HOMEWORK ASSIGNMENTS

1. Week 1

1. (a) Prove that $A:=\{a+b i \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C}.
(b) Prove that $B:=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Q}\right\}$ is a subring of $\mathrm{M}_{2}(\mathbb{Q})$.
(c) Prove that A and B are isomorphic.
2. An element a of a ring A is called nilpotent if $a^{n}=0$ for some positive integer n. Suppose A is a unital ring and $a \in A$ is nilpotent. Prove that $1_{A}+a$ is a unit.
3. Suppose A and B are unital commutative rings.
(a) Prove that the identity of $A \times B$ is $\left(1_{A}, 1_{B}\right)$.
(b) Prove that the group of units of $A \times B$ is equal to $A^{\times} \times B^{\times}$.
4. Suppose A is a unital commutative ring and $p 1_{A}=0$ for a prime p. Let $F: A \rightarrow A, F(a):=a^{p}$. Prove that F is a ring homomorphism.
5. Describe all the ring homomorphism from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z}.
(In a unital commutative ring A, we say $a \in A$ is a unit if it has a multiplicative inverse. That means a is unit if there is $a^{\prime} \in A$ such that $a a^{\prime}=1_{A}$. This is defined in the third lecture.)

2. Week 2

1. (a) Prove that $\mathbb{Q}[\sqrt{3}]$ is a field.
(b) Prove that $Q(\mathbb{Z}[\sqrt{3}]) \simeq \mathbb{Q}[\sqrt{3}]$ where $\mathbb{Z}[\sqrt{3}]:=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$ and $Q(\mathbb{Z}[\sqrt{3}])$ is the field of fractions of $\mathbb{Z}[\sqrt{3}]$. (You can use without proof that $\mathbb{Z}[\sqrt{3}]$ is a subring of \mathbb{C}.)
2. Suppose p is an odd prime, and let $A:=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{p}\right\}$.
(a) Suppose there are $a_{0}, b_{0} \in \mathbb{Z}$ such that $p=a_{0}^{2}+b_{0}^{2}$. Prove that $A \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
(b) Suppose there is no $x \in \mathbb{Z}$ such that $x^{2} \equiv-1(\bmod p)$. Prove that A is a field.
3. Find the characteristic of $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{k}}$ where m_{i} 's are positive integers.
4. Suppose p is prime and a is a non-zero element of \mathbb{Z}_{p}. Prove that $x^{p}-x+a$ has no zero in \mathbb{Z}_{p}.
5. (a) Show that $x^{2}-5$ does not have a zero in $\mathbb{Q}[\sqrt{2}]$.
(b) Prove that $\mathbb{Q}[\sqrt{2}]$ is not isomorphic to $\mathbb{Q}[\sqrt{5}]$.

3. Week 3

1. Find all the primes p such that $x+2$ is a factor of

$$
x^{6}-x^{4}+x^{3}-x+1
$$

in $\mathbb{Z}_{p}[x]$.
2. Find a zero of $x^{3}-2 x+1$ in \mathbb{Z}_{5} and express is as a product of a degree 1 and a degree 2 polynomial.
3. Recall that in earlier using the binomial expansion we have proved that $(x-1)^{p}=x^{p}-1$ in $\mathbb{Z}_{p}[x]$ when p is an odd prime. Use this result to show that

$$
\binom{p-1}{i} \equiv(-1)^{i} \quad(\bmod p)
$$

for an odd prime p and an integer i in the range $[0, p-1]$.
4. Let $\omega:=\frac{-1+\sqrt{-3}}{2}$, and let $\mathbb{Z}[\omega]$ be the image of the evaluation map $\phi_{\omega}: \mathbb{Z}[x] \rightarrow \mathbb{C}$.
(a) Prove that $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$.
(b) Show that the field of fraction of $\mathbb{Z}[\omega]$ is $\{a+b \omega \mid a, b \in \mathbb{Q}\}$.
(Notice that $\omega^{2}+\omega+1=0$. Deduce that $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$ where $\bar{\omega}$ is the complex conjugate of ω. Using these equations, deduce that $(a+b \omega)(a+b \bar{\omega})=a^{2}-a b+b^{2}$.)
5. In the setting of problem 4 , Let $N: \mathbb{Z}[\omega] \rightarrow \mathbb{Z} \geq 0, N(z):=|z|^{2}$.
(a) Show that we can view N as a norm function of $\mathbb{Z}[\omega]$, and deduce that $\mathbb{Z}[\omega]$ is a Euclidean domain. (Hint. Use the tiling given in Figure 1 to prove the division property of Euclidean domains)
(b) Prove that $\mathbb{Z}[\omega]$ is a PID.

Figure 1. This tiling shows that every complex point after a shift by an element of $\mathbb{Z}[\omega]$ can be moved to the central hexagon.

4. Week 4

1. Prove that $\left|\mathbb{Z}_{m}[x] /\left\langle\sum_{i=0}^{n} a_{i} x^{i}\right\rangle\right|=m^{n}$ if $a_{n} \in \mathbb{Z}_{m}^{\times}$.
2. Let

$$
\begin{aligned}
c_{3}: & \mathbb{Z}_{6}[x] \rightarrow \mathbb{Z}_{3}[x], \quad c_{3}\left(\sum_{i=0}^{n}\left[a_{i}\right]_{6} x^{i}\right)=\sum_{i=0}^{n}\left[a_{i}\right]_{3} x^{i} \\
\phi_{-1} & : \mathbb{Z}_{3}[x] \rightarrow \mathbb{Z}_{3}, \quad \phi_{-1}(f(x)):=f(-1) \\
\psi & : \mathbb{Z}_{6}[x] \rightarrow \mathbb{Z}_{3}, \quad \psi(f(x)):=\phi_{-1}\left(c_{3}(f(x))\right)
\end{aligned}
$$

You have already seen that c_{3} and ϕ_{-1} are surjective ring homomorphisms, and so you can deduce that ψ is also a surjective ring homomorphism.
(a) Use the factor theorem, to show that ker $\phi_{-1}=\left\langle x+[1]_{3}\right\rangle$.
(b) Prove that ker $\psi=\langle x+1,3\rangle$. (Notice that here $1=[1]_{6}$ and $3=[3]_{6}$.)
(c) Prove that ker $\psi=\langle 2 x-1\rangle$.
(d) Prove that $\mathbb{Z}_{6}[x] /\langle 2 x-1\rangle \simeq \mathbb{Z}_{3}$.
(e) Explain why $\left|\mathbb{Z}_{6}[x] /\langle 2 x-1\rangle\right|=3 \neq 6^{1}$ does not contradict the first problem.
3. Find the minimal polynomial $m_{\sqrt[3]{5}}(x)$ of $\sqrt[3]{5}$ over \mathbb{Q}.
4. Suppose $p(x) \in \mathbb{Q}[x]$ is a degree 3 monic polynomial with no rational zeros. Let $\alpha \in \mathbb{C}$ be a zero of $p(x)$. Prove that the minimal polynomial of α over \mathbb{Q} is $p(x)$.
5. Suppose p is a prime more than 3 and $p=a_{0}^{2}-a_{0} b_{0}+b_{0}^{2}$ for some integers a_{0} and b_{0}.
(a) Prove that $x^{2}+x+1$ has a zero $[e]_{p}$ in \mathbb{Z}_{p} such that $p \mid a_{0}+b_{0} e$.
(b) Let $\omega:=\frac{-1+\sqrt{-3}}{2}$, and $f: \mathbb{Z}[\omega] \rightarrow \mathbb{Z}_{p}, f(a+b \omega):=[a+b e]_{p}$, where e is given in part (a). Show that f is a surjective ring homomorphism and $a_{0}+b_{0} \omega \in \operatorname{ker} f$.
(c) Use the fact that $\mathbb{Z}[\omega]$ is a PID, and prove that ker $f=\left\langle a_{0}+b_{0} \omega\right\rangle$.
(d) Prove that

$$
\mathbb{Z}[\omega] /\left\langle a_{0}+b_{0} \omega\right\rangle \simeq \mathbb{Z}_{p},
$$

5. Week 5

1. Let $I:=\langle x, y\rangle \triangleleft \mathbb{C}[x, y]$.
(a) Prove that I is a maximal ideal of $\mathbb{C}[x, y]$.
(b) Prove that I is not principal.
2. Let $D=\mathbb{Z}[\sqrt{-21}]$ and $N(z):=|z|^{2}$.
(a) Prove that $z \in D^{\times}$if and only if $N(z)=1$. Then deduce that $D^{\times}=\{-1,1\}$.
(b) Prove that $\sqrt{-21}$ is irreducible in D.
(c) Show that $D /\langle\sqrt{-21}\rangle$ is not an integral domain.
(d) Deduce that D is not a PID.
3. Suppose p is prime and E is a field extension of \mathbb{Z}_{p}. Suppose there is $\alpha \in E$ which is a zero of $x^{p}-x+1$.
(a) Prove that $x^{p}-x+1=(x-\alpha) \cdots(x-\alpha-p+1)$.
(b) Prove that $m_{\alpha, \mathbb{Z}_{p}}(x)=x^{p}-x+1$. (Hint. Use part (a) and $m_{\alpha, \mathbb{Z}_{p}}(x) \mid x^{p}-x+1$.)
(c) Deduce that $x^{p}-x+1$ is irreducible in $\mathbb{Z}_{p}[x]$.
4. Prove that $x^{5}-15 x^{3}+10 x^{2}-21 x+2021$ is irreducible in $\mathbb{Q}[x]$. (Hint: Use Problem 3)

6. Week 6

1. Suppose A is a Noetherian unital commutative ring and I is an ideal of A. Prove that A / I is Noetherian.
2. Let $\alpha:=\sqrt{1+\sqrt{3}}$. Find the minimal polynomial of α over \mathbb{Q}.
3. Suppose $f(x)$ and $g(x)$ are monic integer polynomials. Prove that $f(x) \mid g(x)$ in $\mathbb{Q}[x]$ if and only if $f(x) \mid g(x)$ in $\mathbb{Z}[x]$.
4. Suppose n is a positive odd integer. Prove that $f(x)=(x-1)(x-2) \cdots(x-n)-1$ is irreducible in $\mathbb{Q}[x]$. (Hint. Assume the contrary and first reduce it to the case where $f(x)=g(x) h(x)$ for some non-constant integer polynomials $g(x)$ and $h(x)$. Then consider $f(i)$ for integer i in $[1, n]$, and think about $g(x)^{2}-1$ and $h(x)^{2}-1$.)
5. Suppose p is prime, $f(x) \in \mathbb{Z}_{p}[x]$ is irreducible, and $n:=\operatorname{deg} f$.
(a) Let $F:=\mathbb{Z}_{p}[x] /\langle f(x)\rangle$. Prove that F is a field of order p^{n}, which contains a copy of \mathbb{Z}_{p}.
(b) Prove that $\alpha:=x+\langle f(x)\rangle$ is a zero of $f(X) \in \mathbb{Z}_{p}[X] \subseteq F[X]$ (we consider the coefficients as elements of the copy of \mathbb{Z}_{p} in $\left.F\right)$.
(c) Prove that $\alpha^{p^{n}}=\alpha$. (Hint: for $\alpha \neq 0$, consider the group F^{\times}of units of F.)
(d) Prove that $f(X) \mid X^{p^{n}}-X$ in $\mathbb{Z}_{p}[X]$.

7. Week 7

Going through the proof of Eisenstein's irreducibility criterion one can see that the same argument works for polynomials with coefficients in a UFD. That means that the following holds: suppose D is a UFD, $p \in D$ is prime, and $f(x):=c_{n} x^{n}+\cdots+a_{0} \in D[x]$ satisfies the following property:

$$
p \nmid c_{n}, p\left|c_{n-1}, \ldots, p\right| c_{0}, \text { and } p^{2} \nmid c_{0}
$$

Then $f(x)$ cannot be written as a product of two smaller degree polynomials in $D[x]$. You are allowed to use this result for this week's HW assignment.

1. Suppose D is a UFD, and $Q(D)$ is the field of fractions of D. For $f(x) \in Q(D)[x]$, let $\bar{f}(x):=\operatorname{prim}(f)$ be a primitive form of f. Prove that $f \in Q(D)[x]$ is irreducible if and only if \bar{f} is irreducible in $D[x]$.
2. Prove that $\mathbb{C}[x, y] /\left\langle x^{n}+y^{n}-1\right\rangle$ is an integral domain.
3. Prove that $x^{3}+12 x^{2}+18 x+6$ is irreducible in $(\mathbb{Z}[i])[x]$.
4. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.
5. Suppose D is a UFD, and $\langle a, b\rangle=\langle\operatorname{gcd}(a, b)\rangle$ for every $a, b \in D \backslash\{0\}$.
(a) Prove that every finitely generated ideal of D is principal.
(b) For every non-zero non-unit element a of $D,\{\langle d\rangle|d| a\}$ is a finite set.
(c) Prove that D is a PID.

8. Week 8

1. This is an exercise from math100a which gives us a characterization of cyclic groups.
(a) Suppose $C_{n}:=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a cyclic group of order n. Show that if $d \mid n$, then C_{n} has exactly $\phi(d)$ elements that have order d. Use this to deduce that

$$
\sum_{d \mid n} \phi(d)=n
$$

(b) Suppose G is a finite group and for every positive integer d,

$$
\left|\left\{g \in G \mid g^{d}=1\right\}\right| \leq d
$$

Prove that G is cyclic. (Hint. Let $\psi(d)$ be the number of elements of G that have order d. Show that if $o(g)=d$, then $1, g, \ldots, g^{d-1}$ are all the elements of G that satisfy $x^{d}=1$. Use this to deduce that if $\psi(d) \neq 0$, then $\psi(d)=\phi(d)$. Argue why we have $\sum_{d \mid n} \psi(d)=n$ where $n=|G|$. Use the first part to obtain that $\psi(d)=\phi(d)$ if $d \mid n$, and so G is cyclic.)
2. Suppose F is a finite field. Prove that F^{\times}is cyclic. Deduce that $x^{2}=-1$ has a solution in a finite field F of odd characteristic if and only if $|F| \equiv 1(\bmod 4)$.
3. Suppose F is a splitting field of $x^{n}-1$ over \mathbb{Z}_{3}.
(a) Find $|F|$ if $n=3$.
(b) Find $|F|$ if $n=13$.
(c) Find $|F|$ if $n=39$.
4. Suppose p is prime and $\zeta_{p}:=e^{2 \pi i / p}$.
(a) Prove that for every integer j in $[1, p-1]$ there is an isomorphism $\theta_{j}: \mathbb{Q}\left[\zeta_{p}\right] \rightarrow \mathbb{Q}\left[\zeta_{p}\right]$ such that $\theta_{j}\left(\zeta_{p}\right)=\zeta_{p}^{j}$.
(b) Prove that if $\theta: \mathbb{Q}\left[\zeta_{p}\right] \rightarrow \mathbb{Q}\left[\zeta_{p}\right]$ is an isomorphism, then $\theta=\theta_{j}$ for some integer j in $[1, p-1]$.

9. Week 9

In this problem set, we use the following notation. Suppose E and L are field extensions of F. Let

$$
\operatorname{Emb}_{F}(E, L):=\{\theta: E \rightarrow L \mid \theta \text { is an } F \text {-linear injective ring homomorphism }\} .
$$

By F-linear, we mean $\theta(c)=c$ for every $c \in F$.

1. Suppose F is a field and $f(x) \in F[x]$ is irreducible. Let E be a splitting field of f over F. Let $\alpha \in E$ be a zero of f. Prove that

$$
\left|\operatorname{Emb}_{F}(F[\alpha], E)\right|=\text { number of distinct zeros of } f \text { in } E \text {. }
$$

2. Suppose F is a field, and E is a splitting field of a $g(x) \in F[x] \backslash F$ over F.
(a) Suppose L is a field extension of E. Prove that, for every $\theta \in \operatorname{Emb}_{F}(E, L), \theta(E)=E$. (Hint: Argue that all the zeros of g in L are in E and θ permutes them.)
(b) Suppose $\alpha \in E$, and let L be a splitting field of $m_{\alpha, F}(x)$ over E. Prove that L is a splitting field of $m_{\alpha, F}(x) g(x)$ over F.
(c) Suppose $\alpha \in E$, and let L be a splitting field of $m_{\alpha, F}(x)$ over E. Let $\alpha^{\prime} \in L$ be a zero of $m_{\alpha, F}(x)$. Prove that there is $\widehat{\theta} \in \operatorname{Emb}_{F}(L, L)$ such that $\widehat{\theta}(\alpha)=\alpha^{\prime}$.
(d) Suppose $\alpha \in E$. Prove that $m_{\alpha, F}(x)$ factors as a product of degree 1 polynomials in $E[x]$.
3. Suppose E is a splitting field of $g(x) \in F[x] \backslash F$ over F. Suppose $E=F[\alpha]$ for some α. Prove that

$$
\left|\operatorname{Emb}_{F}(E, E)\right|=\text { number of distinct zeros of } m_{\alpha, F}(x) \text { in } E \text {, }
$$

and deduce that $\left|\operatorname{Emb}_{F}(E, E)\right| \leq[E: F]$.
4. Suppose p is prime and n is a positive integer. Prove that

$$
\operatorname{Emb}_{\mathbb{Z}_{p}}\left(\mathbb{F}_{p^{n}}, \mathbb{F}_{p^{n}}\right)=\left\{\mathrm{id}, \sigma, \ldots, \sigma^{n-1}\right\}
$$

where $\sigma: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}, \sigma(a):=a^{p}$.
5. Suppose p is a prime. Let $E:=\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]$ where $\zeta_{p}=e^{2 \pi i / p} \in \mathbb{C}$. Prove that $[E: \mathbb{Q}]=p(p-1)$.
10. Week 10

In this problem set, for a field extension E of F, we let

$$
\operatorname{Aut}_{F}(E):=\{\theta: E \rightarrow E \mid \theta \text { is a ring isomorphism, and } F \text {-linear }\}
$$

1. Prove that $\operatorname{Aut}_{F}(E)$ is a group under composition of functions.
2. Prove that $\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left[\zeta_{n}\right]\right) \simeq \mathbb{Z}_{n}^{\times}$. (Hint: Use an argument similar to Problem 4, HW 8, and cyclotomic polynomials.)
3. Prove that $\mathrm{Aut}_{\mathbb{Q}\left[\zeta_{n}\right]}\left(\mathbb{Q}\left[\sqrt[n]{2}, \zeta_{n}\right]\right)$ is isomorphic to a subgroup of \mathbb{Z}_{n}.
4. Suppose n is a positive integer and p is prime which does not divide n. Suppose $E_{n, p}$ is a splitting field of the n-th cyclotomic polynomial $\Phi_{n}(x)$ over \mathbb{Z}_{p}. Let $\alpha \in E_{n, p}$ be a zero of Φ_{n} in \mathbb{Z}_{p}.
(a) Prove that the multiplicative order of α is n; that means $\alpha^{n}=1$ and $\alpha^{d} \neq 1$ for positive integers d that are smaller than n. (Hint. Use $\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1$ and argue why $x^{n}-1$ does not have multiple roots in its splitting field over \mathbb{Z}_{p}.)
(b) Prove that $E_{n, p}=\mathbb{Z}_{p}[\alpha]$ and it is a splitting field of $x^{n}-1$ over \mathbb{Z}_{p}.
(c) Prove that $\left|E_{n, p}\right|=p^{k}$ where k is the multiplicative order of p in \mathbb{Z}_{n}^{\times}.
5. Suppose n is a positive integer.
(a) Suppose, for some integer a, p is a prime factor of $\Phi_{n}(a)$ which does not divide n. Prove that $p \equiv 1(\bmod n)$ and $\operatorname{gcd}(p, a)=1$. (Hint: Use Problem $4(\mathrm{~b})$ and show that $E_{n, p}=\mathbb{Z}_{p}$. Then use Problem 4(c).)
(b) Prove that there are infinitely many primes in the arithmetic progression $\{n k+1\}_{k=1}^{\infty}$. (Hint: suppose p_{1}, \ldots, p_{k} are the only primes in this arithmetic progression. Since $\Phi_{n}\left(n p_{1} \cdots p_{k} x\right)$ is not a constant polynomial, $\Phi_{n}\left(n p_{1} \cdots p_{k} a\right) \neq \pm 1,0$ for some integer a. Hence there is a prime factor p of $\Phi_{n}\left(n p_{1} \cdots p_{k} a\right)$. Use Part (a) to deduce that p is different from p_{i} 's and $p \equiv 1$ $(\bmod n)$.
