
HOMEWORK ASSIGNMENTS

1. Week 1

1. (a) Prove that A := {a+ bi| a, b ∈ Q} is a subring of C.

(b) Prove that B :=
{( a b
−b a

)
| a, b ∈ Q

}
is a subring of M2(Q).

(c) Prove that A and B are isomorphic.

2. An element a of a ring A is called nilpotent if an = 0 for some positive integer n. Suppose A is a
unital ring and a ∈ A is nilpotent. Prove that 1A + a is a unit.

3. Suppose A and B are unital commutative rings.
(a) Prove that the identity of A×B is (1A, 1B).
(b) Prove that the group of units of A×B is equal to A× ×B×.

4. Suppose A is a unital commutative ring and p1A = 0 for a prime p. Let F : A → A,F (a) := ap.
Prove that F is a ring homomorphism.

5. Describe all the ring homomorphism from Z× Z to Z.

(In a unital commutative ring A, we say a ∈ A is a unit if it has a multiplicative inverse. That means a is
unit if there is a′ ∈ A such that aa′ = 1A. This is defined in the third lecture.)

2. Week 2

1. (a) Prove that Q[
√

3] is a field.

(b) Prove that Q(Z[
√

3]) ' Q[
√

3] where Z[
√

3] := {a+ b
√

3| a, b ∈ Z} and Q(Z[
√

3]) is the field of

fractions of Z[
√

3]. (You can use without proof that Z[
√

3] is a subring of C.)

2. Suppose p is an odd prime, and let A :=
{(

a b
−b a

) ∣∣∣ a, b ∈ Zp
}

.

(a) Suppose there are a0, b0 ∈ Z such that p = a20 + b20. Prove that A ' Zp × Zp.
(b) Suppose there is no x ∈ Z such that x2 ≡ −1 (mod p). Prove that A is a field.

3. Find the characteristic of Zm1
× Zm2

× · · · × Zmk
where mi’s are positive integers.

4. Suppose p is prime and a is a non-zero element of Zp. Prove that xp − x+ a has no zero in Zp.

5. (a) Show that x2 − 5 does not have a zero in Q[
√

2].

(b) Prove that Q[
√

2] is not isomorphic to Q[
√

5].
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3. Week 3

1. Find all the primes p such that x+ 2 is a factor of

x6 − x4 + x3 − x+ 1

in Zp[x].

2. Find a zero of x3− 2x+ 1 in Z5 and express is as a product of a degree 1 and a degree 2 polynomial.

3. Recall that in earlier using the binomial expansion we have proved that (x − 1)p = xp − 1 in Zp[x]
when p is an odd prime. Use this result to show that(

p− 1

i

)
≡ (−1)i (mod p)

for an odd prime p and an integer i in the range [0, p− 1].

4. Let ω := −1+
√
−3

2 , and let Z[ω] be the image of the evaluation map φω : Z[x]→ C.
(a) Prove that Z[ω] = {a+ bω| a, b ∈ Z}.
(b) Show that the field of fraction of Z[ω] is {a+ bω| a, b ∈ Q}.
(Notice that ω2 +ω+ 1 = 0. Deduce that ω+ω = −1 and ωω = 1 where ω is the complex conjugate
of ω. Using these equations, deduce that (a+ bω)(a+ bω) = a2 − ab+ b2.)

5. In the setting of problem 4, Let N : Z[ω]→ Z≥0, N(z) := |z|2.
(a) Show that we can view N as a norm function of Z[ω], and deduce that Z[ω] is a Euclidean

domain. (Hint. Use the tiling given in Figure 1 to prove the division property of Euclidean
domains)

(b) Prove that Z[ω] is a PID.

Figure 1. This tiling shows that every complex point after a shift by an element of Z[ω]
can be moved to the central hexagon.
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4. Week 4

1. Prove that |Zm[x]/〈
∑n
i=0 aix

i〉| = mn if an ∈ Z×m.

2. Let

c3 : Z6[x]→ Z3[x], c3

( n∑
i=0

[ai]6x
i
)

=

n∑
i=0

[ai]3x
i,

φ−1 : Z3[x]→ Z3, φ−1(f(x)) := f(−1), and

ψ : Z6[x]→ Z3, ψ(f(x)) := φ−1(c3(f(x))).

You have already seen that c3 and φ−1 are surjective ring homomorphisms, and so you can deduce
that ψ is also a surjective ring homomorphism.
(a) Use the factor theorem, to show that kerφ−1 = 〈x+ [1]3〉.

(b) Prove that kerψ = 〈x+ 1, 3〉. (Notice that here 1 = [1]6 and 3 = [3]6.)

(c) Prove that kerψ = 〈2x− 1〉.

(d) Prove that Z6[x]/〈2x− 1〉 ' Z3.

(e) Explain why |Z6[x]/〈2x− 1〉| = 3 6= 61 does not contradict the first problem.

3. Find the minimal polynomial m 3√5(x) of 3
√

5 over Q.

4. Suppose p(x) ∈ Q[x] is a degree 3 monic polynomial with no rational zeros. Let α ∈ C be a zero of
p(x). Prove that the minimal polynomial of α over Q is p(x).

5. Suppose p is a prime more than 3 and p = a20 − a0b0 + b20 for some integers a0 and b0.
(a) Prove that x2 + x+ 1 has a zero [e]p in Zp such that p|a0 + b0e.

(b) Let ω := −1+
√
−3

2 , and f : Z[ω]→ Zp, f(a+ bω) := [a+ be]p, where e is given in part (a). Show
that f is a surjective ring homomorphism and a0 + b0ω ∈ ker f .

(c) Use the fact that Z[ω] is a PID, and prove that ker f = 〈a0 + b0ω〉.

(d) Prove that

Z[ω]/〈a0 + b0ω〉 ' Zp,

5. Week 5

1. Let I := 〈x, y〉C C[x, y].
(a) Prove that I is a maximal ideal of C[x, y].
(b) Prove that I is not principal.

2. Let D = Z[
√
−21] and N(z) := |z|2.

(a) Prove that z ∈ D× if and only if N(z) = 1. Then deduce that D× = {−1, 1}.
(b) Prove that

√
−21 is irreducible in D.

(c) Show that D/〈
√
−21〉 is not an integral domain.

(d) Deduce that D is not a PID.

3. Suppose p is prime and E is a field extension of Zp. Suppose there is α ∈ E which is a zero of
xp − x+ 1.
(a) Prove that xp − x+ 1 = (x− α) · · · (x− α− p+ 1).
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(b) Prove that mα,Zp
(x) = xp − x+ 1. (Hint. Use part (a) and mα,Zp

(x)|xp − x+ 1.)
(c) Deduce that xp − x+ 1 is irreducible in Zp[x].

4. Prove that x5 − 15x3 + 10x2 − 21x+ 2021 is irreducible in Q[x]. (Hint: Use Problem 3)

6. Week 6

1. Suppose A is a Noetherian unital commutative ring and I is an ideal of A. Prove that A/I is
Noetherian.

2. Let α :=
√

1 +
√

3. Find the minimal polynomial of α over Q.

3. Suppose f(x) and g(x) are monic integer polynomials. Prove that f(x)|g(x) in Q[x] if and only if
f(x)|g(x) in Z[x].

4. Suppose n is a positive odd integer. Prove that f(x) = (x − 1)(x − 2) · · · (x − n) − 1 is irreducible
in Q[x]. (Hint. Assume the contrary and first reduce it to the case where f(x) = g(x)h(x) for some
non-constant integer polynomials g(x) and h(x). Then consider f(i) for integer i in [1, n], and think
about g(x)2 − 1 and h(x)2 − 1.)

5. Suppose p is prime, f(x) ∈ Zp[x] is irreducible, and n := deg f .
(a) Let F := Zp[x]/〈f(x)〉. Prove that F is a field of order pn, which contains a copy of Zp.

(b) Prove that α := x + 〈f(x)〉 is a zero of f(X) ∈ Zp[X] ⊆ F [X] (we consider the coefficients as
elements of the copy of Zp in F ).

(c) Prove that αp
n

= α. (Hint: for α 6= 0, consider the group F× of units of F .)

(d) Prove that f(X)|Xpn −X in Zp[X].

7. Week 7

Going through the proof of Eisenstein’s irreducibility criterion one can see that the same argument works for
polynomials with coefficients in a UFD. That means that the following holds: suppose D is a UFD, p ∈ D
is prime, and f(x) := cnx

n + · · ·+ a0 ∈ D[x] satisfies the following property:

p - cn, p|cn−1, . . . , p|c0, and p2 - c0.
Then f(x) cannot be written as a product of two smaller degree polynomials in D[x]. You are allowed to
use this result for this week’s HW assignment.

1. Suppose D is a UFD, and Q(D) is the field of fractions of D. For f(x) ∈ Q(D)[x], let f(x) := prim(f)
be a primitive form of f . Prove that f ∈ Q(D)[x] is irreducible if and only if f is irreducible in D[x].

2. Prove that C[x, y]/〈xn + yn − 1〉 is an integral domain.

3. Prove that x3 + 12x2 + 18x+ 6 is irreducible in (Z[i])[x].

4. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.

5. Suppose D is a UFD, and 〈a, b〉 = 〈gcd(a, b)〉 for every a, b ∈ D \ {0}.
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(a) Prove that every finitely generated ideal of D is principal.
(b) For every non-zero non-unit element a of D, {〈d〉 | d|a} is a finite set.
(c) Prove that D is a PID.

8. Week 8

1. This is an exercise from math100a which gives us a characterization of cyclic groups.
(a) Suppose Cn := {1, a, a2, . . . , an−1} is a cyclic group of order n. Show that if d|n, then Cn has

exactly φ(d) elements that have order d. Use this to deduce that∑
d|n

φ(d) = n.

(b) Suppose G is a finite group and for every positive integer d,

|{g ∈ G | gd = 1}| ≤ d.
Prove that G is cyclic. (Hint. Let ψ(d) be the number of elements of G that have order d. Show
that if o(g) = d, then 1, g, . . . , gd−1 are all the elements of G that satisfy xd = 1. Use this to
deduce that if ψ(d) 6= 0, then ψ(d) = φ(d). Argue why we have

∑
d|n ψ(d) = n where n = |G|.

Use the first part to obtain that ψ(d) = φ(d) if d|n, and so G is cyclic.)

2. Suppose F is a finite field. Prove that F× is cyclic. Deduce that x2 = −1 has a solution in a finite
field F of odd characteristic if and only if |F | ≡ 1 (mod 4).

3. Suppose F is a splitting field of xn − 1 over Z3.
(a) Find |F | if n = 3.
(b) Find |F | if n = 13.
(c) Find |F | if n = 39.

4. Suppose p is prime and ζp := e2πi/p.
(a) Prove that for every integer j in [1, p− 1] there is an isomorphism θj : Q[ζp]→ Q[ζp] such that

θj(ζp) = ζjp.
(b) Prove that if θ : Q[ζp]→ Q[ζp] is an isomorphism, then θ = θj for some integer j in [1, p− 1].

9. Week 9

In this problem set, we use the following notation. Suppose E and L are field extensions of F . Let

EmbF (E,L) := {θ : E → L | θ is an F -linear injective ring homomorphism}.
By F -linear, we mean θ(c) = c for every c ∈ F .

1. Suppose F is a field and f(x) ∈ F [x] is irreducible. Let E be a splitting field of f over F . Let α ∈ E
be a zero of f . Prove that

|EmbF (F [α], E)| = number of distinct zeros of f in E.

2. Suppose F is a field, and E is a splitting field of a g(x) ∈ F [x] \ F over F .
(a) Suppose L is a field extension of E. Prove that, for every θ ∈ EmbF (E,L), θ(E) = E. (Hint:

Argue that all the zeros of g in L are in E and θ permutes them.)
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(b) Suppose α ∈ E, and let L be a splitting field of mα,F (x) over E. Prove that L is a splitting
field of mα,F (x)g(x) over F .

(c) Suppose α ∈ E, and let L be a splitting field of mα,F (x) over E. Let α′ ∈ L be a zero of

mα,F (x). Prove that there is θ̂ ∈ EmbF (L,L) such that θ̂(α) = α′.

(d) Suppose α ∈ E. Prove that mα,F (x) factors as a product of degree 1 polynomials in E[x].

3. Suppose E is a splitting field of g(x) ∈ F [x] \ F over F . Suppose E = F [α] for some α. Prove that

|EmbF (E,E)| = number of distinct zeros of mα,F (x) in E,

and deduce that |EmbF (E,E)| ≤ [E : F ].

4. Suppose p is prime and n is a positive integer. Prove that

EmbZp
(Fpn ,Fpn) = {id, σ, . . . , σn−1}

where σ : Fpn → Fpn , σ(a) := ap.

5. Suppose p is a prime. Let E := Q[ζp,
p
√

2] where ζp = e2πi/p ∈ C. Prove that [E : Q] = p(p− 1).

10. Week 10

In this problem set, for a field extension E of F , we let

AutF (E) := {θ : E → E | θ is a ring isomorphism, and F -linear}.

1. Prove that AutF (E) is a group under composition of functions.

2. Prove that AutQ(Q[ζn]) ' Z×n . (Hint: Use an argument similar to Problem 4, HW 8, and cyclotomic
polynomials.)

3. Prove that AutQ[ζn](Q[ n
√

2, ζn]) is isomorphic to a subgroup of Zn.

4. Suppose n is a positive integer and p is prime which does not divide n. Suppose En,p is a splitting
field of the n-th cyclotomic polynomial Φn(x) over Zp. Let α ∈ En,p be a zero of Φn in Zp.
(a) Prove that the multiplicative order of α is n; that means αn = 1 and αd 6= 1 for positive integers

d that are smaller than n. (Hint. Use
∏
d|n Φd(x) = xn− 1 and argue why xn− 1 does not have

multiple roots in its splitting field over Zp.)
(b) Prove that En,p = Zp[α] and it is a splitting field of xn − 1 over Zp.
(c) Prove that |En,p| = pk where k is the multiplicative order of p in Z×n .

5. Suppose n is a positive integer.
(a) Suppose, for some integer a, p is a prime factor of Φn(a) which does not divide n. Prove that

p ≡ 1 (mod n) and gcd(p, a) = 1. (Hint: Use Problem 4(b) and show that En,p = Zp. Then
use Problem 4(c).)

(b) Prove that there are infinitely many primes in the arithmetic progression {nk + 1}∞k=1. (Hint:
suppose p1, . . . , pk are the only primes in this arithmetic progression. Since Φn(np1 · · · pkx) is
not a constant polynomial, Φn(np1 · · · pka) 6= ±1, 0 for some integer a. Hence there is a prime
factor p of Φn(np1 · · · pka). Use Part (a) to deduce that p is different from pi’s and p ≡ 1
(mod n).)


