conditions of Eisenstein’s irreducibility criterion hold. Since this is monic polynomial, by
the remark made at the end of the previous problem, we deduce that it is an irreducible element of
(Z[i])[x].

Alternatively we can avoid using the above mentioned remark and continue as follows:
Thus we can invoke Eisenstein’s criterion to tell us that x3 + 12x2 + 18x + 6 cannot be written

as a product of polynomials of smaller degree in (Z[i])[x]. We are not quite done: one needs to note
that if x3 + 12x2 + 18x + 6 = f(x)g(x) for f, g ∈ (Z[i])[x], then we know one of the terms must be
constant, but then by comparing leading coefficients whichever polynomial is constant would then
be a unit in Z[i], and thus we see that x3 + 12x2 + 18x+ 6 is irreducible in (Z[i])[x].

Remark. One can repeat the above argument and show that if p is a prime integer and p ≡ 3
(mod 4), then p is irreducible in Z[i]. As before, we can see that p is neither zero nor a unit. Suppose
p = ab for some a, b ∈ Z[i]. This implies that p2 = N(a)N(b). Hence by a similar argument as above
it is sufficient to show that there is no a ∈ Z[i] such that N(a) = p. Suppose to the contrary that
there are integers x and y such that N(x + iy) = p. This means p = x2 + y2. Considering both
sides modulo 4, we deduce that x2 + y2 ≡ 3 (mod 4). Notice that for every integer z, we have that
z2 is either 0 or 1 modulo 4. Hence x2 + y2 can never be 3 modulo 4. This gives us the needed
contradiction (From this point on you are allowed to use this fact if needed.).

4. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.

If I is a non-zero prime ideal of D, then because D is a PID we must have I = 〈p〉 for some element
p ∈ D. Now I non-zero implies that p ∕= 0, and then the fact that I is prime implies that p is a prime
element of D. But then p is an irreducible element of D (prime elements are always irreducible in
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an integral domain), and then because D is a PID this implies that I = 〈p〉 is a maximal ideal of D.

5. Suppose D is a UFD, and 〈a, b〉 = 〈gcd(a, b)〉 for every a, b ∈ D \ {0}.
(a) Prove that every finitely generated ideal of D is principal.

First we notice (remark: this means if the following equality is not clear to you, then prove it
yourself before moving on!) that if we are given elements x1, . . . , xn, y1, . . . , ym of D, then

〈x1, . . . , xn, y1, . . . , ym〉 = 〈x1, . . . , xn〉+ 〈y1, . . . , ym〉.
We prove by induction on n that any ideal generated by n elements, i.e. an ideal of the form
〈x1, . . . , xn〉, is principal. The base case n = 1 is trivial. So we focus on the induction step;
that means we assume that the result is true for an integer n, show that an ideal generated by
n+ 1 elements is principal as well. For an ideal 〈x1, . . . , xn+1〉, by the induction hypothesis we
have that 〈x1, . . . , xn〉 is principal, say 〈x1, . . . , xn〉 = 〈y〉. We then calculate

〈x1, . . . , xn+1〉 = 〈x1, . . . , xn〉+ 〈xn〉
= 〈y〉+ 〈xn+1〉
= 〈y, xn+1〉
= 〈gcd(y, xn+1)〉.

Thus 〈x1, . . . , xn+1〉 is principal and we have the result by induction on n.

(b) For every non-zero non-unit element a of D, {〈d〉 | d|a} is a finite set.

Because a is non-zero and a non-unit, it has a factorization into irreducible elements a =5
p∈PD

pvp(a). If d|a, then by the unique factorization one has that vp(d) ≤ vp(a) for all

p ∈ PD. In particular we have d = u
5

p∈PD
pnp for some integers 0 ≤ np ≤ vp(a) and some

unit u ∈ D×, and then

〈d〉 = 〈u
4

p∈PD

pnp〉 = 〈
4

p∈PD

pnp〉.

Thus we see every ideal 〈d〉 for d|a has the form 〈
5

p∈PD
pnp〉 for some integers 0 ≤ np ≤ vp(a).

Because vp(a) = 0 for all but finitely many p ∈ PD, we see that the set of such ideals 〈
5

p∈PD
pnp〉

for 0 ≤ np ≤ vp(a) is finite, so the set {〈d〉 | d|a} is finite.

(c) Prove that D is a PID.

Solution 1. By part (a) every finitely generated ideal is principal, so we just need to show that
every ideal of D is finitely generated. To the contrary, suppose we have an ideal I ⊳D which
is not finitely generated. Notice that {0} is finitely generated, so we have I ∕= {0}; thus we can
choose some element a1 ∈ I \ {0}. We then have 〈a1〉 ⊆ I, but the two cannot be equal because
this would mean that I is finitely generated; thus we can choose an element a2 ∈ I \ 〈a1〉.
Continuing this process, for each n we can choose an+1 ∈ I \ 〈a1, . . . , an〉, at each step using the
fact that I is not finitely generated. This gives is an infinite ascending chain of strict inclusions

〈a1〉 ⊊ 〈a1, a2〉 ⊊ 〈a1, a2, a3〉 ⊊ · · · .
But by part (a) we know that every finitely generated ideal is principal, so for each n we can
write 〈a1, . . . , an〉 = 〈dn〉 for some dn ∈ D. The our ascending chain can be rewritten as

〈a1〉 ⊊ 〈d2〉 ⊊ 〈d3〉 ⊊ · · · .
But for each n, the fact that 〈a1〉 ⊆ 〈dn〉 implies that dn|a1. Thus {〈dn〉 | n ≥ 2} ⊆ {〈d〉 | d|a}.
Notice the set on the left is infinite because our ascending chain is infinite with strict inclusions.
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On the other hand, notice a1 is non-zero by choice, and also a1 is not a unit (if it were a unit
then a1 ∈ I would imply that I = D = 〈1〉 which is finitely generated), so we can invoke part
(b) to see that the set on the right is finite, giving a contradiction.

Solution 2. By part (a) every finitely generated ideal is principal, so we just need to show that
every ideal of D is finitely generated. Suppose I is an ideal of D. If I is the 0 ideal or D, then
it is clearly principal. So without loss of generality we can and will assume that I is a non-zero
proper ideal. Hence there is a0 ∈ I which is not zero and non-unit. By part (b), there are
finitely many divisors d1, . . . , dk of a0 such that

(19) {〈d〉 | d|a0} = {〈d1〉, . . . , 〈dk〉}.
For every b ∈ I, by hypothesis, 〈a0, b〉 = 〈gcd(a0, b)〉. Hence by (19), there is an index i(b)
which depends on b such that

〈a0, b〉 = 〈di(b)〉.
Claim. 〈di(b) | b ∈ I〉 = I. In particular, I is finitely generated.
Proof of Claim. Let J := 〈di(b) | b ∈ I〉. Then, for every b ∈ I, b ∈ 〈a0, b〉 = 〈di(b)〉. Hence
b is a multiple of di(b), which implies that b is in J . Therefore I ⊆ J . For every b ∈ I,
di(b) ∈ 〈a0, b〉 ⊆ I. Hence di(b)’s are in I. Therefore J ⊆ I as J is generated by di(b)’s.

8. Week 8

(Thanks to Alex Mathers for providing these solutions.)

1. This is an exercise from math100a which gives us a characterization of cyclic groups.
(a) Suppose Cn := {1, a, . . . , an−1} is a cyclic group of order n. Show that if d|n, then Cn has

exactly φ(d) elements of order d. Use this to conclude that
+

d|n

φ(d) = n.

Let d|n. Recall that, because Cn is a cyclic group, it has a unique subgroup of order d, call it
H. Now by the uniqueness of this subgroup we see that for an element x ∈ Cn we have

o(x) = d ⇐⇒ |〈x〉| = d ⇐⇒ 〈x〉 = H.

So it suffices to count the number of elements which generate H. But H is a cyclic group of
order d, so from 100a we know H has φ(d) generators (see the extra remark at the end of the
solution to recall why this holds), and thus Cn has φ(d) elements of order d. Now the final
equality follows by noting that every element of Cn has order d for some d|n, leading us to the
equality of sets 6

d|n

{x ∈ Cn | o(x) = d} = Cn,

upon which taking cardinalities produces the desired equality.

Remark: let H = 〈x〉 be a cyclic group of order d. Then any element of H has the form xm for
some 1 ≤ m < d, and we recall from 100a that

o(xm) =
o(x)

gcd(o(x),m)
=

d

gcd(d,m)
.

Thus we get o(xm) = d ⇐⇒ gcd(d,m) = 1, and so the number of elements of order d (i.e. the
number of generators of H) is exactly the number of m ∈ {1, . . . , d−1} such that gcd(d,m) = 1,
i.e. equal to φ(d).
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(b) Suppose G is a finite group and for every positive integer d,

|{g ∈ G | gd = 1}| ≤ d.

Prove that G is cyclic.

Let ψ(d) denote the number of elements of G of order d. If we are given an element g ∈ G of
order d, then 1, g, . . . , gd−1 are distinct elements of G all satisfying xd = 1. By the hypothesis
then we see that 1, g, . . . , gd−1 are the only elements of G satisfying xd = 1; the elements which
have order d are then exactly the powers gm where gcd(d,m) = 1 (for example see our remark
at the end of the previous solution). Overall we see that if ψ(d) ∕= 0, i.e. if G has an element of
order d, then we can follow the above argument and find that there are exactly φ(d) elements
of order d, so ψ(d) = φ(d) in this case.

Now letting n = |G| we have that n =
1

d|n ψ(d), for instance by taking the same partition as

in part (a), i.e. G =
7

d|n{x ∈ G | o(x) = d}, and taking cardinalities. Now we also know from

part (a) that n =
1

d|n φ(d). We claim from this we can deduce that ψ(d) ∕= 0 for any d|n. For
a contradiction suppose ψ(d0) = 0 for some d0|n; then we calculate

n =
+

d|n

ψ(d) =
+

d|n
ψ(d) ∕=0

ψ(d) =
+

d|n
ψ(d) ∕=0

φ(d) ≤
+

d|n
d ∕=d0

φ(d) <
+

d|n

φ(d) = n.

Notice the third equality follows from the fact that ψ(d) = φ(d) whenever ψ(d) ∕= 0, and the
strict inequality follows because φ(d0) ∕= 0. Overall we obtain n < n, a contradiction; we deduce
that ψ(d) ∕= 0 for any d|n, and in particular we can take d = n to find that ψ(n) ∕= 0, i.e. G has
an element of order n, so G is cyclic.

2. Suppose F is a finite field. Prove that F× is cyclic. Deduce that x2 = −1 has a solution in a finite
field F of odd characteristic if and only if |F | ≡ 1 (mod 4).

We apply 1(b) for G = F×; because xd − 1 has at most d roots in F , we get

|{α ∈ F× | αd = 1}| ≤ d

for any positive integer d, and we deduce from Problem 1(b) that F× is cyclic.

For the second part, we start with the claim that an element α ∈ F satisfies α2 = −1 if and only
if o(α) = 4 in the multiplicative group F×. On one hand if α2 = −1 then α2 ∕= 1 (note that −1 ∕= 1
because char(F ) ∕= 2) but α4 = 1, so we see o(α) = 4; conversely if o(α) = 4 then α2 ∕= 1 but α2 is
a root of x2 − 1 = (x + 1)(x − 1), and this implies α2 = −1. Now with this proven, we recall that
because F× is a cyclic group, it contains an element of order d if and only if d divides |F×| = |F |−1.
Putting these facts together we have

x2 = −1 has a solution in F ⇐⇒ there exists α ∈ F× of order 4

⇐⇒ 4 divides |F×| = |F |− 1

⇐⇒ |F | ≡ 1 (mod 4).

3. Suppose F is a splitting field of xn − 1 over Z3.
(a) Find |F | if n = 3.

Notice x3 − 1 = (x − 1)3 in Z3[x]. Thus x3 − 1 splits into linear factors in Z3[x], and one sees
that Z3 satisfies the conditions for a splitting field of x3 − 1 over Z3, so |F | = |Z3| = 3.
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(b) Find |F | if n = 13.

We claim that F27 is a splitting field for x13 − 1 over Z3. Notice that 13 divides F×
27 and F×

27 is
cyclic, so there is a subgroup H ≤ F×

27 of order 13. Then by Lagrange’s theorem every element
of H is a root of x13 − 1, and because |H| = 13 we see that x13 − 1 splits into linear factors
in F27[x], with roots exactly the elements of H. Let α1, . . . ,α13 denote the roots of x13 − 1 in
F27, i.e. the elements of H. Then we consider the subfield F := Z3[α1, . . . ,α13] ⊆ F27 which is
a splitting field of x13 − 1 over Z3.

Now we claim that |F | = 27. Because F is a field extension of Z3 and contained in F27, the
possible orders of F are 3, 9, or 27 (the order must be a power of 3). But notice that H ≤ F×

by construction, so |H| divides |F×| = |F |− 1, and this rules out 3 and 9. Thus |F | = 27.

(c) Find |F | if n = 39.

Notice that x39 − 1 = (x13 − 1)3 in Z3[x], which implies that the splitting field of x39 − 1 over
Z3 equals the splitting field of x13 − 1 over Z3, so by part (b) we have |F | = 27.

4. Suppose p is prime and ζp := e2πi/p.
(a) Prove that for every integer j in [1, p− 1], there is an isomorphism θj : Q[ζp] → Q[ζp] such that

θj(ζp) = ζjp .

Recall 1, ζp, . . . , ζ
p−1
p are the roots of xp − 1 in C, and from xp − 1 = (x− 1)(xp−1 + · · ·+ x+1)

we see that ζp, ζ
2
p , . . . , ζ

p−1
p are the roots of xp−1+ · · ·+x+1 in C, and we know this polynomial

is irreducible in Q[x]. Thus from Lemma 16.2.2 for each integer j ∈ [1, p− 1] there exists some
isomorphism θj : Q[ζp] → Q[ζjp ] = Q[ζp] such that θj(ζp) = ζjp .

Remark: We used here that Q[ζp] = Q[ζjp ]. To prove this, first we clearly have Q[ζjp ] ⊆ Q[ζp];
conversely notice that, because j is coprime to p we can find a, b ∈ Z with aj + bp = 1. Then

ζp = ζaj+bp
p = (ζjp)

a(ζpp )
b = (ζjp)

a ∈ Q[ζjp ].

(b) Prove that if θ : Q[ζp] → Q[ζp] is an isomorphism, then θ = θj for some integer j in [1, p− 1].

Let θ : Q[ζp] → Q[ζp]. Because ζp is a root of xp−1 + · · ·+ x+1 ∈ Q[x] and θ must fix elements
of Q (i.e. θ(a) = a for a ∈ Q), we have that θ(ζp) must be a root of xp−1 + · · · + x + 1. But
we showed in part (a) that the roots of this polynomial are exactly ζp, ζ

2
p , . . . , ζ

p−1
p , and so

θ(ζp) = ζjp = θj(ζp) for some integer j ∈ [1, p − 1]. We claim this implies that θ = θj . To see

this, we take an arbitrary element of Q[ζp], which must have the form
1p−2

i=0 aiζ
i
p for ai ∈ Q.

Then using the fact that θ and θj are ring homomorphisms we compute

θ
, p−2+

i=0

aiζ
i
p

-
=

p−2+

i=0

ai θ(ζp)
i =

p−2+

i=0

ai θj(ζp)
i = θj

, p−2+

i=0

aiζ
i
p

-
.

Because this element was arbitrary we conclude θ = θj .

9. Week 9

(Thanks to Alex Mathers for providing these solutions.)

1. Suppose f(x) ∈ F [x] is irreducible. Let E be a splitting field of f over F . Let α ∈ E be a zero of F .
Prove that

|EmbF (F [α], E)| = number of distinct zeros of f in E.
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We show in fact that we have a bijection

EmbF (F [α], E) → {zeros of f in E}

given by sending θ 5→ θ(α). This map makes sense because any θ ∈ EmbF (F [α], E) must send zeros
of f to zeros of f . For surjectivity we need to see that for any zero α′ of f , there is an element
θ ∈ EmbF (F [α], E) such that θ(α) = α′. For any such α′ we have the subfield F [α′] ⊆ E, and we
know because f is irreducible that there is an isomorphism F [α] → F [α′] sending α 5→ α′, and then
we take θ to be the composition F [α] → F [α′] ↩→ E where the latter map is the inclusion map.

Now we need to show injectivity, i.e. we need to show that given θ, θ′ ∈ EmbF (F [α], E) such that
θ(α) = θ′(α), then θ = θ′. For this we first write f(x) = c0 + · · ·+ cnx

n for ci ∈ F . Then we take an

arbitrary element of F [α], which has the form
1n−1

i=0 ciα
i for some ci ∈ F . Now using the fact that

θ, θ′ are ring homomorphisms and θ(ci) = ci = θ′(ci) for each i we calculate

θ
, n−1+

i=0

ciα
i
-
=

n−1+

i=0

ci θ(α)
i =

n−1+

i=0

ci θ
′(α)i = θ′

, n−1+

i=0

ciα
i
-
.

Thus θ = θ′, which completes the proof of injectivity, and hence the proof that our map is a bijection.

2. Suppose F is a field and E is a splitting field of g(x) ∈ F [x] \ F over F .
(a) Suppose L is a field extension of E. Prove that, for every θ ∈ EmbF (E,L), θ(E) = E.

Let β1, . . . ,βm be the roots of g(x) in E, so by hypothesis E = F [β1, . . . ,βm]. We know that
for each i, θ(βi) is a root of g(x), so θ(βi) = βj for some j. Thus θ restricts to a function
{β1, . . . ,βm} → {β1, . . . ,βm}, and because θ is injective this restriction is also surjective as
well, i.e. θ restricts to a permutation of the set of roots. Using this fact, and the F -linearity of
θ we have

θ(E) = θ(F [β1, . . . ,βm]) = F [θ(β1), . . . , θ(βm)] = F [β1, . . . ,βm] = E.

Remark: if one finds the above line unsatisfying, we can be more precise: on one hand, any
element of E has the form of a finite sum

1
i1,...,im

ci1···imβi1
1 · · ·βim

m for some nonnegative
integers ij , and then

θ
, +

i1,...,im

ci1···imβi1
1 · · ·βim

m

-
=

+

i1,...,im

ci1···imθ(β1)
i1 · · · θ(βm)im ,

which is an element of E because each coefficient ci1···im ∈ E and θ(βj) ∈ E for each j. On the
other hand recall E = F [β1, . . . ,βm] is the smallest subring of E containing F and β1, . . . ,βm.
But we have βj ∈ θ(E) and F ⊆ θ(E), so it follows that θ(E) is a subring of E containing F
and β1, . . . ,βm, thus E ⊆ θ(E) as well, giving θ(E) = E.

(b) Suppose α ∈ E, and let L be a splitting field of mα,F (x) over E. Prove L is a splitting field of
mα,F (x)g(x) over F .

We retain notation from the previous solution, so E = F [β1, . . . ,βm] where the {βi} are the
roots of g(x) in E. We let α1, . . . ,αn denote the roots of mα,F in L; then by hypothesis
L = E[α1, . . . ,αn]. Now in L[x] we have

mα,F (x)g(x) = (x− α1) · · · (x− αn)(x− β1) · · · (x− βm),

and in addition

L = E[α1, . . . ,αn] = (F [β1, . . . ,βn])[α1, . . . ,αn] = F [β1, . . . ,βm,α1, . . . ,αn].

This shows L is a splitting field of mα,F (x)g(x) over F .
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(c) Suppose α ∈ E, and let L be a splitting field of mα,F (x) over E. Let α′ ∈ L be a zero of

mα,F (x). Prove that there is 8θ ∈ EmbF (L,L) such that 8θ(α) = α′.

Consider the subfields F [α] and F [α′] of L. We know because mα,F (x) is irreducible in F [x],
there exists an F -linear isomorphism θ : F [α] → F [α′] such that θ(α) = α′. We know by part
(b) that L is a splitting field of mα,F (x)g(x) over F , so L is also a splitting field of mα,F (x)g(x)
over both F [α] and F [α′]. Thus we can invoke Theorem 17.1.1 to find an an isomorphism
8θ : L → L which extends θ. In particular we get 8θ(α) = θ(α) = α′, and for any c ∈ F we have
8θ(c) = θ(c) = c, so 8θ ∈ EmbF (L,L) has the desired properties.

(d) Suppose α ∈ E. Prove that mα,F (x) factors as a product of degree 1 polynomials in E[x].

Let L be a splitting field for mα,F (x) over E. We will show that all roots of mα,F (x) in L
actually lie in E. To this end, let α′ ∈ L be a root of mα,F (x); by part (c) we know that there

exists some 8θ ∈ EmbF (L,L) such that 8θ(α) = α′. But restricting the domain to E we have
8θ|E ∈ EmbF (E,L), and then part (a) implies that 8θ|E(E) = E. In particular, because α ∈ E

we find 8θ|E(α) ∈ E, i.e. 8θ(α) ∈ E, and so α′ ∈ E as desired.

3. Suppose E is a splitting field of g(x) ∈ F [x] \ F over F . Suppose E = F [α] for some α. Prove that

|EmbF (E,E)| = number of distinct zeros of mα,F (x) in E,

and deduce that |EmbF (E,E)| ≤ [E : F ].

By Problem 2 we see that mα,F (x) splits into linear factors in E[x]; it follows that E is a splitting
field for mα,F over F . Thus we can apply Problem 1 to find that

|EmbF (E,E)| = |EmbF (F [α], E)| = number of distinct zeros of mα,F (x) in E.

For the latter inequality we recall that [F [α] : F ] = deg(mα,F ). Thus we have

|EmbF (E,E)| = number of distinct zeros of mα,F in E ≤ deg(mα,F ) = [F [α] : F ] = [E : F ].

4. Suppose p is prime and n a positive integer. Prove that

EmbZp
(Fpn ,Fpn) = {id,σ, . . . ,σn−1}

where σ : Fpn → Fpn , σ(a) := ap.

Notice that since F×
pn is cyclic, there is α0 ∈ Fpn such that F×

pn = 〈α0〉. Hence Fpn = Zp[α0].
Therefore by Problem 3 we have |EmbZp

(Fpn ,Fpn)| ≤ [Fpn : Zp] = n. On the other hand we claim

that id,σ, . . . ,σn−1 are all distinct elements of EmbZp(Fpn ,Fpn), which by the former inequality
then implies these must be all the elements of EmbZp(Fpn ,Fpn). To see these elements are distinct,

suppose σi = σj for distinct i, j ∈ {0, 1, . . . , n − 1}, say without loss of generality i < j. Then we

have that σj−i = id, i.e. σj−i(α) = α for all α ∈ Fpn . This says that αpj−i

= α for all α ∈ Fpn ,

but then every element of Fpn is a root of xpj−i − x; this is impossible because |Fpn | = pn but this
polynomial has at most pj−i < pn roots. Thus σi ∕= σj and we get the result.

5. Suppose p is a prime. Let E := Q[ζp,
p
√
2] where ζp = e2πi/p ∈ C. Prove that [E : Q] = p(p− 1).

We know the minimal polynomial of ζp over Q is mζp,Q(x) = xp−1 + · · · + x + 1. Thus we have
from lecture that [Q[ζp] : Q] = deg(mζp,Q) = p− 1. So from the tower Q ⊆ Q[ζp] ⊆ E we find using
tower law that

[E : Q] = [E : Q[ζp]] [Q[ζp] : Q] = [E : Q[ζp]](p− 1).
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Furthermore, notice that E = (Q[ζp])[
p
√
2], and we know the minimal polynomial of p

√
2 over Q is

m p√2,Q = xp−2 (this is irreducible over Q by Eisenstein’s criterion). Now by the defining property of

the minimal polynomial, becausem p√2,Q ∈ Q[ζp] vanishes at
p
√
2 we must havem p√2,Q[ζp]

(x)|m p√2,Q(x)

in (Q[ζp])[x], so as a result we find

[E : Q[
p
√
2]] = [(Q[ζp])[

p
√
2] : Q[ζp]] = deg(m p√2,Q[ζp]

) ≤ deg(m p√2,Q) = p.

Now returning to our first equality [E : Q] = [E : Q[ζp]](p − 1) we have that [E : Q] ≤ p(p − 1)

and also p − 1 divides [E : Q]. On the other hand we can consider the tower Q ⊆ Q[ p
√
2] ⊆ E, and

then applying the tower law in this scenario we find [Q[ p
√
2] : Q] divides [E : Q], and we know that

[Q[ p
√
2] : Q] = deg(m p√2,Q) = p, so p divides [E : Q]. Putting this all together see that p and p − 1

both divide [E : Q], which implies p(p− 1) divides [E : Q], and on the other hand we have seen that
[E : Q] ≤ p(p− 1), so we get the equality [E : Q] = p(p− 1).

10. Week 10

2. Prove that AutQ(Q[ζn]) = Z×
n .

We will define a map f : AutQ(Q[ζn]) → Z×
n . First recall that Φn(x) =

5
1≤i≤n,gcd(i,n)=1(x− ζin).

So if θ ∈ AutQ(Q[ζn]), then because θ must map roots of Φn to roots of Φn we must have θ(ζn) = ζin
for some i ∈ Z with gcd(i, n) = 1. We then define f(θ) = [i]n ∈ Z×

n (notice we are not imposing the
restriction 1 ≤ i ≤ n, we are allowing i to be any integer for which θ(ζn) = ζin holds). To show this
is well-defined, we notice that if ζin = ζjn then i ≡ j (mod n). We claim that f is a homomorphism.
To show this, suppose θ,σ ∈ AutQ(Q[ζn]), say with θ(ζn) = ζin and σ(ζn) = ζjn. Then notice that

(θ ◦ σ)(ζn) = θ(σ(ζn)) = θ(ζjn) = θ(ζn)
j = (ζin)

j = ζijn ,

and thus we have f(θ ◦ σ) = [ij]n = [i]n[j]n = f(θ)f(σ), showing f is a homomorphism. Notice
that if θ ∈ ker(f) then this means f(θ) = [1]n, so θ(ζn) = ζn but then θ = id, so f is injective.
For surjectivity notice for any 1 ≤ i ≤ n with gcd(i, n) = 1 we have that ζin is a root of Φn, and so
because Φn is irreducible in Q[x] we get that there is an isomorphism θ : Q[ζn] → Q[ζin] = Q[ζn] such
that θ(ζn) = ζin, and then θ is an element of AutQ(Q[ζn]) satisfying f(θ) = [i]n, showing surjectivity.

Using the results of Lecture 24, we can prove the surjectivity as follows: As xn − 1 has distinct
zero in its splitting filed over Q, it is a separable polynomial of Q[x]. Since Q[ζn] is a splitting field
of xn − 1 over Q and xn − 1 is a separable element of Q[x], |AutQ(Q[ζn])| = [Q[ζn] : Q]. We have
proved that [Q[ζn] : Q] = φ(n) = |Z×

n |. Since the give group homomorphism f : AutQ(Q[ζn]) → Z×
n

is injective and the domain and the codomain have the same number of elements, we deduce that f
is an isomorphism.

3. Prove that AutQ[ζn](Q[ n
√
2, ζn]) is isomorphic to a subgroup of Zn.

We will define a map f : AutQ[ζn](Q[ n
√
2, ζn]) → Zn as follows: notice that n

√
2, ζn

n
√
2, . . . , ζn−1

n
n
√
2

are the roots of xn − 2 in Q[ n
√
2, ζn] we know that for any θ ∈ AutQ[ζn](Q[ n

√
2, ζn]) we must have

θ( n
√
2) = ζi n

√
2 for some i ∈ Z and then we define f(θ) = [i]n ∈ Zn. Similarly to part (a) we have

that this is well-defined; to see it is a homomorphism, suppose we have θ,σ ∈ AutQ[ζn](Q[ n
√
2, ζn]),

say θ( n
√
2) = ζin

n
√
2 and σ( n

√
2) = ζjn

n
√
2. Then we calculate

(θ ◦ σ)( n
√
2) = θ(σ(

n
√
2)) = θ(ζjn

n
√
2) = θ(ζjn) θ(

n
√
2) = ζjn (ζ

i
n

n
√
2) = ζi+j

n
n
√
2,

where we use the fact that θ(ζjn) = ζjn because θ is Q[ζn]-linear. As a result we have

f(θ ◦ σ) = [i+ j]n = [i]n + [j]n = f(θ) + f(σ).
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To see that f is injective, notice that if θ ∈ ker(f) then θ( n
√
2) = n

√
2 and then because θ(ζn) = ζn

(because θ is Q[ζn]-linear) we conclude θ = id. Now because the kernel is trivial we have by the first

isomorphism theorem AutQ[ζn](Q[ n
√
2, ζn]) ≃ Im(f) which is a subgroup of Zn.

4. Suppose n is a positive integer and p is a prime which does not divide n. Suppose En,p is a splitting
field of the n-th cyclotomic polynomial Φn(x) over Zp. Let α ∈ En,p be a zero of Φn(x).

(a) Prove that the multiplicative order of α is n.

Notice αn = 1 because Φn(x)|xn − 1. Let d := o(α) which we know must divide n, and suppose
d < n. Then α is a root of xd − 1, but we have the analagous factorization

xd − 1 =
4

k|d

Φk(x),

and thus Φk(α) = 0 for some k|d. Notice then k|n but k ∕= n since d < n. In the factorization

xn − 1 =
4

d′|n

Φd′(x)

we see that α occurs both as root of Φn(x) and Φk(x); since these are distinct factors, we see
that α is a repeated root of xn − 1, which we claim cannot occur. The formal derivative of
xn − 1 is nxn−1, and that n ∕= 0 since p ∤ n. Thus gcd(xn − 1, nxn−1) = 1, for instance this can
be seen by writing

(n−1x)(nxn−1)− (xn − 1) = 1,

where we’ve used the fact that p ∤ n to see that n ∈ Z×
p . Thus xn − 1 does not have repeated

roots so we have a contradiction.

(b) Prove that En,p = Zp[α] and it is a splitting field of xn − 1 over Zp.

We know from part (a) that o(α) = n. Thus 1,α, · · · ,αn−1 are all distinct elements of En,p,
and they are all roots of xn − 1, and hence these are all the roots of xn − 1. Thus a splitting
field of xn − 1 over Zp is given by Zp[1,α,α

2, . . . ,αn−1] = Zp[α].
Notice that since Φn(x)|xn − 1, all the zeros of Φn(x) in En,p are of the form αi for some
i. Therefore En,p ⊆ Zp[α]. On the other hand, α ∈ En,p which implies that Zp[α] ⊆ En,p.
Altogether we deduce that En,p = Zp[α], which completes our solution.

Alternatively we can prove that Φn(x) =
5

α′∈En,p,o(α′)=n(x − α′) and use this to show that

En,p = Z[α]: Recall from group theory because o(α) = n we have o(αi) = n ⇐⇒ gcd(i, n) = 1.
For each such i, the element αi having order n implies that αi is a root of Φn(x) (it must be a root
of Φd(x) for some d|n, and if it were a root of Φd(x) for d < n then we could conclude it is also a
root of xd−1, contradicting that o(αi) = n). Thus the elements {αi | 1 ≤ i ≤ n−1, gcd(i, n) = 1}
are all roots of Φn(x), and because there are φ(n) such elements and deg(Φn) = φ(n), we see
these are all the roots of Φn(x). Because En,p is a splitting field of Φn(x) over Zp we then have

En,p = Zp[{αi | 1 ≤ i ≤ n− 1, gcd(i, n) = 1}] = Zp[α],

which proves the first claim (and we proved the second claim above).

(c) Prove that |En,p| = pk where k is the multiplicative order of p in Z×
n .

We prove that Fpk is a splitting field of xn− 1 over Zp; by uniqueness of splitting fields we then
conclude (using the result from part (b) as well) En,p ≃ Fpk and we get the result. For the

claim, notice that pk ≡ 1 (mod n), so n|pk − 1 = |F×
pk |, and thus there is a subgroup H ≤ Fpk

of order n (we use for this the fact that F×
pk is cyclic). If we write H = {α1, . . . ,αn}, notice
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every element of H is a root of xn − 1 by Lagrange’s theorem, so we get the factorization
xn − 1 = (x− α1) · · · (x− αn) in Fpk [x], and then a splitting field of xn − 1 over Zp is given by

E := Zp[α1, . . . ,αn] ⊆ Fpk .

We claim that this inclusion is an equality: notice that we must have |E| = pℓ for some 1 ≤ ℓ ≤ k,
and because H ⊆ E× we must have by Lagrange’s theorem that |H| = n divides |E×| = pℓ − 1.
But then we see that pℓ = 1 in Z×

n , and this gives a contradiction if ℓ < k (because k is exactly
the order of p in Z×

n ). Thus ℓ = k, so E = Fpk and we have the result.


