HOMEWORK ASSIGNMENTS

1. WEEK 1

- 1. (a) Prove that $A := \{a + bi | a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C} .
 - (b) Prove that $B := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{Q} \right\}$ is a subring of $M_2(\mathbb{Q})$.
 - (c) Prove that A and B are isomorphic.
- 2. An element a of a ring A is called *nilpotent* if $a^n = 0$ for some positive integer n. Suppose A is a unital ring and $a \in A$ is nilpotent. Prove that $1_A + a$ is a unit.
- 3. Suppose A and B are unital commutative rings.
 - (a) Prove that the identity of $A \times B$ is $(1_A, 1_B)$.
 - (b) Prove that the group of units of $A \times B$ is equal to $A^{\times} \times B^{\times}$.
- 4. Suppose A is a unital commutative ring and $p1_A = 0$ for a prime p. Let $F: A \to A, F(a) := a^p$. Prove that F is a ring homomorphism.
- 5. Describe all the ring homomorphism from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} .

(In a unital commutative ring A, we say $a \in A$ is a *unit* if it has a multiplicative inverse. That means a is unit if there is $a' \in A$ such that $aa' = 1_A$. This is defined in the third lecture.)

2. Week 2

- 1. (a) Prove that $\mathbb{Q}[\sqrt{3}]$ is a field.
 - (b) Prove that $Q(\mathbb{Z}[\sqrt{3}]) \simeq \mathbb{Q}[\sqrt{3}]$ where $\mathbb{Z}[\sqrt{3}] := \{a + b\sqrt{3} | a, b \in \mathbb{Z}\}$ and $Q(\mathbb{Z}[\sqrt{3}])$ is the field of fractions of $\mathbb{Z}[\sqrt{3}]$. (You can use without proof that $\mathbb{Z}[\sqrt{3}]$ is a subring of \mathbb{C} .)
- 2. Suppose p is an odd prime, and let $A := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_p \right\}$.
 - (a) Suppose there are a₀, b₀ ∈ Z such that p = a₀² + b₀². Prove that A ≃ Z_p × Z_p.
 (b) Suppose there is no x ∈ Z such that x² ≡ -1 (mod p). Prove that A is a field.
- 3. Find the characteristic of $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ where m_i 's are positive integers.
- 4. Suppose p is prime and a is a non-zero element of \mathbb{Z}_p . Prove that $x^p x + a$ has no zero in \mathbb{Z}_p .
- 5. (a) Show that $x^2 5$ does not have a zero in $\mathbb{Q}[\sqrt{2}]$. (b) Prove that $\mathbb{Q}[\sqrt{2}]$ is not isomorphic to $\mathbb{Q}[\sqrt{5}]$.

3. Week 3

1. Find all the primes p such that x + 2 is a factor of

$$x^6 - x^4 + x^3 - x + 1$$

in $\mathbb{Z}_p[x]$.

- 2. Find a zero of $x^3 2x + 1$ in \mathbb{Z}_5 and express is as a product of a degree 1 and a degree 2 polynomial.
- 3. Recall that in earlier using the binomial expansion we have proved that $(x-1)^p = x^p 1$ in $\mathbb{Z}_p[x]$ when p is an odd prime. Use this result to show that

$$\binom{p-1}{i} \equiv (-1)^i \pmod{p}$$

for an odd prime p and an integer i in the range [0, p-1].

- 4. Let $\omega := \frac{-1+\sqrt{-3}}{2}$, and let $\mathbb{Z}[\omega]$ be the image of the evaluation map $\phi_{\omega} : \mathbb{Z}[x] \to \mathbb{C}$.
 - (a) Prove that $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}.$
 - (b) Show that the field of fraction of $\mathbb{Z}[\omega]$ is $\{a + b\omega \mid a, b \in \mathbb{Q}\}$.
 - (Notice that $\omega^2 + \omega + 1 = 0$. Deduce that $\omega + \overline{\omega} = -1$ and $\omega \overline{\omega} = 1$ where $\overline{\omega}$ is the complex conjugate of ω . Using these equations, deduce that $(a + b\omega)(a + b\overline{\omega}) = a^2 ab + b^2$.)
- 5. In the setting of problem 4, Let $N: \mathbb{Z}[\omega] \to \mathbb{Z}^{\geq 0}, N(z) := |z|^2$.
 - (a) Show that we can view N as a norm function of $\mathbb{Z}[\omega]$, and deduce that $\mathbb{Z}[\omega]$ is a Euclidean domain. (*Hint.* Use the tiling given in Figure 1 to prove the division property of Euclidean domains)
 - (b) Prove that $\mathbb{Z}[\omega]$ is a PID.

FIGURE 1. This tiling shows that every complex point after a shift by an element of $\mathbb{Z}[\omega]$ can be moved to the central hexagon.

4. WEEK 4

1. Prove that $|\mathbb{Z}_m[x]/\langle \sum_{i=0}^n a_i x^i \rangle| = m^n$ if $a_n \in \mathbb{Z}_m^{\times}$.

2. Let

$$c_{3}: \mathbb{Z}_{6}[x] \to \mathbb{Z}_{3}[x], \ c_{3}\left(\sum_{i=0}^{n} [a_{i}]_{6}x^{i}\right) = \sum_{i=0}^{n} [a_{i}]_{3}x^{i},$$

$$\phi_{-1}: \mathbb{Z}_{3}[x] \to \mathbb{Z}_{3}, \ \phi_{-1}(f(x)) := f(-1),$$
 and
$$\psi: \mathbb{Z}_{6}[x] \to \mathbb{Z}_{3}, \ \psi(f(x)) := \phi_{-1}(c_{3}(f(x))).$$

You have already seen that c_3 and ϕ_{-1} are surjective ring homomorphisms, and so you can deduce that ψ is also a surjective ring homomorphism.

- (a) Use the factor theorem, to show that ker $\phi_{-1} = \langle x + [1]_3 \rangle$.
- (b) Prove that ker $\psi = \langle x + 1, 3 \rangle$. (Notice that here $1 = [1]_6$ and $3 = [3]_6$.)
- (c) Prove that $\ker \psi = \langle 2x 1 \rangle$.
- (d) Prove that $\mathbb{Z}_6[x]/\langle 2x-1\rangle \simeq \mathbb{Z}_3$.
- (e) Explain why $|\mathbb{Z}_6[x]/\langle 2x-1\rangle| = 3 \neq 6^1$ does not contradict the first problem.
- 3. Find the minimal polynomial $m_{\sqrt[3]{5}}(x)$ of $\sqrt[3]{5}$ over \mathbb{Q} .
- 4. Suppose $p(x) \in \mathbb{Q}[x]$ is a degree 3 monic polynomial with no rational zeros. Let $\alpha \in \mathbb{C}$ be a zero of p(x). Prove that the minimal polynomial of α over \mathbb{Q} is p(x).
- 5. Suppose p is a prime more than 3 and $p = a_0^2 a_0 b_0 + b_0^2$ for some integers a_0 and b_0 . (a) Prove that $x^2 + x + 1$ has a zero $[e]_p$ in \mathbb{Z}_p such that $p|a_0 + b_0 e$.

 - (b) Let $\omega := \frac{-1+\sqrt{-3}}{2}$, and $f : \mathbb{Z}[\omega] \to \mathbb{Z}_p$, $f(a+b\omega) := [a+be]_p$, where e is given in part (a). Show that f is a surjective ring homomorphism and $a_0 + b_0\omega \in \ker f$.
 - (c) Use the fact that $\mathbb{Z}[\omega]$ is a PID, and prove that ker $f = \langle a_0 + b_0 \omega \rangle$.
 - (d) Prove that

$$\mathbb{Z}[\omega]/\langle a_0 + b_0\omega \rangle \simeq \mathbb{Z}_p,$$

5. WEEK 5

- 1. Let $I := \langle x, y \rangle \lhd \mathbb{C}[x, y]$.
 - (a) Prove that I is a maximal ideal of $\mathbb{C}[x, y]$.
 - (b) Prove that I is not principal.
- 2. Let $D = \mathbb{Z}[\sqrt{-21}]$ and $N(z) := |z|^2$.
 - (a) Prove that $z \in D^{\times}$ if and only if N(z) = 1. Then deduce that $D^{\times} = \{-1, 1\}$.
 - (b) Prove that $\sqrt{-21}$ is irreducible in D.
 - (c) Show that $D/\langle \sqrt{-21} \rangle$ is not an integral domain.
 - (d) Deduce that D is not a PID.
- 3. Suppose p is prime and E is a field extension of \mathbb{Z}_p . Suppose there is $\alpha \in E$ which is a zero of $x^p - x + 1.$
 - (a) Prove that $x^p x + 1 = (x \alpha) \cdots (x \alpha p + 1)$.

HOMEWORK ASSIGNMENTS

- (b) Prove that $m_{\alpha,\mathbb{Z}_p}(x) = x^p x + 1$. (Hint. Use part (a) and $m_{\alpha,\mathbb{Z}_p}(x)|x^p x + 1$.)
- (c) Deduce that $x^p x + 1$ is irreducible in $\mathbb{Z}_p[x]$.
- 4. Prove that $x^5 15x^3 + 10x^2 21x + 2021$ is irreducible in $\mathbb{Q}[x]$. (Hint: Use Problem 3)

6. WEEK 6

- 1. Suppose A is a Noetherian unital commutative ring and I is an ideal of A. Prove that A/I is Noetherian.
- 2. Let $\alpha := \sqrt{1 + \sqrt{3}}$. Find the minimal polynomial of α over \mathbb{Q} .
- 3. Suppose f(x) and g(x) are monic integer polynomials. Prove that f(x)|g(x) in $\mathbb{Q}[x]$ if and only if f(x)|g(x) in $\mathbb{Z}[x]$.
- 4. Suppose n is a positive odd integer. Prove that $f(x) = (x-1)(x-2)\cdots(x-n)-1$ is irreducible in $\mathbb{Q}[x]$. (Hint. Assume the contrary and first reduce it to the case where f(x) = g(x)h(x) for some non-constant integer polynomials g(x) and h(x). Then consider f(i) for integer i in [1, n], and think about $g(x)^2 - 1$ and $h(x)^2 - 1$.)
- 5. Suppose p is prime, f(x) ∈ Z_p[x] is irreducible, and n := deg f.
 (a) Let F := Z_p[x]/⟨f(x)⟩. Prove that F is a field of order pⁿ, which contains a copy of Z_p.
 - (b) Prove that $\alpha := x + \langle f(x) \rangle$ is a zero of $f(X) \in \mathbb{Z}_p[X] \subseteq F[X]$ (we consider the coefficients as elements of the copy of \mathbb{Z}_p in F).
 - (c) Prove that $\alpha^{p^n} = \alpha$. (Hint: for $\alpha \neq 0$, consider the group F^{\times} of units of F.)
 - (d) Prove that $f(X)|X^{p^n} X$ in $\mathbb{Z}_p[X]$.

7. WEEK 7

Going through the proof of Eisenstein's irreducibility criterion one can see that the same argument works for polynomials with coefficients in a UFD. That means that the following holds: suppose D is a UFD, $p \in D$ is prime, and $f(x) := c_n x^n + \cdots + a_0 \in D[x]$ satisfies the following property:

$$p \nmid c_n, p \mid c_{n-1}, \dots, p \mid c_0, \text{ and } p^2 \nmid c_0.$$

Then f(x) cannot be written as a product of two smaller degree polynomials in D[x]. You are allowed to use this result for this week's HW assignment.

- 1. Suppose D is a UFD, and Q(D) is the field of fractions of D. For $f(x) \in Q(D)[x]$, let $\overline{f}(x) := \text{prim}(f)$ be a primitive form of f. Prove that $f \in Q(D)[x]$ is irreducible if and only if \overline{f} is irreducible in D[x].
- 2. Prove that $\mathbb{C}[x,y]/\langle x^n+y^n-1\rangle$ is an integral domain.
- 3. Prove that $x^3 + 12x^2 + 18x + 6$ is irreducible in $(\mathbb{Z}[i])[x]$.
- 4. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.
- 5. Suppose D is a UFD, and $\langle a, b \rangle = \langle \gcd(a, b) \rangle$ for every $a, b \in D \setminus \{0\}$.

HOMEWORK ASSIGNMENTS

- (a) Prove that every finitely generated ideal of D is principal.
- (b) For every non-zero non-unit element a of D, $\{\langle d \rangle \mid d \mid a\}$ is a finite set.
- (c) Prove that D is a PID.

8. WEEK 8

- 1. This is an exercise from math100a which gives us a characterization of cyclic groups.
 - (a) Suppose $C_n := \{1, a, a^2, \dots, a^{n-1}\}$ is a cyclic group of order n. Show that if d|n, then C_n has exactly $\phi(d)$ elements that have order d. Use this to deduce that

$$\sum_{d|n} \phi(d) = n$$

(b) Suppose G is a finite group and for every positive integer d,

$$|\{g \in G \mid g^d = 1\}| \le d.$$

Prove that G is cyclic. (Hint. Let $\psi(d)$ be the number of elements of G that have order d. Show that if o(g) = d, then $1, g, \ldots, g^{d-1}$ are all the elements of G that satisfy $x^d = 1$. Use this to deduce that if $\psi(d) \neq 0$, then $\psi(d) = \phi(d)$. Argue why we have $\sum_{d|n} \psi(d) = n$ where n = |G|. Use the first part to obtain that $\psi(d) = \phi(d)$ if d|n, and so G is cyclic.)

- 2. Suppose F is a finite field. Prove that F^{\times} is cyclic. Deduce that $x^2 = -1$ has a solution in a finite field F of odd characteristic if and only if $|F| \equiv 1 \pmod{4}$.
- 3. Suppose F is a splitting field of $x^n 1$ over \mathbb{Z}_3 .
 - (a) Find |F| if n = 3.
 - (b) Find |F| if n = 13.
 - (c) Find |F| if n = 39.
- 4. Suppose p is prime and $\zeta_p := e^{2\pi i/p}$. (a) Prove that for every integer j in [1, p-1] there is an isomorphism $\theta_j : \mathbb{Q}[\zeta_p] \to \mathbb{Q}[\zeta_p]$ such that $\theta_j(\zeta_p) = \zeta_p^j.$
 - (b) Prove that if $\theta : \mathbb{Q}[\zeta_p] \to \mathbb{Q}[\zeta_p]$ is an isomorphism, then $\theta = \theta_j$ for some integer j in [1, p-1].

9. WEEK 9

In this problem set, we use the following notation. Suppose E and L are field extensions of F. Let

 $\operatorname{Emb}_F(E, L) := \{ \theta : E \to L \mid \theta \text{ is an } F \text{-linear injective ring homomorphism} \}.$

By F-linear, we mean $\theta(c) = c$ for every $c \in F$.

1. Suppose F is a field and $f(x) \in F[x]$ is irreducible. Let E be a splitting field of f over F. Let $\alpha \in E$ be a zero of f. Prove that

 $|\operatorname{Emb}_F(F[\alpha], E)| =$ number of distinct zeros of f in E.

- 2. Suppose F is a field, and E is a splitting field of a $g(x) \in F[x] \setminus F$ over F.
 - (a) Suppose L is a field extension of E. Prove that, for every $\theta \in \text{Emb}_F(E,L), \theta(E) = E$. (Hint: Argue that all the zeros of g in L are in E and θ permutes them.)

- (b) Suppose $\alpha \in E$, and let L be a splitting field of $m_{\alpha,F}(x)$ over E. Prove that L is a splitting field of $m_{\alpha,F}(x)g(x)$ over F.
- (c) Suppose $\alpha \in E$, and let L be a splitting field of $m_{\alpha,F}(x)$ over E. Let $\alpha' \in L$ be a zero of $m_{\alpha,F}(x)$. Prove that there is $\hat{\theta} \in \text{Emb}_F(L,L)$ such that $\hat{\theta}(\alpha) = \alpha'$.
- (d) Suppose $\alpha \in E$. Prove that $m_{\alpha,F}(x)$ factors as a product of degree 1 polynomials in E[x].

3. Suppose E is a splitting field of $g(x) \in F[x] \setminus F$ over F. Suppose $E = F[\alpha]$ for some α . Prove that $|\operatorname{Emb}_F(E, E)| =$ number of distinct zeros of $m_{\alpha,F}(x)$ in E, and deduce that $|\operatorname{Emb}_F(E, E)| \leq [E : F]$.

4. Suppose p is prime and n is a positive integer. Prove that

$$\operatorname{Emb}_{\mathbb{Z}_p}(\mathbb{F}_{p^n},\mathbb{F}_{p^n}) = \{\operatorname{id},\sigma,\ldots,\sigma^{n-1}\}$$

where $\sigma : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}, \sigma(a) := a^p$.

5. Suppose p is a prime. Let $E := \mathbb{Q}[\zeta_p, \sqrt[p]{2}]$ where $\zeta_p = e^{2\pi i/p} \in \mathbb{C}$. Prove that $[E : \mathbb{Q}] = p(p-1)$.

In this problem set, for a field extension E of F, we let

 $\operatorname{Aut}_F(E) := \{ \theta : E \to E \mid \theta \text{ is a ring isomorphism, and } F \text{-linear} \}.$

- 1. Prove that $\operatorname{Aut}_F(E)$ is a group under composition of functions.
- 2. Prove that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\zeta_n]) \simeq \mathbb{Z}_n^{\times}$. (Hint: Use an argument similar to Problem 4, HW 8, and cyclotomic polynomials.)
- 3. Prove that $\operatorname{Aut}_{\mathbb{Q}[\zeta_n]}(\mathbb{Q}[\sqrt[n]{2},\zeta_n])$ is isomorphic to a subgroup of \mathbb{Z}_n .
- 4. Suppose n is a positive integer and p is prime which does not divide n. Suppose $E_{n,p}$ is a splitting field of the n-th cyclotomic polynomial $\Phi_n(x)$ over \mathbb{Z}_p . Let $\alpha \in E_{n,p}$ be a zero of Φ_n in \mathbb{Z}_p .
 - (a) Prove that the multiplicative order of α is n; that means $\alpha^n = 1$ and $\alpha^d \neq 1$ for positive integers d that are smaller than n. (Hint. Use $\prod_{d|n} \Phi_d(x) = x^n 1$ and argue why $x^n 1$ does not have multiple roots in its splitting field over \mathbb{Z}_p .)
 - (b) Prove that $E_{n,p} = \mathbb{Z}_p[\alpha]$ and it is a splitting field of $x^n 1$ over \mathbb{Z}_p .
 - (c) Prove that $|E_{n,p}| = p^k$ where k is the multiplicative order of p in \mathbb{Z}_n^{\times} .
- 5. Suppose n is a positive integer.
 - (a) Suppose, for some integer a, p is a prime factor of $\Phi_n(a)$ which does not divide n. Prove that $p \equiv 1 \pmod{n}$ and gcd(p, a) = 1. (Hint: Use Problem 4(b) and show that $E_{n,p} = \mathbb{Z}_p$. Then use Problem 4(c).)
 - (b) Prove that there are infinitely many primes in the arithmetic progression $\{nk+1\}_{k=1}^{\infty}$. (Hint: suppose p_1, \ldots, p_k are the only primes in this arithmetic progression. Since $\Phi_n(np_1\cdots p_kx)$ is not a constant polynomial, $\Phi_n(np_1\cdots p_ka) \neq \pm 1,0$ for some integer a. Hence there is a prime factor p of $\Phi_n(np_1\cdots p_ka)$. Use Part (a) to deduce that p is different from p_i 's and $p \equiv 1$ (mod n).)