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Chapter 1

Lecture 1

In this lecture, we start with a pseudo-historical note on algebra. Next ring is defined
and some examples are briefly mentioned. Ring of polynomials and direct product of
rings are discussed. Then basic properties of ring operations are discussed. At the end,
we define subrings, ring homomorphism, and ring isomorphism

1.1 Introduction: a pseudo-historical note

A large part of algebra has been developed to systematically study zeros of polyno-
mials. The word algebra comes from the name of a book by al-Khwarizmi, a Persian
mathematician, 1 where al-Khwarizmi essentially gave algorithms to find zeros of
linear and quadratic equations. Khayyam, another Persian mathematician, made major
advances in understanding of zeros of cubic equations. In the 16th century, Italian
mathematicians came up with formulas for zeros of general cubic and quartic equations.
The cubic case was solved by del Ferro, and Ferrari solved the quartic case.2 In 1824,
Abel proved that there is no solutions in radicals to a general polynomial equation of
degree at least 5. In 1832, Galois used symmetries (group theory) of system of numbers
of zeros of a polynomial to systematically study them, and he gave the precise condition
under which solutions can be written using radicals (and the usual operations +,−, ·, /).

Another problem which had a great deal of influence on shaping modern algebra is
Fermat’s last conjecture: there are no positive integers x, y, z such that xn + yn = zn

if n is an integer more than 2. As you can see this problem has two new directions:

1. it is a multi-variable equation,

2. it is a Diophantine equation. This means we are looking for integer solutions
instead of complex or real solutions.

The first direction was important in the development of the algebraic geometry, and the
second one was played a crucial role in the development of algebraic number theory.

1I am Persian, and so I have to start with this!
2In the book A History of Algebra; from al-Khwarizmi to Emmy Noether, by van der Waerden, you can

read about the very interesting history of the solution of cubic equations by del Ferro, Tartaglia, and Cardano.
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8 CHAPTER 1. LECTURE 1

In this course, I often try to put what we learn in the perspective of these pseudo-
historical remarks.

1.2 Rings: definition and basic examples.

As we mentioned earlier, our hidden agenda is to understand zeros of a polynomial.
Say p(x) is a polynomial with rational coefficients. We would like to understand
properties of a zero α ∈ C of p(x). What exactly does understanding mean here?
Whatever it means, we would expect to be able to do basic arithmetic with α: add and
multiply, and find out if we are getting the same values or not. As we see later, this
means we want to understand various properties of the subring of C that is generated
by α.

Definition 1.2.1. 1. A ring (R,+, ·) is a set R with two binary operations: +
(addition) and · (multiplication) such that the following holds:

(i) (R,+) is an abelian group.

(ii) (Associative) For every a, b, c ∈ R, a · (b · c) = (a · b) · c.

(iii) (Distributive) For every a, b, c ∈ R,

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

2. We say R is a unital ring if there is 1 ∈ R such that 1 · a = a · 1 for every a ∈ R.

3. We say R is a commutative ring if a · b = b · a for every a, b ∈ R.

Basic examples.
The set Z of integers, the set Q of rational numbers, the set R of real numbers, and

the set C of complex numbers are unital commutative rings.
Some non-examples.
The set of non-negative integers Z≥0 is not a ring as (Z≥0,+) is not an abelian

group.
The set of even integers 2Z is a commutative ring, but it is not unital.
For an integer n more than 1, the set Mn(R) of n-by-n matrices with real entries is

a unital ring, but it is not commutative. In fact, for every ring R and positive integer n,
the set Mn(R) of n-by-n matrices with entries in R with the usual matrix addition and
multiplication forms a ring. Moreover, if R is unital, then Mn(R) is also unital.

Ring of integers modulo n.

The set Zn of integers modulo n is another important ring. Let us recall that the
residue class [a]n of a modulo n consists all the integers of the form nk + a where k
is an integer. In group theory, you have learned that Zn = {[0]n, . . . , [n − 1]n} can
be identified with the quotient group Z/nZ, and the residue class [a]n of a modulo n
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is precisely the coset a+ nZ of the (normal) subgroup nZ. Let us also recall that for
every a, a′, b, b′ ∈ Z and positive integer n the following holds:

a ≡ a′ (mod n)
b ≡ b′ (mod n)

}
⇒ aa′ ≡ bb′ (mod n).

This implies that the following is a well-defined binary operator on Zn:

[a]n · [b]n := [ab]n

for every a and b in Z. It is easy to check that (Zn,+, ·) is a unital commutative ring.

Exercise 1.2.2. Work out the details of why Zn is a ring.

Ring of Polynomials.

As we have mentioned earlier, polynomials play an indispensable role in algebra.
Notice that we can and will work with polynomials with coefficients in an arbitrary
ring R. The set of all polynomials with coefficients in a ring R and an indeterminant x
is denoted by R[x]. Therefore

R[x] := {anxn + · · ·+ a0| n ∈ Z≥0, a0, . . . , an ∈ R}.

We sometimes write
∑n
i=0 aix

i instead of anxn+· · ·+a0. In some arguments it is more
convenient to write a polynomial as an infinite sum

∑∞
i=0 aix

i with an understanding
that an+1 = an+2 = · · · = 0 for some non-negative integer n. Based on our experience
of working with polynomials with real or complex coefficients, we define the following
operations:( ∞∑

i=0

aix
i
)

+
( ∞∑
i=0

bix
i
)

:=

∞∑
i=0

(ai + bi)x
i (addition)

( ∞∑
i=0

aix
i
)( ∞∑

i=0

bix
i
)

:=

∞∑
n=0

( n∑
i=0

aibn−i
)
xn (multiplication)

for every
∑∞
i=0 aix

i,
∑∞
i=0 bix

i ∈ R[x]. It is easy to see that (R[x],+, ·) is a ring.

Example 1.2.3. Compute ([2]4x+ [1]4)([2]4x
2 + [3]4x+ [1]4) in Z4[x].

Solution. We start the computation as if the coefficients were real numbers and use the
distribution law. Moreover to simplify our notation, we drop the decoration [ ]4, but we
remember that computation of coefficients should be done in Z4. Hence:

([2]4x+ [1]4)([2]4x
2 + [3]4x+ [1]4)

= (2 · 2)x3 + (2 · 3 + 1 · 2)x2 + (2 · 1 + 1 · 3)x+ (1 · 1)

= x+ 1.
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Exercise 1.2.4. 1. Compute (x+ 1)3 in Z3[x].

2. Suppose p is prime. Compute (x+ 1)p in Zp[x].

(Hint. By the binomial expansion the coefficient of xi in (x+ 1)p is
(
p
i

)
. Argue

why
(
p
i

)
is zero in Zp if 1 ≤ i ≤ p− 1.)

Warning. Prior to this course, you have viewed a polynomial f ∈ R[x] as a function
from R to R. There is, however, a subtle difference between polynomials and functions.
For instance, x, x2, . . . are distinct elements of Z2[x], but all of them are the same
functions from Z2 to Z2. Notice that two polynomials

∑∞
i=0 aix

i and
∑∞
i=0 bix

i are
equal if and only if ai = bi for every non-negative integer i.

Nevertheless, later we will see that viewing polynomials as functions is extremely
useful.

Direct product of rings

Suppose R1, . . . , Rn are rings. Then the set

R1 × · · · ×Rn := {(r1, . . . , rn)| r1 ∈ R1, . . . , rn ∈ Rn}

with operations

(r1, . . . , rn) + (r′1, . . . , r
′
n) :=(r1 + r′1, . . . , rn + r′n)

(r1, . . . , rn) · (r′1, . . . , r′n) :=(r1 · r′1, . . . , rn · r′n)

is a ring, and it is called the direct product of Ri’s. Notice the operations in the i-th
component are done in Ri.

Example 1.2.5. Compute (2, 2) · (3, 3) in Z5 × Z6.

Solution. We notice that 2 · 3 = 1 in Z5 and 2 · 3 = 0 in Z6. Hence we have
(2, 2) · (3, 3) = (1, 0) in Z5 × Z6.

1.3 Basic properties of operations in a ring.

Here we see that some basic computations hold in every ring, and a unital ring R
has a unique identity, which is sometimes denoted by 1R.

Lemma 1.3.1. Suppose R is a ring and 0 is the neutral element of the abelian group
(R,+). Then for every a, b ∈ R, the following hold:

1. 0 · a = a · 0 = 0.

2. (−a) · b = −(a · b) = a · (−b).

3. (−a) · (−b) = a · b.
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Proof. (1) Since 0 = 0 + 0, we have 0 · a = (0 + 0) · a for every a ∈ R. Hence by the
distribution law, we have

0 · a = (0 · a) + (0 · a).

As (R,+) is a group, we deduce that 0 = 0 · a. Similarly we have

a · 0 = a · (0 + 0) = (a · 0) + (a · 0), which implies that 0 = a · 0.

(2) To show (−a) · b = −(a · b), we need to argue why (a · b) + ((−a) · b) = 0 :

(a · b) + ((−a) · b) =(a+ (−a)) · b (distribution law)
=0 · b
=0 (by the first part).

By a similar argument, we can deduce that a · (−b) = −(a · b).
(3) Using the second part twice, we obtain the last part as follows:

(−a) · (−b) = −(a · (−b)) = −(−(a · b)) = a · b.

This finishes the proof.

Lemma 1.3.2. Suppose R is a unital ring. Then there is a unique element 1R ∈ R
such that

1R · a = a · 1R = a (1.1)

for every a ∈ R.

Proof. Suppose both 1 and 1′ satisfy (1.1). Then

1 =1 · 1′ (as 1′ satisfies (1.1))
=1′ (as 1 satisfies (1.1)),

and the claim follows.

Exercise 1.3.3. Suppose R1, . . . , Rn are unital rings. Show that (1R1 , . . . , 1Rn) is the
identity of R1 × · · · ×Rn.

1.4 Subring and homomorphism.

Whenever you learn a new structure, you should look for subsets that share the same
properties (they are often called sub-), and more importantly maps that preserves those
properties (they are often called homomorphisms).

Definition 1.4.1. Suppose (R,+, 0) is a ring. A subset S of R is called a subring of R
if

1. (S,+) is a subgroup of (R,+).

2. S is closed under multiplication. This means that for every a, b ∈ S, we have
ab ∈ S.
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Warning In your book, having an identity is part of the definition of a ring. As a
result a subring of a ring R should contain the identity of R. In our course, we do not
make that assumption for subrings.

Example 1.4.2. Z is a subring of Q. Q is a subring of R. R is a subring of C.

Exercise 1.4.3. 1. What is the smallest subring of C that contains Q and i?

2. What is the smallest subring of C that contains Q and
√

2?

3. What is the smallest subring of C that contains Q and 3
√

2?

Definition 1.4.4. Suppose R1 and R2 are two rings. Then a function f : R1 → R2 is
called a ring homomorphism if for every a, b ∈ R1

1. f(a+ b) = f(a) + f(b),

2. f(a · b) = f(a) · f(b).

Warning As it has been mentioned earlier, in your book, having an identity is part
of the definition of a ring. As a result a ring homomorphism between two rings A and
B should send 1A to 1B . In this course, we refer to the ring homomorphisms that send
1A to 1B as unital ring homomorphisms.

Example 1.4.5. For every positive integer n, cn : Z → Zn, cn(a) := [a]n is a ring
homomorphism.



Chapter 2

Lecture 2

In this lecture, first we show the subring criterion and present important ring
homomorphisms. Next we define the kernel and the image of a ring homomorphism.
The third topic is on the group of units of a ring, and the definition of a field. As an
important example, we find the group of units of the ring of integers modulo n. Finally
we define zero-divisors and integral domains.

2.1 More on subrings and ring homomorphisms.

We start by defining a ring isomorphism.

Lemma 2.1.1. Suppose f : R1 → R2 is a bijective ring homomorphism. Then
f−1 : R2 → R1 is a ring homomorphism.

Proof. Since f is a bijection, it is invertible and there is the function f−1 : R2 → R1.
For every a, b ∈ R2, we have

f(f−1(a) + f−1(b)) =f(f−1(a)) + f(f−1(b))

=a+ b.

Hence f−1(a+ b) = f−1(a) + f−1(b). Similarly we have

f(f−1(a) · f−1(b)) =f(f−1(a)) · f(f−1(b))

=a · b.

Hence f−1(a · b) = f−1(a) · f−1(b). The claim follows.

Definition 2.1.2. A bijective ring homomorphism is called a ring isomorphism. We
say two rings are isomorphic if there is a ring isomorphism between them.

As in group theory, two isomorphic rings are essentially the same with different
labelling!

Let us start with subgroup criterion from group theory.

13
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Lemma 2.1.3 (Subgroup criterion). Suppose (G, ·) is a group and H is a non-empty
subset. If for every h, h′ ∈ H , we have hh′−1 ∈ H , then H is a subgroup.

We can use the subgroup criterion in order to show the subring criterion.

Lemma 2.1.4 (Subring criterion). Suppose R is a ring and S is a non-empty subset of
R. If for every a, b ∈ S, we have

1. a− b ∈ S, and

2. a · b ∈ S,

then S is a subring.

Proof. By the subgroup criterion, we deduce that (S,+) is a subgroup of (R,+). Since
S is also closed under multiplication, we deduce that S is a subring.

2.2 Kernel and image of a ring homomorphism.

A good application of the subring criterion is to show that the kernel of a ring
homomorphism and its image are subrings. Let us recall from group theory that the
kernel of a group homomorphism f between two abelian groups A1 and A2 is

ker f := {a ∈ A1| f(a1) = 0},

and ker f is a subgroup of A1. We also have that the image of f is

Im f := {f(a)| a ∈ A1},

and it is a subgroup of A2. Since a ring homomorphism f is also an additive group
homomorphism, we deduce that ker f and Im f are subgroups of the domain of f and
the codomain of f , respectively.

Lemma 2.2.1. Suppose f : R1 → R2 is a ring homomorphism. Then the kernel ker f
of f is a subring of R1 and the image Im f of is a subring of R2. Moreover for every
a ∈ A and x ∈ ker f , we have that ax and xa are in ker f .

Remark 2.2.2. Notice that the moreover part of Lemma 2.2.1 is much stronger than
saying ker f is closed under under multiplication. Later, when we are studying ideals
we will come back to this extra property of kernels.

Proof of Lemma 2.2.1. From group theory, we know that ker f and Im f are additive
subgroups. It is enough to show that they are closed under multiplication. We show
a stronger result for ker f , and we will come back to this property when we define an
ideal of a ring. For every a ∈ ker f and every a′ ∈ R1, we have

f(a · a′) = f(a) · f(a′) = 0 · f(a′) = 0, and so a · a′ ∈ ker f.

For every b, b′ ∈ Im f , there are a, a′ ∈ R1 such that b = f(a) and b′ = f(a′).
Therefore

b · b′ = f(a) · f(a′) = f(a · a′) ∈ Im f.

This completes the proof.
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Example 2.2.3. Find the kernel of cn : Z→ Zn, cn(a) := [a]n.

Solution. You have seen this in group theory: a ∈ ker cn if and only if cn(a) = 0.
This means a ∈ ker cn if and only if [a]n = [0]n. Hence a ∈ ker f if and only if a is a
multiple of n. Therefore ker cn = nZ.

Example 2.2.4. Notice that cn : Z[x]→ Zn[x], cn(
∑∞
i=0 aix

i) :=
∑∞
i=0 cn(ai)x

i is
a ring homomorphism. Find the kernel of cn.

Proof. Before we describe the kernel of cn, let us point out that every ring homomor-
phism f : A → B can be extended to a ring homomorphism, which by the abuse of
notation is also denoted by f , between A[x] and B[x]: f : A[x] → B[x] such that
f(
∑∞
i=0 aix

i) :=
∑∞
i=0 f(ai)x

i (Justify for yourself why this is the case).
Now notice that

∑∞
i=0 is in the kernel of cn if and only if for every i, ai is in the

kernel of cn. Hence ker cn = nZ[x], which means it consists of polynomials that are
multiple of n.

2.3 A special ring homomorphism

Let’s recall a notation from group theory before going back to ring theory. In group
theory, you have learned that if (G, ·) is a group and g ∈ G, then the cyclic group
generated by g is

{gn| n ∈ Z},

and
eg : Z→ G, eg(n) := gn (2.1)

is a group homomorphism. You have also learned that when we have an abelian group
A, we often use the additive notation. The cyclic (additive) subgroup generated by
a ∈ A is

{na| a ∈ Z},

where na is defined as follows: for a positive integer n we set

na := a+ · · ·+ a︸ ︷︷ ︸
n-times

,

for a negative integer n, we set

na := (−a) + · · ·+ (−a)︸ ︷︷ ︸
(−n)-times

,

and for n = 0, na = 0. In the additive setting the group homomorphism eg which is
given in (2.1) is as follows:

ea : Z→ A, ea(n) := na. (2.2)

Since a ring (R,+, ·) with addition + is an abelian group, we can use the same notation
as in group theory. This means for n ∈ Z and a ∈ R, we can talk about na ∈ R.
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Warning. For a ring R, an integer n, and a ∈ R, na should not be confused with a
ring multiplication n · a. As it is explained above, this concept is borrowed from group
theory. Notice that the ring multiplication is only defined for two elements of R, and it
is not defined for an integer and an element of R.

Lemma 2.3.1. Suppose R is a unital ring with the identity element 1R. Then

e : Z→ R, e(n) := n1R

is a ring homomorphism.

Proof. From group theory, we know that e is an abelian group homomorphism. So it
is enough to show that for every integers m and n we have e(mn) = e(m) · e(n). This
is done by a case-by-case consideration, and is not particularly interesting!

Case 1. m = 0 or n = 0.
Proof of Case 1. By definition, e(0) = 0 (the first 0 is in Z and the second 0 is inR).

By basics properties of ring operations (see Lemma 1.3.1), we have that 0 ·a = a ·0 = 0
for every a ∈ R. Therefore for m = 0, we have

e(mn) = e(0) = 0, and e(m) · e(n) = e(0) · e(n) = 0 · e(n) = 0,

and similarly for n = 0, we have

e(mn) = e(0) = 0, and e(m) · e(n) = e(m) · e(0) = e(m) · 0 = 0,

and the claim follows.
Case 2. m,n > 0.
Proof of Case 2. By definition, e(mn) = 1R + · · ·+ 1R where there are mn-many

1Rs. On the other hand,

e(m) · e(n) =(1R + · · ·+ 1R︸ ︷︷ ︸
m-times

) · (1R + · · ·+ 1R︸ ︷︷ ︸
n-times

)

= 1R · 1R + · · ·+ 1R · 1R︸ ︷︷ ︸
mn-times

(by the distribution law)

= 1R + · · ·+ 1R︸ ︷︷ ︸
mn-times

=e(mn).

This shows the claim in Case 2.
Case 3. m > 0 and n < 0.
Proof of Case 3. Since m is positive and n is negative, mn is negative. Hence

e(mn) = (−1R) + · · · + (−1R) where there are (−mn)-many −1Rs. On the other
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hand,

e(m) · e(n) =(1R + · · ·+ 1R︸ ︷︷ ︸
m-times

) · ((−1R) + · · ·+ (−1R)︸ ︷︷ ︸
(−n)-times

)

= 1R · (−1R) + · · ·+ 1R · (−1R)︸ ︷︷ ︸
(−mn)-times

(by the distribution law)

=−(1R · 1R) + · · ·+−(1R · 1R)︸ ︷︷ ︸
(−mn)-times

(Lemma 1.3.1)

= (−1R) + · · ·+ (−1R)︸ ︷︷ ︸
(−mn)-times

=e(mn).

This shows the claim in Case 3.
Case 4. m < 0 and n > 0.
This case is almost identical to Case 3.
Case 5. m < 0 and n < 0.
We leave this case as an exercise.

2.4 The evaluation or the substitution map

As it has been already hinted to, polynomials can be viewed as functions. This
means we can evaluate a polynomial. Next we make it more formal.

Proposition 2.4.1. Suppose B is a commutative ring and A is a subring of B. Suppose
b ∈ B. Then the evaluation map

φb : A[x]→ B, φb(f(x)) := f(b)

is a ring homomorphism.

Proof. We need to show that for every f1, f2 ∈ A[x] we have

φb(f1(x) + f2(x)) =φb(f1(x)) + φb(f2(x)) and
φb(f1(x)f2(x)) =φb(f1(x))φb(f2(x)).

Both are easy to be checked and we leave it as an exercise.

Let’s describe the image and the kernel of φb.
By the definition of kernel, the kernel of the evaluation map φb : A[x]→ B consists

of polynomials that have b as a zero:

kerφb = {p(x) ∈ A[x]| p(b) = 0}.

This is an indication of how ring theory can help us to study zeros of polynomials.
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The image of φb is

Imφb = {p(b)| p(x) ∈ A[x]} =
{ n∑
i=0

aib
i | n ∈ Z+, a0, . . . , an ∈ A

}
.

In the next lecture we will show that the image of φb is the smallest subring of B
that contains both A and b.
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Lecture 3

3.1 The evaluation or the substitution map

In the previous lecture we defined the evaluation map

φb : A[x]→ B, φb(f(x)) := f(b)

where A is a subring of B and b ∈ B. We observed that

kerφb = {p(x) ∈ A[x] | p(b) = 0}.

Next we describe the image of φb.

Lemma 3.1.1. Suppose A is a subring of a unital commutative ring B, and b ∈ B.
Then the image of the evaluation map φb is the smallest subring of B that contains both
A and b.

Proof. Since φb is a ring homomorphism, its image is a subring. For every a ∈ A,
φb(a) = a, where a is viewed as the constant polynomial, and φb(x) = b. Hence Imφb
is a subring of B which contains A and b.

SupposeC is a subring ofB which containsA and b. Then for every a0, . . . , an ∈ A,
we have

a0 + a1b+ · · ·+ anb
n ∈ C

as C is closed under addition and multiplication. This implies that Imφb is a subset of
C. The claim follows.

Definition 3.1.2. Suppose A is a subring of a unital commutative ring B, and b ∈ B.
The smallest subring of B which contains A and b is denoted by A[b].

Warning. The notation A[b] can be confusing because of its similarity with the
ring of polynomials A[x]. You have to notice that b ∈ B is not an indeterminant.

By Lemma 3.1.1, we have that Imφb = A[b].

Exercise 3.1.3. Earlier you have seen that the image Q[i] of φi : Q[x]→ C and the
image Q[

√
2] of φ√2 : Q[x]→ C are given only using polynomials of degree at most 1.

You have also observed that to get the entire Q[ 3
√

2], one can only use polynomials of
degree at most 3. What do you think is the general rule?

19
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3.2 Units and fields

As it has been pointed out earlier, Khwarizmi was interested in solving degree 1
equations. Now we try to do same in a ring: suppose R is a ring and a, b ∈ R. Does
the equation ax = b have a solution in R? Over real numbers, such an equation has a
solution as long as a 6= 0. In fact, if a 6= 0, then x = a−1b is the unique solution of
ax = b. So the question is whether or not a has a multiplicative inverse.

Definition 3.2.1. Suppose R is a unital ring. We say a ∈ R is a unit if there is a′ ∈ R
such that a · a′ = a′ · a = 1R. The set of all units of R is denoted by R×.

Lemma 3.2.2. SupposeR is a unital commutative ring and a ∈ R is a unit. Then there
is a unique a′ ∈ R such that a · a′ = 1R. (We call such an a′ the multiplicative inverse
(or simply the inverse) of a. The multiplicative inverse of a is denoted by a−1.)

Proof. Suppose a · a′ = a · a′′ = 1R. We have to show that a′ = a′′. We have

a′ =a′ · 1R = a′ · (a · a′′)
=(a′ · a) · a′′ (by the associativity)
=(a · a′) · a′′ (by the commutativity)
=1R · a′′ = a′′.

Lemma 3.2.3. Suppose R is a unital ring. Then (R×, ·) is a group.

Proof. We start by showing thatR× is closed under multiplication. Suppose a, b ∈ R×;
then

(a · b) · (b−1 · a−1) = (b−1 · a−1) · (a · b) = 1R. (justify this!)

Hence a · b ∈ R×.
Next we show that (R×, ·) has an identity. Notice since 1R · 1R = 1R, 1R ∈ R×.

As 1R · a = a · 1R = a for every a ∈ R×, we deduce that 1R is the identity of R×.
Observe that we have the associativity of · for free as R is a ring.
Finally we show that every element of R× has an inverse. Suppose a ∈ R×. Then

a · a−1 = a−1 · a = 1R. This implies that a−1 ∈ R×, which completes the proof.

Example 3.2.4. Q× = Q \ {0}, R× = R \ {0}, and C× = C \ {0}.

Example 3.2.5. Find Z×.

Proof. By the definition, a ∈ Z× if and only if aa′ = 1 for some a′ ∈ Z. If aa′ = 1,
then |a||a′| = 1 and |a| and |a′| are two positive integers. Hence |a|, |a′| ≥ 1 and
|a||a′| = 1. This implies that |a| = |a′| = 1. Therefore a = ±1. As (−1)(−1) = 1
and (1)(1) = 1, we deduce that Z× = {1,−1}.

Example 3.2.6. Find 2−1 in Z3.
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Proof. Notice that [2]3 · [2]3 = [1]3, and so 2−1 = 2 in Z3.

Warning. When we know that we are working with elements of Zn, we often write
a instead of [a]n. When we are asked to find the inverse of an apparently integer number
a in Zn, we should not write 1

a . We should find an integer a′ such that

aa′ ≡ 1 (mod n).

Exercise 3.2.7. Review your notes from either math 109 or math 100 a where the
following property of the greatest common divisor of two integers is discussed. Suppose
a and b are two non-zero integers. Then

the equation ax+ by = c has an integer solution if and only if gcd(a, b) divides c.

This fact can be written in a compact form as aZ + bZ = gcd(a, b)Z. (See proposition
2.3.5 of your book.)

Using the above exercise, we can describe the group Z×n of units of Zn.

Proposition 3.2.8. Suppose n is a positive integer. Then

Z×n = {[a]n| gcd(a, n) = 1}.

Proof. Notice that [a]n is a unit in Zn if and only if for some [x]n ∈ Zn we have
[a]n[x]n = [1]n. This means the congruence equation ax ≡ 1 (mod n) has a solution.
This in turn means for some integers x and y we have ax− 1 = ny. So we are looking
for as such that the following equation has an integer solution:

ax− ny = 1.

By the above exercise, this happens exactly when gcd(a, n) = 1. The claim follows.

Euler’s phi function φ(n) is

|{a ∈ Z | 1 ≤ a ≤ n, gcd(a, n) = 1}|.

Hence by Proposition 3.2.8, we have that

|Z×n | = φ(n).

As a corollary of this equation, we can deduce Euler’s theorem.

Theorem 3.2.9 (Euler’s theorem). Suppose n is a positive integer, and gcd(a, n) = 1.
Then

aφ(n) ≡ 1 (mod n).

Proof. In group theory, you have learned that if (G, ·) is a finite group, then for every
g ∈ G we have

g|G| = 1.
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We apply this result for the group Z×n . When gcd(a, n) = 1, [a]n ∈ Z×n . Therefore by
the above discussion we have

[a]
|Z×n |
n = [a]φ(n)n = [1]n.

Hence
aφ(n) ≡ 1 (mod n).

Definition 3.2.10. A unital commutative ring F is called a field if F× = F \ {0}.

Example 3.2.11. Q, R, and C are fields, and Z is not a field.

Corollary 3.2.12. Suppose n is a positive integer. Then Zn is a field if and only if n is
prime.

Proof. By Proposition 3.2.8, we have that Zn is a field if and only if

Zn \ {[0]n} = {[a]n| gcd(a, n) = 1}.

This means 1 < n and every positive integer less than n is coprime with n. The claim
follows.

3.3 Zero-divisors and integral domains

Let’s go back to a special case of linear equations: ax = 0. We know that over C,
0 is the unique solution of this equation if a 6= 0. On the other hand, in Z6, we have
[2]6[3]6 = [0]6, which means 2x = 0 has a non-zero solution in Z6. This brings us to
the following definition.

Definition 3.3.1. Suppose R is a commutative ring. We say a ∈ R is a zero-divisor if
a 6= 0 and ab = 0 for some non-zero b ∈ R. The set of zero divisors of R is denoted by
D(R).

Definition 3.3.2. A unital commutative ring D is called an integral domain if D has
more than one element (alternatively we can say 0D 6= 1D (why?)) and D has no
zero-divisors.

Example 3.3.3. Z, Q, R, and C are integral domains, and Z6 is not an integral domain.

Lemma 3.3.4. Suppose R is a unital commutative ring. Then R× ∩D(R) = ∅.

Proof. Suppose to the contrary that a ∈ R× ∩D(R). Then for some a′ ∈ R \ {0} we
have a · a′ = 0. Then

a−1 · (a · a′) = a−1 · 0 = 0.

On the other hand, we have

a−1 · (a · a′) = (a−1 · a) · a′ = 1R · a′ = a′.

Hence a′ = 0, which is a contradiction.
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Corollary 3.3.5. Every field F is an integral domain.

Proof. Since F is a field, 1F ∈ F× = F \ {0F }. Hence 1F 6= 0F . Next we want
to show that F has no zero-divisors; that means we want to show D(F ) = ∅. By
Lemma 3.3.4, we have that D(F ) ∩ F× = ∅. Since F is a field, F× = F \ {0}.
Altogether we deduce that D(F ) = ∅, and the claim follows.

Notice that the converse of Corollary 3.3.5 is not correct; for instance Z is an
integral domain, but it is not a field. The converse statement, however, holds for finite
integral domains. Before proving this result, let’s show the cancellation law for integral
domains.

Lemma 3.3.6 (Cancellation law). Suppose D is an integral domain. Then for every
non-zero a ∈ D and b, c ∈ D,

ab = ac implies b = c.

Proof. Since ab = ac, we have a(b − c) = 0. Since a 6= 0 and D does not have
a zero-divisor, we deduce that b − c = 0, which means b = c. This completes the
proof.

Proposition 3.3.7. Suppose D is a finite integral domain. Then D is a field.

Proof. Since D is an integral domain, it is a unital commutative ring and 0D 6= 1D.
So it is enough to show that every non-zero element a ∈ D is a unit. This means we
have to show that for some x ∈ D we have ax = 1. Let `a : D → D, `a(x) := ax.
With this choice of `a, it is enough to show that 1 is in the image of `a. We will show
that `a is surjective. Notice that since D is a finite set, `a : D → D is surjective if and
only if it is injective. Therefore it is enough to prove that `a is injective. Notice that

`a(b) = `a(c)⇒ab = ac (By the cancellation law)
⇒b = c.

Therefore `a is injective which finishes the proof.

3.4 Characteristic of a unital ring

Definition 3.4.1. Suppose R is a ring. Let

N+(R) := {n ∈ Z+| for every a ∈ R,na = 0}. (3.1)

If N+(R) is empty, we say that the characteristic of R is zero. If N+(R) is not empty,
the characteristic of R is the minimum of N+(R). The characteristic of R is denoted
by char(R).

Notice that for every ring R we have that char(R)a = 0 for every a ∈ R.
Let us recall that by Lemma 2.3.1 we have that

e : Z→ R, e(n) := n1R

is a ring homomorphism. The next lemma gives us a clear connection between the ring
homomorphism e and the characteristic of R.
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Lemma 3.4.2. Let R be a unital ring and e : Z→ R, e(n) := n1R. For every unital
ring R, we have ker e = char(R)Z.

Proof. From group theory, we know that every subgroup of Z is of the form mZ for
some non-negative integer m. Since ker e is a subgroup of Z, for some non-negative
integer n0 we have that ker e = n0Z.

If n0 = 0, then there is no positive integer n such that n1R = 0. Hence N+(R) is
empty where N+(R) is as in (3.1). Therefore char(R) = 0. Thus in this case we have
ker e = char(R)Z.

Now suppose n0 6= 0. For every n ∈ N+(R), we have n1R = 0 which implies
that n is in ker e = n0Z. Therefore

n ≥ n0 if n ∈ N+(R). (3.2)

On the other hand, for every a ∈ R, we have

n0a = a+ · · ·+ a︸ ︷︷ ︸
n0-times

= (1R · a) + · · ·+ (1R · a)︸ ︷︷ ︸
n0-times

=(1R + · · ·+ 1R︸ ︷︷ ︸
n0-times

) · a = (n01R) · a (distribution)

=0 · a = 0 (3.3)

By (3.3), we deduce that
n0 ∈ N(R). (3.4)

By (3.2) and (3.4), we deduce that n0 = minN+(R) = char(R), and the claim
follows.

Proposition 3.4.3. Suppose D is an integral domain. Then char(D) is either 0 or a
prime number.

Proof. Suppose to the contrary that char(D) is neither 0 nor prime. Then either
char(D) is either 1 or of the form ab where a and b are two integers more than 1.

If char(D) = 1, then 1D = 0D which is a contradiction asD is an integral domain.
If char(D) = ab and a, b are integers more than 1, then by Lemma 3.4.2 we have

ker e = abZ. Hence e(ab) = 0, which implies that

e(a) · e(b) = 0. (3.5)

AsD is an integral domain, by (3.5) we deduce that either e(a) = 0 or e(b) = 0. Hence
either a ∈ ker e or b ∈ ker e. Since ker e = abZ and a and b are integers more than 1,
we get a contradiction.
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Lecture 4

4.1 Defining fractions

In the previous lecture, we showed that every field is an integral domain, and we
noticed that the converse does not hold in general: for instance Z is an integral domain
but it is not a field. Today we will show every integral domain can be embedded into
a field. Let’s discuss this from the point of view of solving equations. Notice that in
a field every linear equation of the form ax = b has a (unique) solution if a is not
zero. This property does not hold in an arbitrary integral domain. Let’s say we start
with an integral domain D and “add” all the zeros of the equations of the form bx = a
with b 6= 0 to D. What do we get? Let’s look at the ring of integers Z. In this case,
we get {ab | a,∈ Z, b ∈ Z \ {0}}, which is the field Q of rational numbers. We use
our understanding of rational numbers as our guide to create fractions for an arbitrary
integral integral domain D. Every fraction is of the form a

b ; so it is given by a pair of
elements the numerator a and the denominator b. The numerator is arbitrary and the
denominator is every non-zero element. The subtlety is that two different pairs might
give us the same fractions. In the field of rational numbers we know that ab = c

d if
and only if ad = bc. We use this to identify two different pairs together. Formally, we
define a relation between the pairs, show that this is an equivalence relation, and use
the corresponding equivalence relations to define fractions.

Suppose D is an integral domain. For (a, b) and (c, d) in D × (D \ {0}), we say
(a, b) ∼ (c, d) if ad = bc. Next we check that ∼ is an equivalence relation. Recall that
a relation is an equivalence relation if it is reflexive (every element is “equal” to itself!),
symmetric (if x is “equal” to y, then y is “equal” to x), and transitive (if x is “equal”
to y and y is “equal” to z, then x is “equal” to z). This means we have to check the
following:

1. For every (a, b) ∈ D×(D\{0}), we have (a, b) ∼ (a, b). This holds as ab = ba.

2. For every (a, b), (c, d) ∈ D × (D \ {0}), if (a, b) ∼ (c, d), then (c, d) ∼ (a, b).
This holds as ad = bc implies that cb = da.

3. For every (a, b), (c, d), (e, f) ∈ D × (D \ {0}), if (a, b) ∼ (c, d) and (c, d) ∼
(e, f), then (a, b) ∼ (e, f). The proof of this part is a bit more involved. Since

25
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(a, b) ∼ (c, d), we have ad = bc, and (c, d) ∼ (e, f) implies that cf = de.
Multiplying both sides of ad = bc by f , and multiplying both sides of cf = de
by b, we obtain the following

adf = bcf, and cfb = deb.

Hence adf = deb. As d 6= 0 and D is an integral domain, by the cancellation
law, we have af = eb. Therefore

(a, b) ∼ (e, f).

Notice that in the last item, we used the condition that D is an integral domain in a
crucial way.

We let ab be the the equivalence class [(a, b)], and let

Q(D) :=
{a
b

∣∣∣ (a, b) ∈ D × (D \ {0})
}
.

4.2 Defining addition and multiplication of fractions

Next we will make define two binary operations onQ(D). Again we imitate rational
numbers, and we define

a

b
+
c

d
:=

ad+ bc

bd
and

a

b
· c
d

:=
ac

bd
.

Whenever we are working with equivalence classes, we have to be extra careful.
We need to check whether or not our definitions are independent of the choice of a
representative from equivalence classes.

Let’s make it more concrete by working with fractions. We are defining addition
and multiplication of fractions in terms of their given numerator and denominator. A
priori, it is not clear, why we end up getting the same result if we represent the same
fractions with different numerators and denominators. That means we have to show
that a1b1 = a2

b2
and c1

d1
= c2

d2
imply that

a1d1 + b1c1
b1d1

=
a2d2 + b2c2

b2d2
and

a1c1
b1d1

=
a2c2
b2d2

.

We only discuss why the addition is well-defined. The well-definedness of the multipli-
cation is much easier.

We have that a1d1+b1c1b1d1
= a2d2+b2c2

b2d2
if and only if

(a1d1 + b1c1)(b2d2) = (a2d2 + b2c2)(b1d1) ⇔ (4.1)

(a1b2)(d1d2) + (c1d2)(b1b2) = (a2b1)(d1d2) + (c2d1)(b1b2).

The second equality in (4.1) holds as we have a1b2 = a2b1 and c2d1 = c1d2 because
of a1b1 = a2

b2
and c1

d1
= c2

d2
.
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4.3 Fractions form a field

I leave it to you to check that (Q(D),+, ·) is a ring. Next we show that Q(D) is
a field by checking that every non-zero element of Q(D) is a multiplicative inverse.
Before showing this, let us show that 0

1 is the zero of Q(D) and 1
1 is the identity of

Q(D): for every a
b ∈ Q(D) we have

0

1
+
a

b
=

0 · b+ 1 · a
1 · b

=
a

b
, and

1

1
· a
b

=
1 · a
1 · b

=
a

b
.

We also notice that for every non-zero a in D, we have

0

1
=

0

a
, and

1

1
=
a

a
.

The first one holds as 0 · a = 0 · 1 and the second one holds as 1 · a = a · 1.
Suppose a

b is not zero. Then a 6= 0. Hence b
a is an element of Q(D). We have that

a

b
· b
a

=
a · b
b · a

=
1

1
,

which means that ab is a unit in Q(D). Therefore Q(D) is a field.

4.4 The universal property of the field of fractions

In this section, we show that Q(D) is the smallest field that contains a copy of D.
We have formulate this carefully. First we start by showing that Q(D) has a copy of
D; this means there is an injective ring homomorphism from D to Q(D). This will be
done similar to the way we view integers as fractions with denominator 1.

Lemma 4.4.1. Suppose D is an integral domain. Let i : D → Q(D), i(a) := a
1 .

Then i is an injective ring homomorphism.

Remark 4.4.2. Suppose A and B are rings. We say A can be embedded in B or we
say B has a copy of A if there is an injective ring homomorphism from A to B.

Proof of Lemma 4.4.1. We have to show that i(a) + i(b) = i(a+ b) and i(a) · i(b) =
i(a · b) for every a, b ∈ D:

i(a) + i(b) =
a

1
+
b

1
=
a · 1 + 1 · b

1 · 1
=
a+ b

1
= i(a+ b),

and
i(a) · i(b) =

a

1
· b

1
=
a · b
1 · 1

= i(a · b).

Next we show that i is injective:

i(a) = i(b) ⇒ a

1
=
b

1
⇒ a · 1 = 1 · b⇒ a = b.
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Next we show that if F is a field which contains a copy of D, then F contains a
copy of Q(D). In this sense, Q(D) is the smallest field which contains a copy of D.

Theorem 4.4.3. SupposeD is an integral domain and F is a field. Suppose f : D → F
is an injective ring homomorphism. Then

f̃ : Q(D)→ F, f̃
(a
b

)
:= f(a)f(b)−1

is a well-defined injective ring homomorphism. Moreover the following is a commuting
diagram

D Q(D)

F

i

f
f̃

that means we have f̃ ◦ i = f .

Proof. We start by showing that f̃ is well-defined. Suppose a1
b1

= a2
b2

. Then a1b2 =
a2b1 which implies that f(a1b2) = f(a2b1). Since f is a ring homomorphism, we
have

f(a1)f(b2) = f(a2)f(b1). (4.2)

As f is injective and bi’s are not zero, we deduce that f(bi)’s are not zero. AsF is a field,
f(bi)’s are units in F . Therefore by (4.2), we have f(a1)f(b1)−1 = f(a2)f(b2)−1.
This implies that f̃ is well-defined.

I leave it to you to check that f̃ is a ring homomorphism. Next we show that f̃ is
injective. Let us recall an important result from group theory:

A group homomorphism is injective if and only if its kernel is trivial.

Based on the above mentioned result, to show that f̃ is injective, it is enough to
prove that the kernel of f̃ is trivial:

0 = f̃
(a
b

)
= f(a)f(b)−1 ⇒ f(a) = 0 ⇒ a = 0

where the last implication holds because f is injective.
Finally we prove that the given diagram is commutative. This means we have to

show for every a ∈ D, we have f̃(i(a)) = f(a). By the definition of f̃ , we have
to show f(a)f(1)−1 = f(a). Hence we need to show that f(1) = 1. Notice that
f(1) = f(1 · 1) = f(1) · f(1). Since f is injective, f(1) 6= 0. As F is a field, f(1) is a
unit. Therefore f(1) = f(1) ·f(1) implies that f(1) = 1, which finishes the proof.

How can we use the Universal Property of Field of Fractions?
The universal property can be used to show that Q(D) is isomorphic to a given

ring F . We can use the following strategy to show Q(D) ' F :

1. Prove that F is a field.
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2. Find an injective ring homomorphism f : D → F .

3. Use the universal property of field of fractions to get the injective ring homomor-
phism

f̃ : Q(D)→ F, f̃
(a
b

)
= f(a)f(b)−1.

4. Show that every element of F is of the form f(a)f(b)−1 for some a, b ∈ D.

The last step implies that f̃ is surjective. By the third item, we know that f̃ is
injective. Hence f̃ is a bijective ring homomorphism. This implies that Q(D) ' F .

In the next lecture, we use this strategy to show that Q(Z[i]) ' Q[i].





Chapter 5

Lecture 5

5.1 Using the universal property of the field of fractions.

In the previous lecture we defined the field of fractions of an integral domain and
proved its universal property. We also discussed a four step strategy of proving that the
field of fractions of an integral domain is isomorphic to a given ring.

Example 5.1.1. Prove that Q(Z[i]) ' Q[i].

Solution. Step 1. Q[i] is a field.
We have already seen how to show Q[i] is a subring of C. So to show it is a field, it

is enough to prove that every non-zero element of Q[i] is a unit. Let a+ bi ∈ Q[i] be a
non-zero element. Then we have

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i.

Since a, b ∈ Q, we have a
a2+b2 ,

−b
a2+b2 ∈ Q. Hence (a + bi)−1 ∈ Q[i]. Notice that

a+bi 6= 0, a−bi 6= 0 and we are allowed to multiply the numerator and the denominator
by a− bi.

Step 2. f : Z[i]→ Q[i], f(z) := z.
Then clearly f is an injective ring homomorphism.
Step 3. By the Universal Property of Field of Fractions,

f̃ : Q(Z[i])→ Q[i], f̃
(z1
z2

)
= f(z1)f(z2)−1

is a well-defined injective ring homomorphism.
Step 4. f̃ is surjective.
Suppose a+ bi ∈ Q[i]. Then by taking a common denominator for a and b we have

that there are integers r, s and t such that

a+ bi =
r + si

t
= f(r + si)f(t)−1.

Therefore f̃ is surjective.
By Steps 3 and 4, we have that f̃ is an isomorphism.

31
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5.2 Ideals

In group theory (and linear algebra), you have seen the importance of kernel of
homomorphisms. Next we find out exactly what subsets of a ringA can be the kernel of a
ring homomorphism fromA to another ring. We have already proved that if f : A→ B
is a ring homomorphism, then the kernel of f have the following properties:

1. For every x, y ∈ ker f , x− y ∈ ker f , and

2. For every x ∈ ker f and a ∈ A, then ax ∈ ker f and xa ∈ ker f .

We will show that these conditions are enough to be the kernel of a ring homomorphism.
This brings us to the definition of ideals.

It should be pointed out that this is not the historical route to the theory of ideals.
The theory of ideals started in order to get the factorization property for more general
rings than ring of integers. We will come back to this historical note later when we
define prime ideals.

Definition 5.2.1. Suppose A is a ring, and I is a non-empty subset. We say I is an
ideal of A if

1. For every x, y ∈ I , x− y ∈ I , and

2. For every x ∈ I and a ∈ A, then ax ∈ I and xa ∈ I .

When I is an ideal of A, we write I EA or I CA.

So we have

Lemma 5.2.2. For every ring homomorphism f : A → B, we have that ker f is an
ideal.

Next we construct some ideals.

Lemma 5.2.3. Suppose A is a unital commutative ring, and x1, . . . , xn ∈ A. Then
the smallest ideal of A which contains x1, . . . , xn is

{a1x1 + · · ·+ anxn | a1, . . . , an ∈ A}. (5.1)

We denote this ideal by 〈x1, . . . , xn〉 and we call it the ideal generated by x1, . . . , xn.

Proof. We start by showing that the set I given in (5.1) is an ideal and it contains xi’s.
Suppose y, y′ ∈ I; then

y =

n∑
i=1

aixi and y′ =

n∑
i=1

a′ixi

for some ai’s and a′i’s in A. Hence

y − y′ = (

n∑
i=1

aixi)− (

n∑
i=1

a′ixi) =

n∑
i=1

(ai − a′i)xi ∈ I.
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For every a ∈ A, we have

ay = a(

n∑
i=1

aixi) =

n∑
i=1

(aai)xi ∈ I.

This shows that I is an ideal of A. For every i0, we have

xi0 = 0Ax1 + · · ·+ 0Axi0−1 + 1Axi0 + 0Axi0+1 + · · ·+ 0Axn ∈ I,

which implies that xi’s are in I .
Next suppose J is an ideal of A which contains xi’s. Then for every ai ∈ A we

have aixi ∈ A, which in turn implies that

a1x1 + · · ·+ anxn ∈ J.

Therefore I ⊆ J . This finishes the proof.

We say an ideal I is a principal ideal if it is generated by one element. By
Lemma 5.2.3, we have that in a unital commutative ring A the principal ideal generated
by x is

〈x〉 = {ax | a ∈ A}.

We sometimes denote 〈x〉 by xA.
As in group theory, we will prove the isomorphism theorems. To get to that, we

start by defining the quotient ring.

5.3 Quotient rings

Suppose I is an ideal of a ring A. Then for every x, y ∈ I , we have x − y ∈ I .
Hence by the subgroup criterion, I is a subgroup of A. As A is abelian, I is a normal
subgroup ofA. Therefore the setA/I of all the cosets of I form an abelian group under
the following operation

(x+ I) + (y + I) := (x+ y) + I.

Next we define a multiplication on A/I .

Lemma 5.3.1. Suppose I EA. The following is a well-defined operation on A/I

(x+ I) · (y + I) := xy + I

for x+ I, y + I ∈ A/I .

Proof. Suppose x1 + I = x2 + I and y1 + I = y2 + I . Then x1 − x2 ∈ I and
y1 − y2 ∈ I . Here we are using a result from group theory which states that for two
cosets a+H and a′ +H we have

a+H = a′ +H if and only if a− a′ ∈ H. (5.2)
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By (5.2), to show x1y1 + I = x2y2 + I it is necessary and sufficient to show that

x1y1 − x2y2 ∈ I. (5.3)

We show this by adding and subtracting a new term (this method is similar to how we
find the formula for the derivative of product of two functions):

x1y1 − x2y2 =(x1y1 − x1y2) + (x1y2 − x2y2)

=x1(y1 − y2) + (x1 − x2)y2. (5.4)

Since y1 − y2 ∈ I and x1 − x2 ∈ I , we have

x1(y1 − y2), (x1 − x2)y2 ∈ I. (5.5)

By (5.4), (5.5), and the fact that I is closed under addition we deduce that x1y1−x2y2 ∈
I . Hence x1y1 + I = x2y2 + I which finishes the proof.

Notice that Lemma 5.3.1 holds for non-commutative rings as well.

Proposition 5.3.2. Suppose A is a ring and I CA. Then

1. (A/I,+, ·) is a ring where for every x+ I, y + I ∈ A/I we have

(x+ I) + (y + I) := (x+ y) + I and (x+ I) · (y + I) := xy + I.

2. pI : A→ A/I, pI(x) := x+ I is a surjective ring homomorphism.

3. ker pI = I .

Remark 5.3.3. The ring A/I is called a quotient ring of A and pI is called the natural
quotient map.

Proof of Proposition 5.3.2. Since all the operations are defined in terms of coset repre-
sentatives, it is straightforward to check all the properties of rings and show that A/I is
a ring. I leave this as an exercise.

Let’s prove the second item:

pI(x) + pI(y) = (x+ I) + (y + I) = (x+ y) + I = pI(x+ y),

and
pI(x) · pI(y) = (x+ I) · (y + I) = xy + I = pI(xy).

Every element of A/I is of the form x+ I = pI(x), which means that pI is surjective.
Finally notice that

x ∈ ker pI ⇔ pI(x) = 0 + I ⇔ x+ I = 0 + I ⇔ x ∈ I,

and the claim follows.

The following is a consequence of Proposition 5.3.2 and Lemma 5.2.2:

Corollary 5.3.4. Suppose A is a ring and I is a subset of A. Then I is the kernel of a
ring homomorphism from A to another ring if and only if I is an ideal.
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5.4 The first isomorphism theorem for rings

In this section, we prove the first isomorphism theorem for rings. Let’s recall the
group theoretic version of this theorem:

Theorem 5.4.1 (The 1st Isomorphism Theorem for Groups). Suppose f : G→ G′ is a
group homomorphism. Then

f : G/ ker f → Im f, f(g ker f) := f(g)

is a well-defined group isomorphism.

We use Theorem 5.4.1 to show the following:

Theorem 5.4.2. Suppose f : A→ A′ is a ring homomorphism. Then

f : A/ ker f → Im f, f(a+ ker f) := f(a)

is a ring isomorphism.

Proof. Since f is an additive group homomorphism, by the first isomorphism theorem
for groups we have that f̃ is a well-defined group isomorphism. To finish the proof, it
is enough to show that f preserves the multiplication:

f(xy + ker f) = f(xy) = f(x)f(y) = f(x+ ker f)f(y + ker f),

for every x, y ∈ A. This finishes the proof.

Example 5.4.3. Suppose n is a positive integer. Then Z/nZ ' Zn.

Proof. Let cn : Z→ Zn be the residue map cn(x) := [x]n. Then cn is surjective and

x ∈ ker cn ⇔ [x]n = [0]n ⇔ n|x ⇔ x ∈ nZ.

By the first isomorphism theorem for rings, we have that

cn : Z/nZ→ Zn, cn(x+ nZ) = cn(x)

is a ring isomorphism.

A general strategy of using the first isomorphism theorem to show that a quotient
ring A/I is isomorphic to a ring B is to start with a ring homomorphism f : A→ C
where B is a subring of C, and show that Im f = B and ker f = I . This is what we
did in the previous example and what we will do in the next example as well.

Example 5.4.4. We have

Q[x]/〈x2 − 2〉 ' Q[
√

2],

and
Q[
√

2] = {a+ b
√

2 | a, b ∈ Q}.
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Proof. Let φ√2 : Q[x]→ C be the evaluation map φ√2(f(x)) = f(
√

2). Then by the
first theorem for rings we have

Q[x]/ kerφ√2 ' Imφ√2.

Recall that we have defined Q[
√

2] to be the image Imφ√2 of φ√2.
Next we find the kernel kerφ√2. Notice that

√
2 is a zero of x2−2, and so x2−2 is

in kerφ√2. Suppose f(x) ∈ kerφ√2. By the long division, there are q(x), r(x) ∈ Q[x]
such that

1. f(x) = q(x)(x2 − 2) + r(x), and

2. deg r < deg(x2 − 2).

Since deg r < 2, there are a, b ∈ Q such that r(x) = ax + b. As f(
√

2) = 0, we
deduce that

0 = f(
√

2) = q(
√

2) (
√

2)2 − 2)︸ ︷︷ ︸
is 0

+(a
√

2 + b).

Hence a
√

2 + b = 0. If a 6= 0, then
√

2 = −b/a ∈ Q which is a contradiction as
√

2
is irrational. Thus a = 0, which in turn implies that b = 0. This means r(x) = 0, and
so f(x) = q(x)(x2 − 2) ∈ I . Therefore kerφ√2 = I .

(We will continue in the next lecture.)
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Lecture 6

6.1 An application of the first isomorphism theorem.

In the previous lecture, we were in the middle of the proof of the following result. We
will be generalizing this result later in the course. We will be using similar techniques
to describe the structure of Q[α] where α is a zero of a polynomial.

Example 6.1.1. We have

Q[x]/〈x2 − 2〉 ' Q[
√

2],

and
Q[
√

2] = {a+ b
√

2 | a, b ∈ Q}.

Proof. We have already considered the evaluation map φ√2, used the first isomorphism
theorem to show that

Q[x]/ kerφ√2 ' Imφ√2.

Next we used the long division and proved that kerφ√2 = 〈x2 − 2〉.
Next we want to show that Q[

√
2] = {a0 + a1

√
2 | a0, a1 ∈ Q}. To show this we

again use the long division.
Elements of Q[

√
2] are of the form p(

√
2) for some p(x) ∈ Q[x]. By the long

division, there are q(x), r(x) ∈ Q[x] such that

1. p(x) = q(x)(x2 − 2) + r(x), and

2. deg r < deg(x2 − 2).

Hence there are a0, a1 ∈ Q such that r(x) = a0 + a1x. Therefore

p(
√

2) = q(
√

2)(
√

2
2
− 2) + (a0 + a1

√
2) = a0 + a1

√
2.

This implies that Q[
√

2] = {a0 + a1
√

2 | a0, a1 ∈ Q}, and the claim follows.

As you can see in this examples, the long division plays an important role in
understanding of polynomials. Next we want to see in what generality the long division
holds.

37
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6.2 Degree of polynomials

Suppose A is a unital commutative ring and

f(x) = a0 + a1x+ · · ·+ anx
n ∈ A[x] and an 6= 0.

Then we say anxn is the leading term of f , and we write Ld(f) := anx
n. The leading

term contains two information: the leading coefficient an and the exponent n of xwhich
is called the degree of f , and we write deg f = n. We use the following convention for
the zero polynomial:

deg 0 = −∞, and Ld(0) := 0.

Example 6.2.1. Find deg((2x+ 1)(3x2 + 1)) in Z6[x].

Solution. By the distribution property we have

(2x+ 1)(3x2 + 1) = (2 · 3)︸ ︷︷ ︸
0 in Z6

x3 + 3x2 + 2x+ 1 = 3x2 + 2x+ 1.

Hence deg((2x+ 1)(3x2 + 1)) = 2.

Notice that in the above example, deg(2x+ 1) = 1 and deg(3x2 + 1) = 2. Hence
sometimes,

deg f · g 6= deg f + deg g.

A closer examination of the above example reveals that existence of zero-divisors is
responsible for the failure of the degree of the product formula. In fact, if at least one
of the leading coefficients of f or g is not a zero-divisor, then we have

deg f · g = deg f + deg g.

Let’s see the details.

Lemma 6.2.2. Suppose A is a unital commutative ring, and f(x), g(x) ∈ A[x].

1. Suppose the leading coefficient of f is a and the leading coefficient of g is b. If
ab 6= 0, then Ld(fg) = Ld(f) Ld(g) and deg fg = deg f + deg g.

2. Suppose that the leading coefficient of f is not a zero-divisor. Then

Ld(fg) = Ld(f) Ld(g) and deg fg = deg f + deg g; (6.1)

in particular, if D is an integral domain, then (6.1) holds.

Proof. (1) Suppose

f(x) = a0 + a1x+ · · ·+ anx
n, g(x) = b0 + b1x+ · · ·+ bmx

m,

an = a, and bm = b. Then

f(x)g(x) = anbmx
n+m + terms of degree less than m+ n.
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Hence if anbm is not zero, then Ld(fg) = anbmx
n+m. Notice that by the assumption

we have anbm = ab 6= 0. Therefore the claim follows as Ld(f) = axn and Ld(g) =
bxm.

(2) Suppose g is not zero and its leading coefficient is b. Since the leading coefficient
a of f is not a zero divisor, ab 6= 0. Therefore by part (1), the claim follows. If g = 0,
then fg = 0. Hence deg fg = deg g = −∞. As we are using the convention that
−∞+ n = −∞ for every n ∈ Z, the claim follows in this case as well.

When D is an integral domain, the leading coefficient of a non-zero f(x) is not a
zero-divisor. Hence we get the claim. If f = 0, then fg = 0. Thus Ld(fg) = 0 =
Ld(f) Ld(g) and deg fg = −∞ = −∞+ deg g = deg f + deg g, which finishes the
proof.

6.3 Zero-divisors and units of ring of polynomials

In this section, we use Lemma 6.2.2 to study the ring of polynomials of integral
domains.

Lemma 6.3.1. Suppose D is an integral domain. Then D[x] is an integral domain.

Proof. Since D is an integral domain, it is a unital commutative ring. Therefore D[x]
is a unital commutative ring. Since D is an integral domain, it is a non-trivial ring.
As D[x] has a copy of D (constant polynomials), D[x] is a non-trivial ring. So it
remains to show that D[x] does not have a zero-divisor. Suppose f(x)g(x) = 0 for
some f, g ∈ D[x]. Then deg fg = −∞, and so by Lemma 6.2.2 we have

−∞ = deg f + deg g.

Therefore not both of deg f and deg g can be integers, and at least one of them is −∞.
This means either f = 0 or g = 0. This means D[x] does not have a zero-divisors.

Lemma 6.3.2. Suppose D is an integral domain. Then

D[x]× = D×.

Proof. Suppose u ∈ D×. Therefore u−1 ∈ D exists. Since D[x] has a copy of D as
the set of constant polynomials, we deduce that u−1 ∈ D[x] (notice that D[x] and D
have the same identity). Hence u ∈ D×. This means D× ⊆ D[x]×.

Let’s go to the more interesting part where the assumption that D is an integral
domain is actually needed.

Suppose f(x) ∈ D[x]×. This means there is g(x) ∈ D[x] such that f(x)g(x) = 1.
By Lemma 6.2.2, we have that

deg f + deg g = deg fg = deg 1 = 0.

This, in particular, implies that f and g are not zero, and so their degrees are at least 0.
Therefore deg f and deg g are two non-negative integers that add up to 0. Hence both
of them are zeros. That means f(x) = a ∈ D, g(x) = b ∈ D, and f(x)g(x) = ab is 1.
This implies that f(x) = a ∈ D×, which finishes the proof.
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6.4 Long division

In this section, we will show the most general form of the long division for polyno-
mials. Let’s start with a quick overview of the long division for polynomials. Say we
want to divide

f(x) = anx
n + · · ·+ a1x+ a0

by
g(x) = bmx

m + · · ·+ b1x+ b0.

In the long division algorithm, first we look at the degrees. If deg f = n is smaller
than deg g = m, then we are done! In this case, the quotient is 0 and the remainder
is f(x). If deg f ≥ deg g, then we look for a monomial cxk to multiply by Ld(g) and
end up getting Ld(f); that means (cxk)(bmx

m) = anx
n:

cxk

bmx
m + · · ·+ b0 ) anx

n + · · ·+ a0

This means that k + m = n and bma = an. Since we assumed n ≥ m, n −m ≥ 0,
and we can let k := n −m. The equation bmc = an, however, does not necessarily
have a solution in A. This equation has a solution in A if bm is a unit. In this case,
we see that the desired monomial is (b−1m an)xn−m. After finding this monomial, we
subtract (b−1m anx

n−m)g(x) from f(x), get a smaller degree polynomial and continue
this process. This leads us to the following theorem.

Theorem 6.4.1 (Long Division For Polynomials). Suppose A is a unital commutative
ring, f(x), g(x) ∈ A[x] and the leading coefficient of g(x) is a unit inA. Then there are
unique q(x) ∈ A[x] (quotient) and r(x) ∈ A[x] (remainder) that satisfy the following
properties:

f(x) = g(x)q(x) + r(x) and deg r < deg g. (6.2)

(Whenever you see the phrase and we continue this process, it means that there is
an induction argument in the formal proof.)

Proof. (The existence part) We proceed by the strong induction on deg f . If deg f <
deg g, then q(x) = 0 and r(x) = f(x) satisfy (6.2). So we prove the strong induction
step under the extra condition that deg f ≥ deg g. Suppose f(x) =

∑n
i=0 aix

i,
g(x) =

∑m
i=0 bix

i, an 6= 0, and bm 6= 0. Then by the assumption bm is a unit in A.
Let

f(x) := f(x)− (b−1m an)xn−mg(x). (6.3)

Then one can see that deg f < deg f . Hence by the strong induction hypothesis, we
can divide f by g and get a quotient q and a remainder r; this means we have

f(x) = q(x)g(x) + r(x) and deg r < deg g. (6.4)

By (6.4) and (6.3), we obtain

f(x) = ((b−1m an)xn−m + q(x))g(x) + r(x) and deg r < deg g.
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Hence q(x) := (b−1m an)xn−m + q(x) and r(x) satisfy (6.2). This completes the proof
of the existence part.

(The uniqueness part) Suppose q1, r1 and q2, r2 both satisfy (6.2). We have to prove
that q1 = q2 and r1 = r2. As qi, ri satisfy (6.2). This means

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x),

deg r1 < deg g, and deg r2 < deg g.

Hence we have

(q1(x)− q2(x))g(x) = r2(x)− r1(x) and deg(r2 − r1) < deg g. (6.5)

Since the leading coefficient of g is a unit, it is not a zero-divisor (see Lemma 3.3.4).
Therefore by Lemma 6.2.2 and (6.5), we have

deg(r1 − r2) = deg((q1 − q2)g) = deg(q1 − q2) + deg g < deg g.

Hence deg(q1 − q2) < 0, which implies that q1 − q2 = 0. Thus by (6.5), we deduce
that r1 = r2. Overall we showed that q1 = q2 and r1 = r2, which finishes the proof
the uniqueness.
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7.1 The factor theorem and the generalized factor theorems

In the previous lecture we proved a general form of the long division for polynomials.
We proved that if A is a unital commutative ring, we can divide f(x) by g(x) for
f, g ∈ A[x] and a quotient and a remainder if the leading coefficient of g is a unit in A.
In particular, if A is a field, then the leading coefficient of every non-zero polynomial
is a unit. Hence we can divide every polynomial by every non-zero polynomial.

The Factor Theorem is an important application of the long division for polynomials.

Theorem 7.1.1. Suppose A is a unital commutative ring and f(x) ∈ A[x]. Then

1. for every a ∈ A, there is a unique q(x) ∈ A[x] such that

f(x) = (x− a)q(x) + f(a).

2. (The Factor Theorem) We have that a is a zero of f(x) if and only if there is
q(x) ∈ A[x] such that

f(x) = (x− a)q(x).

Proof. (1) By the long division for polynomials, there are unique q(x) and r(x) with
the following properties:

f(x) = (x− a)q(x) + r(x) and deg r < deg(x− a).

The second property implies that r(x) is a constant, say r(x) = c ∈ A. Then we have
f(x) = (x − a)q(x) + c. Evaluating both sides at x = a, we deduce that c = f(a).
Altogether, we obtain that f(x) = (x− a)q(x) + f(a), which finishes the proof of the
first part.

(2) Suppose a is a zero of f ; then f(a) = 0. Therefore by part (1), we have that
f(x) = (x− a)q(x) for some q(x) ∈ A[x].

To show the converse, we can evaluate both sides of f(x) = (x− a)q(x) at x = a,
and deduce that f(a) = 0. This finishes the proof.
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The factor theorem can be interpreted in terms of the evaluation map: for every
a ∈ A we have

kerφa = 〈x− a〉,
where φa : A[x]→ A, φa(f(x)) := f(a).

Theorem 7.1.2. Suppose D is an integral domain, f(x) ∈ D[x], and a1, . . . , an
are distinct elements of D. Then a1, . . . , an are zeros of f(x) if and only if there is
q(x) ∈ D[x] such that

f(x) = (x− a1) · · · (x− an)q(x).

Proof. We proceed by the induction on n. The base of induction n = 1 follows from
the Factor Theorem. So we focus on the induction step. Suppose a1, . . . , an+1 are
distinct zeros of f(x). Then by the induction hypothesis, there is q(x) ∈ D[x] such
that

f(x) = (x− a1) · · · (x− an)q(x). (7.1)
Since an+1 is a zero of f(x), by (7.1) we deduce that

0 = (an+1 − a1) · · · (an+1 − an)q(an+1). (7.2)

Since aj’s are distinct, an+1 − ai’s are not zero. As D is an integral domain, it has no
zero-divisor. Therefore by (7.2), we obtain that

q(an+1) = 0.

Hence by the Factor Theorem, there is q(x) ∈ D[x] such that

q(x) = (x− an+1)q(x). (7.3)

By (7.2) and (7.3), we obtain that

f(x) = (x− a1) · · · (x− an)(x− an+1)q(x).

This finishes the claim.

Remark 7.1.3. The Factor Theorem holds for every unital commutative ring, but the
Generalized Factor Theorem is true only for integral domains.

Exercise 7.1.4. Give an example where the Generalized Factor Theorem fails.

Corollary 7.1.5. Suppose D is an integral domain and f(x) ∈ D[x] \ {0}. Then f
does not have more than deg f distinct zeros in D.

Proof. Suppose a1, . . . , am are distinct zeros of f(x). Then by the generalized factor
theorem there is q(x) ∈ D[x] such that

f(x) = (x− a1) · · · (x− am)q(x). (7.4)

Comparing the degrees of both sides of (7.4), we get

deg f = m+ deg q.

Notice that since f is not zero, neither is q. Thus deg q ≥ 0. Hence deg f ≥ m, which
finishes the proof.
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7.2 An application of the generalized factor theorem

In this section, we prove an interesting result in congruence arithmetic with the help
of the generalized factor theorem. Later, we will prove a generalization of this result
for all finite fields.

Theorem 7.2.1. Suppose p is a prime number. Then

xp − x = x(x− 1) · · · (x− (p− 1))

in Zp[x].

Proof. By the Fermat’s little theorem, for every a ∈ Zp, we have ap − a = 0. This
means 0, 1, . . . , p−1 are distinct zeros of xp−x in Zp. Since Zp is an integral domain,
we can employ the generalized factor theorem and deduce that there is q(x) ∈ Zp[x]
such that

xp − x = x(x− 1) · · · (x− (p− 1))q(x). (7.5)

Comparing the degree of the both sides of (7.5), we obtain that p = p+ deg q. Hence
q(x) = c is a non-zero constant. Therefore

xp − x = cx(x− 1) · · · (x− (p− 1)). (7.6)

Comparing the leading coefficients of (7.6), we deduce that c = 1. This implies that

xp − x = x(x− 1) · · · (x− (p− 1)),

and the claim follows.

As a corollary of Theorem 7.2.1, we deduce Wilson’s theorem.

Corollary 7.2.2. Suppose p is prime. Then (p− 1)! ≡ −1 (mod p).

Proof. By Theorem 7.2.1, we have

xp − x = x(x− 1) · · · (x− (p− 1)) (7.7)

in Zp[x]. This means that all the coefficients of these polynomials are congruent modulo
p. Let’s compare the coefficients of x. The coefficient of x on the left hand side of (7.7)
is -1, and the coefficient of x on the right hand side of (7.7) is (−1)(−2) · · · (−(p−1)).
Therefore

(−1)p−1(p− 1)! ≡ −1 (mod p). (7.8)

For p = 2, we have (2− 1)! ≡ −1 (mod 2). So we can and will assume that p 6= 2.
Therefore p is odd, which implies that (−1)p−1 = 1. By (7.8) and (−1)p−1 = 1, we
obtain that

(p− 1)! ≡ −1 (mod p),

which finishes the proof of Wilson’s theorem.

We can use polynomial equations to deduce many interesting congruence relations.
The next exercise is another such example.
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Exercise 7.2.3. Suppose p is an odd prime number. Use (x− 1)p = xp − 1 in Zp[x]
and the cancellation law in Zp[x], to deduce that(

p− 1

i

)
≡ (−1)i (mod p)

for every 0 ≤ i ≤ p− 1.

7.3 Ideals of ring of polynomials over a field

Let’s go back to the zeros of polynomials. Suppose α ∈ C is a zero of a polynomial.
We would like to understand the ring structure of Q[α]. By the first isomorphism
theorem, we have

Q[x]/ kerφα ' Q[α]

where φα : Q[x]→ C is the evaluation at α. To understand the ring structure of Q[α],
we need to study the ideals of Q[x].

Theorem 7.3.1. Suppose F is a field. Then every ideal of F [x] is principal.

Proof. Suppose I is an ideal of F [x]. If I is the zero ideal, we are done. Suppose I is
not zero, and choose p0(x) ∈ I such that

deg p0 = min{deg p | p ∈ I \ {0}};

deg p0 is the smallest among the degrees of non-zero polynomials of I . The next claim
finishes the proof.

Claim. I = 〈p0〉.
Proof of Claim. Since p0 is in I , 〈p0〉 ⊆ I . Next we want to show that every element

of I is in 〈p0〉. Suppose f(x) ∈ I . We have to show that f(x) is a multiple of p0(x).
Since F is a field every non-zero element of F is a unit. This implies that the leading
coefficient of p0 is a unit in F , and so we can use the long division and divide f(x) by
p0(x). Let q(x) be the quotient and r(x) be the remainder of f(x) divided by p0(x):
this means

f(x) = p0(x)q(x) + r(x) and deg r < deg p0. (7.9)
Since f(x), p0(x) ∈ I , r(x) = f(x)− p0(x)q(x) ∈ I . As r ∈ I , deg r < deg p0 and
deg p0 is the smallest degree of non-zero polynomials of I , we obtain that r(x) = 0.
Therefore f(x) = p0(x)q(x) ∈ 〈p0(x)〉. This completes the proof of the Claim.

Definition 7.3.2. Suppose D is an integral domain. We say D is a Principal Ideal
Domain (PID) if every ideal of D is principal.

Example 7.3.3. The ring Z of integers and the ring F [x] of polynomials over a field F
are PIDs.

Let’s recall that the way we proved Z is a PID is by using a result from group theory
which asserts that every subgroup of Z is of the form nZ for some integer n. This result,
in part, was proved using the long division for integers. As we see, there is a common
technique of using a long division to prove that Z and F [x] are PIDs. This brings us to
the definition of Euclidean Domain.
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7.4 Euclidean Domain

In mathematics, we often find a common pattern, extract the essence of various
proofs, and introduce a new object that has only the needed properties. The advantage
of this process is that for new examples we can focus on only the needed properties.

Definition 7.4.1. An integral domainD is called a Euclidean domain if there is a norm
function N : D → Z≥0 with the following properties:

1. N(d) = 0 if and only if d = 0.

2. For every a ∈ D and b ∈ D \ {0}, there are q, r ∈ D such that

(i) a = bq + r, and

(ii) N(r) < N(b).

In a Euclidean Domain, we have a form of a long division, and this help us prove
that every Euclidean Domain is a PID.

Theorem 7.4.2. Suppose D is a Euclidean Domain. Then D is a PID.

Proof. Suppose I is an ideal of D. If I is zero, we are done. Suppose I is not zero.
Choose a0 ∈ I such thatN(a0) is the smallest among the norm of the non-zero elements
of I:

N(a0) = min{N(a) | a ∈ I \ {0}}.

The following Claim finishes the proof.
Claim. I = 〈a0〉.
Proof of Claim. Since a0 ∈ I , we have 〈a0〉 ⊆ I . Next we show that every element

of I is a multiple of a0. For a ∈ I , by the main property of Euclidean Domains, there
are q, r ∈ D such that

a = a0q + r, and N(r) < N(a0). (7.10)

Since a, a0 ∈ I , we have r = a − a0q ∈ I . As r ∈ I , N(r) < N(a0), and N(a0)
is the smallest norm of non-zero elements of I , we obtain that r = 0. Therefore
a = a0q ∈ 〈a0〉. This completes the proof of the Claim.

Notice that because of the long division for integers, the function N : Z →
Z≥0, N(a) := |a| makes Z a Euclidean domain. Similarly the long division for poly-
nomials and the function N : F [x]→ Z≥0, N(f(x)) := 2deg f (with the convention
that 2−∞ = 0) makes F [x] a Euclidean domain when F is a field.

Next we use the concept of Euclidean Domain to prove that the Gaussian integers
Z[i] is a PID. In the next lecture, we will prove:

Theorem 7.4.3. The ring Z[i] of Gaussian integers is a Euclidean domain. Therefore
Z[i] is a PID.
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Lecture 8

8.1 Gaussian integers

In the other lecture, we defined Euclidean Domain and proved that every Euclidean
domain is a PID. We have also pointed out that Z and F [x], where F is a field, are
Euclidean domains. Next we want to prove that the ring Z[i] of Gaussian integers is a
Euclidean domain, and so it is a PID.

Theorem 8.1.1. Z[i] is a Euclidean domain and a PID.

Proof. To show Z[i] is a Euclidean domain, we have to find a norm function with the
desired properties. Let

N : Z[i]→ Z≥0, N(z) := |z|2,

where |z| is the complex norm. Notice that for every integers a and b, we have N(a+
bi) = a2 + b2 ∈ Z≥0. Next notice that for every complex number z, we have

N(z) = 0⇔ |z| = 0⇔ z = 0.

It is remained to show a type of division property for Z[i] with respect to the functionN .

We start with the division in C: for every z ∈ Z[i] and
w ∈ Z[i]\{0}, consider z

w ∈ C. Notice that the square tiling
in the given figure implies that there is q ∈ Z[i] such that
z
w − q is in the central square. Therefore

∣∣∣ zw − q∣∣∣ ≤ √2
2 , and

so the complex norm of r := z − wq is at most
√
2
2 |q| < |q|.

Since z, w, q are in Z[i], so is r. Altogether we obtain the existence of q, r ∈ Z[i] such
that

z = qw + r, and N(r) < N(q).

This shows that the ring of Gaussian integers is a Euclidean domain. Earlier we have
seen that every Euclidean domain is a PID, which finishes the proof.
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Exercise 8.1.2. Let ω := −1
2 +

√
3
2 i, and Z[ω] := {a+ bω | a, b ∈ Z}. Use a similar

method as in the proof of Theorem 8.1.1 to show that Z[ω] is a PID.

8.2 Algebraic elements and minimal polynomials

Let’s go back to zeros of polynomials.

Definition 8.2.1. 1. We say α ∈ C is an algebraic number if it is a zero of a
polynomial f(x) ∈ Q[x].

2. More generally, when F is a subfield of another field E1, we say α ∈ E is
algebraic over F if α is a zero of a polynomial f(x) ∈ F [x].

3. A complex number α is called transcendental if it is not algebraic.

4. Assuming E is a field extension of F , we say α ∈ E is transcendental over F if it
is not algebraic over F .

Example 8.2.2. 3
√

2 is an algebraic number, and there are interesting and not so easy
results that the Euler number e and π are transcendental.

One can easily see that, for E is a field extension of F , α ∈ E is algebraic over F
if and only if the kernel kerφα of the evaluation map

φα : F [x]→ E, φα(f(x)) := f(α)

is non-zero. In this setting, our goal is to understand the structure of the ring F [α].
So far we have seen many such examples: Q[i], Q[

√
2], etc. In the examples we have

discussed, we described the elements of these rings as certain linear combinations, and
proved that all of these rings are fields. We want to generalize these results.

Notice that by the first isomorphism theorem we have

F [x]/ kerφα ' F [α]. (8.1)

This means we need to investigate kerφα. For instance we immediately deduce the
following:

Corollary 8.2.3. Suppose E is a field extension of F , and α ∈ E is transcendental
over F . Then F [α] ' F [x].

Proof. Since α is transcendental over F , kerφα = 0. Therefore by (8.1), the claim
follows.

Next we use the fact that F [x] is a PID to describe kerφα when α ∈ E is algebraic
over F .

Theorem 8.2.4 (The minimal polynomial). Suppose E is a field extension of F , and
α ∈ E is algebraic over F . Then the following statements hold.

1In this case we say E is a field extension of F .
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1. There is a unique non-constant monic polynomial mα(x) ∈ F [x] such that
kerφα = 〈mα(x)〉. (mα(x) ∈ F [x] is called the minimal polynomial of α over
F .

2. The minimal polynomial mα(x) ∈ F [x] is a non-constant monic polynomial
which cannot be written as a product of smaller degree polynomials in F [x].

Proof. (1) Since F [x] is a PID, there is f(x) ∈ F [x] which generates kerφα. Since α
is algebraic over F , f(x) is not zero. We also know that non-zero constant functions
are not in the kernel of φα. Hence f(x) is not a constant polynomial. Suppose

f(x) = anx
n + · · ·+ a0

and an 6= 0. Then an is a unit in F (as F is a field). Let

f(x) := a−1n f(x) = xn + (a−1n an−1)xn−1 + · · ·+ (a−1n a0).

Since f(x) = a−1n f(x) ∈ 〈f(x)〉 and f(x) = anf(x) ∈ 〈f〉, we deduce that

〈f〉 = 〈f〉 = kerφα.

This shows the existence of a monic non-constant polynomial which generates kerφα.
Next we show the uniqueness of such a polynomial. It is clear that uniqueness is a
special case of the following Claim.

Claim. Suppose f1 and f2 are non-constant monic polynomials in F [x], and
〈f1〉 = 〈f2〉. Then f1 = f2.

Proof of Claim. Since 〈f1〉 = 〈f2〉, there are polynomials q1, q2 ∈ F [x] such that
f1q1 = f2 and f2q2 = f1. Comparing the degrees of the sides, we deduce that

deg f1 + deg q1 = deg f2 and deg f2 + deg q2 = deg f1. (8.2)

Notice that since fi 6= 0, so are qi’s. Therefore deg qi ≥ 0. Hence by (8.2), we have
deg f1 ≤ deg f2 and deg f2 ≤ deg f1. This implies that deg f1 = deg f2, and so
qi’s are non-zero constants. Suppose q1(x) = c ∈ F×. Then we have cf1 = f2.
Comparing the leading coefficients of both sides, we obtain that c = 1. Therefore
f1 = f2, and the claim follows.

(2) Suppose to the contrary that mα(x) = g(x)h(x) for some g(x), h(x) ∈ F [x]
with deg g,deg h < degmα. Then

φα(g)φα(h) = φα(mα) = 0

implies that either g ∈ kerφα or h ∈ kerφα (notice that F has no zero-divisors). As
kerφα is generated by mα(x), either mα(x)|g(x) or mα(x)|h(x). Since g and h are
not zero, we deduce that either degmα ≤ deg g or degmα ≤ deg h. This contradicts
that deg g,deg h < degmα.

Next we prove the converse of the second part of Theorem 8.2.4. This result will
help us to actually find the minimal polynomial mα(x) for some algebraic elements.
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Theorem 8.2.5 (Characterization of minimal polynomials). Suppose E is a field ex-
tension of F , and α ∈ E is algebraic over F . Then a monic non-constant polynomial
p(x) in F [x] is the minimal polynomial of α if and only if p(α) = 0 and p(x) cannot
be written as a product of smaller degree polynomials in F [x].

Proof. Part (2) of Theorem 8.2.4 gives us (⇒), and so we focus on (⇐).
Since p(α) = 0, p(x) is in kerφα. As kerφα is generated by the minimal poly-

nomial mα, we obtain that p(x) = mα(x)q(x) for some q(x) ∈ F [x]. Since p(x)
cannot be written as a product of smaller degree polynomials in F [x], we deduce that
degmα = deg p and q(x) is a non-zero constant polynomial. Suppose q(x) = c ∈ F .
Then comparing the leading coefficients of both sides of cmα(x) = p(x), it follows
that c = 1. Thus mα(x) = p(x), and the claim follows.

It is useful to notice thatmα(x) has the smallest degree among non-zero polynomials
in F [x] that have α as a zero.

Proposition 8.2.6. Suppose E is a field extension of F , and α ∈ E is algebraic over
F . Then the following statements hold.

1. For f(x) ∈ F [x], f(α) = 0 if and only if mα(x)|f(x) in F [x].

2. Suppose α is a zero of a non-zero polynomial p(x) ∈ F [x]. If deg p ≤ degmα,
then there is a non-zero constant c such that p(x) = cmα(x).

Proof. (1) We have f(α) = 0⇔ f ∈ kerφα = 〈mα(x)〉 ⇔ mα(x)|f(x).
(2) Since p(α) = 0, by the first part we have that p(x) is a (non-zero) multiple

of mα(x); that means there is a non-zero polynomial q(x) ∈ F [x] such that p(x) =
q(x)mα(x). As deg p ≤ degmα, we deduce that

degmα ≥ deg p = degmα + deg q, which implies that deg q = 0.

This means q is a non-zero constant, and the claim follows.

8.3 Elements of quotients of ring of polynomials

Let’s recall that one of our goals is to understand the ring structure of F [α] and
describe its elements. By the discussions in the previous section, we have F [α] '
F [x]/〈mα(x)〉. The next result, which is based on the long division for polynomials,
gives us a description of elements of the quotient ring of a ring of polynomials by a
monic polynomial.

Proposition 8.3.1. Suppose A is a unital commutative ring, and p(x) ∈ A[x] is a
monic polynomial of degree n ≥ 1. Then every element ofA[x] can be uniquely written
as

a0 + a1x+ · · ·+ an−1x
n−1 + 〈p(x)〉

for some a0, . . . , an−1 ∈ A.
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Proof. Existence. For every f(x) ∈ A[x], by the long division for polynomials there
are unique q(x) ∈ A[x] (the quotient) and r(x) ∈ A[x] (the remainder) such that

1. f(x) = q(x)p(x) + r(x), and

2. deg r < deg p.

The second item means that r(x) =
∑n−1
i=0 aix

i for some ai ∈ A. The first item implies
that f(x)− r(x) ∈ 〈p(x)〉. Altogether we have

f(x) + 〈p(x)〉 =

n−1∑
i=0

aix
i + 〈p(x)〉.

Uniqueness. Suppose
∑n−1
i=0 aix

i + 〈p(x)〉 =
∑n−1
i=0 a

′
ix
i + 〈p(x)〉. Then h(x) :=∑n−1

i=0 aix
i −

∑n−1
i=0 a

′
ix
i is a multiple of p(x) and has degree at most n − 1. As

deg p = n and p(x) is monic, the only multiple of p(x) that has degree less than n is 0.
Hence

∑n−1
i=0 aix

i =
∑n−1
i=0 a

′
ix
i, which implies the uniqueness part.
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Lecture 9

9.1 Elements of F [α]

One of our main goals is to understand the ring structure of Q[α] for an algebraic
number α. In the previous lecture we showed that for a field extension E of F and
α ∈ E that is algebraic over F , there is a unique monic non-constant polynomial
mα(x) ∈ F [x] such that

1. For every f(x) ∈ F [x], f(α) = 0 if and only if mα(x)|f(x).

2. For a monic polynomial p(x) ∈ F [x], we have that p(x) = mα(x) if and only if
p(α) = 0 and p(x) cannot be written as a product of smaller degree polynomials
in F [x].

3. F [α] ' F [x]/〈mα(x)〉.

The polynomialmα(x) ∈ F [x] is called the minimal polynomial ofα overF . 1 Because
of the third property, we described elements of the quotient ring F [x]/〈p(x)〉 where
p(x) is a polynomial of degree n ≥ 1. Using the long division for polynomials, we
proved that every element of this quotient ring can be uniquely written as r(x) + 〈p(x)〉
for some r(x) ∈ F [x] with deg r ≤ n− 1. Base on these results, we immediately get a
fairly good description of elements of F [α].

Theorem 9.1.1. Suppose E is a field extension of F , and α ∈ E is algebraic over F .
Suppose the degree of the minimal polynomial mα(x) of α over F is n. Then every
element of F [α] can be uniquely written as

a0 + a1α+ · · ·+ an−1α
n−1

for some ai’s in F .

1A better notation for mα(x) should include F as well, as the minimal polynomial of α only makes
sense after we specify F . That is why in some texts mα(x) is denoted by mα,F (x). Here we assume that
we know what F is from the context in which α is discussed.
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Proof. By the first isomorphism theorem for rings, we know that

φα : F [x]/〈mα(x)〉 → F [α], φα(f(x) + 〈mα(x)〉) := f(α) (9.1)

is an isomorphism. By Proposition 8.3.1, every element of F [x]/〈mα(x)〉 can be
uniquely written as (

∑n−1
i=0 aix

i) + 〈mα(x)〉 for some ai’s in F . Hence by (9.1), we
obtain that every element of F [α] can be uniquely written as

φα

( n−1∑
i=0

aix
i) + 〈mα(x)〉

)
=

n−1∑
i=0

aiα
i.

This completes the proof.

Note that Theorem 9.1.1 is a generalization of many examples that we have discussed
so far, e.g.

Q[i] = {a+ bi | a, b ∈ Q} because mi,Q(x) = x2 + 1,

and

Q[
3
√

2] = {a0 + a1
3
√

2 + a2
3
√

4 | a0, a1, a2 ∈ Q} because m 3√2,Q(x) = x3 − 2.

9.2 Irreducible elements

By now it is clear that in order to understand the ring structure of F [α] for a given α
which is algebraic over F , we have to figure out a way to find the minimal polynomial
mα(x) ∈ F [x]. Theorem 8.2.5 gives us a key characterization of mα(x) which brings
us to the definition of irreducible elements.

Definition 9.2.1. Suppose D is an integral domain. We say d ∈ D is irreducible if

1. d 6∈ D× ∪ {0}, and

2. If d = ab for some a, b ∈ D, then either a ∈ D× or b ∈ D×.

For instance an integer n is irreducible in Z if n = ±p for some prime number p.
Let me warn you that later we will define prime elements of an integral domain, and
irreducible and prime elements do not always coincide!

Lemma 9.2.2. Suppose F is a field. Then p(x) ∈ F [x] is irreducible if and only if p(x)
is not constant and it cannot be written as a product of smaller degree polynomials in
F [x].

Proof. (⇒) Since f(x) is irreducible, f(x) 6∈ F [x]× ∪ {0}. As F [x]× = F× =
F \ {0}, we obtain that f(x) is not constant. Now suppose to the contrary that f(x) =
g(x)h(x) and deg g,deg h < deg f . This implies that g(x) and h(x) are not constant
polynomials. On the other hand, since f(x) is irreducible, f(x) = g(x)h(x) implies
that either g ∈ F [x]× or h ∈ F [x]×. As F [x]× = F×, we deduce that either deg g = 0
or deg h = 0, which is a contradiction.
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(⇐) Suppose f(x) = g(x)h(x). Since f cannot be written as a product of smaller
degree polynomials in F [x], we have that either deg g ≥ deg f or deg h ≥ deg f .
As deg f = deg g + deg h, we deduce that either deg g = 0 or deg h = 0. That
means either g ∈ F \ {0} or h ∈ F \ {0}. Since F is a field, we obtain that either
g ∈ F× = F [x]× or h ∈ F× = F [x]×. This completes the proof.

Now, some of the properties of minimal polynomials can be phrased in a more
compact form.

Corollary 9.2.3 (Minimal polynomials and irreducibility). Suppose E is a field exten-
sion of F , α ∈ E is algebraic over F , and p(x) ∈ F [x] is a monic polynomial. Then
p(x) = mα(x) if and only if p(α) = 0 and p(x) is irreducible.

Proof. This is an immediate consequence of Theorem 8.2.5 and Lemma 9.2.2.

This motivates us to answer the following questions:

1. Assuming that D is an integral domain or a PID, what can we say about ideals
that are generated by irreducible elements and their quotient rings?

2. Can we come up with certain mechanisms to find out whether a given monic
polynomial is irreducible?

We start by answering the first question. We have already pointed out that irre-
ducible elements of the ring of integers are essentially prime numbers. Therefore for an
irreducible element p of Z we have that Z/〈p〉 is a field. We will show that this result
holds for every PID.

Let’s begin by understanding when exactly two principal ideals are equal.

Lemma 9.2.4. Suppose D is an integral domain, and a, b ∈ D. Then 〈a〉 = 〈b〉 if and
only if a = bu for some unit u.

Proof. We notice that 〈a〉 = 〈b〉 if and only if a ∈ 〈b〉 and b ∈ 〈a〉. This means

〈a〉 = 〈b〉 ⇔ ∃x, y ∈ D, a = bx and b = ay. (9.2)

(⇐) If a = bu for some unit u, then b = au−1. Therefore by (9.2), we have
〈a〉 = 〈b〉.

(⇒) If a = 0, then b ∈ 〈a〉 implies that b = 0. Therefore a = 1 · b and there is
nothing to prove.

Suppose a 6= 0, and x, y ∈ D are as in (9.2). Then

a = bx = (ay)x = a(yx).

By the cancellation law, we deduce that yx = 1 (notice that D is an integral domain
and a 6= 0, and so we are allowed to use the cancellation law). Hence x is a unit, which
finishes the proof.

Lemma 9.2.4 immediately gives us a description for units in terms of ideals.
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Lemma 9.2.5. Suppose A is a unital commutative ring, and a ∈ A. Then a is a unit if
and only if 〈a〉 = A.

Proof. (⇒) Assuming that a is a unit, we have that a′ = (a′a−1)a ∈ 〈a〉 for every
a′ ∈ A. This means that A = 〈a〉.

(⇐) If 〈a〉 = A, then 1 ∈ 〈a〉, which implies that 1 = aa′ for some a′ ∈ A.
Therefore a is a unit.

Lemma 9.2.5 help us to describe fields in terms of their ideals.

Lemma 9.2.6. Suppose F is a unital commutative ring. Then F is a field if and only if
F has exactly two distinct ideals {0} and F .

Proof. (⇒) Since F is a field, F and {0} are distinct. Now suppose I is a non-zero
ideal of F . Then there is a non-zero element a in I . Since F is a field, a is a unit in F .
Hence by Lemma 9.2.5

F = 〈a〉 ⊆ I.

This means I = F .
(⇐) Since F and {0} are distinct, 0 6∈ F×. So it is enough to show that every

non-zero element of F is a unit. Suppose a ∈ F \ {0}, and consider 〈a〉. As F is the
only non-zero ideal of F , we have F = 〈a〉 = aF . Hence by Lemma 9.2.5, a is a unit
in F . This finishes the proof.

We also notice that in a field F , there is no irreducible element as F = F× ∪ {0}.
So when we are studying irreducible elements, we can and will assume that the given
integral domain is not a field.

Lemma 9.2.7. Suppose D is an integral domain which is not a field. Then a ∈ D is
irreducible if and only if 〈a〉 is a maximal ideal among proper principal ideals.

Let’s begin by explaining various phrases in the statement of Lemma 9.2.7. Suppose
Σ is a collection of subsets of a given set X , Then we say A ∈ Σ is a maximal element
of Σ if there is no element B ∈ Σ that contains A as a proper subset. In mathematical
language, it means

A ∈ Σ is maximal if and only if ∀B ∈ Σ, A ⊆ B ⇒ B = A.

In Lemma 9.2.7, the collection Σ is {I ED | I is principal, I 6= D}. Altogether, we
can rewrite Lemma 9.2.7 as follows.

Suppose D is an integral domain which is not a field, and a ∈ D. Then a is
irreducible in D if and only if 〈a〉 6= D and for every b ∈ D,

〈a〉 ⊆ 〈b〉 ⇒ either 〈a〉 = 〈b〉 or 〈b〉 = D.
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Proof of Lemma 9.2.7. (⇐) Suppose a is irreducible in D and 〈a〉 ⊆ 〈b〉. As a is
irreducible, it is not a unit. Therefore by Lemma 9.2.5, 〈a〉 is a proper ideal.

As a ∈ 〈b〉, a = bc for some c ∈ D. Since a is irreducible, either b ∈ D× or
c ∈ D×. If b ∈ D×, then by Lemma 9.2.5 we have 〈b〉 = D. If c ∈ D×, then by
Lemma 9.2.4, 〈a〉 = 〈b〉.

(⇐) Since 〈a〉 is a proper ideal, by Lemma 9.2.5 a is not a unit. Next we argue why
a 6= 0.

Suppose to the contrary that a = 0. Then for every non-zero element b ∈ D, we
have 〈a〉 ( 〈b〉. Hence by the assumption 〈b〉 = D. This together with Lemma 9.2.5
implies that b is a unit. This means every non-zero element ofD is a unit, which implies
that D is a field. This is a contradiction.

Next let’s assume that a = bc for some b, c ∈ D. Then 〈a〉 ⊆ 〈b〉. By the
assumption, we deduce that either 〈a〉 = 〈b〉 or 〈b〉 = D. Therefore by Lemma 9.2.4
and Lemma 9.2.5, we deduce that either there is u ∈ D× such that a = bu or b ∈ D×.
In the former case, by the cancellation law, we have c = u ∈ D× and in the latter case,
b ∈ D×. This means a is irreducible.

9.3 Maximal ideals and their quotient rings

Based on Lemma 9.2.7, we know that irreducibility is an information about principal
ideals, and so we gain more information when D is a PID. If D is a PID and a ∈ D is
irreducible, then 〈a〉 is maximal among all proper ideals. This brings us to the definition
of maximal ideals.

Definition 9.3.1. Suppose A is a unital commutative ring and I E A. We say I is a
maximal ideal if it is maximal among proper ideals; that means

∀J EA, I ⊆ J ⇒ either J = I or J = A.

So by Lemma 9.2.7 and Lemma 9.2.6, we immediately obtain the following:

Lemma 9.3.2. Suppose D is a PID, and a ∈ D. Then

1. for a 6= 0, we have that 〈a〉 is a maximal ideal if and only if a is irreducible.

2. {0} is a maximal ideal if and only if D is a field.

The next Proposition gives us the key property of maximal ideals.

Proposition 9.3.3. Suppose A is a unital commutative ring and I E A. Then I is a
maximal ideal if and only if A/I is a field.

We start with the corresponding lemma which describes ideals of a quotient ring.

Lemma 9.3.4. Suppose A is a unital commutative ring and I EA. Then J̄ is an ideal
of A/I if and only if J̄ = J/I for some J EA which contains I .
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Proof. (⇒) Suppose J̄ is an ideal of A/I , and let

J := {a ∈ A | a+ I ∈ J̄}.

Then for every a ∈ I , we have a + I = 0 + I ∈ J̄ , and so a ∈ J . Therefore I ⊆ J .
Next we show that J is an ideal of A. Suppose a, a′ ∈ J . Then a+ I, a′ + I ∈ J . As
J̄ is an ideal, we have (a+ I)− (a′ + I) ∈ J̄ . This implies that (a− a′) + I ∈ J̄ , and
so a − a′ ∈ J . For a ∈ J , we have that a + I ∈ J̄ . Since J̄ is an ideal of A/I , for
every b ∈ A, we have that (b+ I)(a+ I) ∈ J̄ . Therefore ba+ I ∈ J̄ . Hence ba ∈ J .
Altogether we have that J is an ideal, it contains I , and

J̄ = {a+ I | a ∈ J} = J/I.

(⇐) From group theory we know that J/I is a subgroup of A/I . Now suppose
a+I ∈ J/I and b+I ∈ A/I . Since J is an ideal ofA and a ∈ J , we have that ab ∈ J .
Hence (a+ I)(b+ I) ∈ J/I . Thus J/I is an ideal of A/I .

Proof of Proposition 9.3.3. By Lemma 9.2.6, A/I is a field if and only if it has exactly
two ideals I/I andA/I . By Lemma 9.3.4, every ideal ofA/I is of the form J/I where
J is an ideal of A which contains I . Hence A/I has exactly two ideals if and only if I
and A are the only ideals of A which contain I and I 6= A. The latter happens exactly
when I is a maximal ideal. This completes the proof.

We immediately get the following corollary for PIDs.

Corollary 9.3.5. Suppose that D is a PID and not a field, and a ∈ D. Then D/〈a〉 is
a field if and only if a is irreducible in D.

Proof. By Proposition 9.3.3, D/〈a〉 is a field if and only if 〈a〉 is a maximal ideal. By
Lemma 9.3.2 and the assumption that D is not a field, 〈a〉 is a maximal ideal if and
only if a is irreducible. This completes the proof.

9.4 F [α] is a field!

Now we are well-prepared to prove the following:

Theorem 9.4.1. Suppose E is a field extension of F , and α ∈ E is algebraic over F .
Then F [α] is a field.

Proof. We have already proved that F [α] ' F [x]/〈mα,F (x)〉 where mα,F (x) is the
minimal polynomial of α over F (see (9.1) and Theorem 8.2.4). We further showed
that mα,F (x) is irreducible in F [x] (see Corollary 9.2.3), and F [x] is a PID (see
Theorem 7.3.1) which is not a field (see Lemma 6.3.2). Then by Corollary 9.3.5, we
deduce that F [x]/〈mα,F (x)〉 is a field. Thus F [α] is a field.

As you can see in this proof, we do not show the existence of the multiplicative
inverse of an element in a direct way. So for a given algebraic number α sometimes it is
tricky to express the inverse of p(α) in terms of a linear combination of 1, α, α2, · · · .

Exercise 9.4.2. Suppose α ∈ C is a zero of x3 − x+ 1. Express α−1, (α+ 1)−1, and
(α2 + 1)−1 in the form a0 + a1α+ a2α

2 for some a0, a1, a2 ∈ Q.
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Lecture 10

We have seen that many properties of F [α] where α is algebraic over F depends
on the minimal polynomial mα,F (x) of α over F . So it is crucial to have a method of
finding mα,F (x). Let’s recall that the key property of the minimal polynomial is the
following:

p(x) = mα,F (x) if and only if p(α) = 0, p(x) is monic and irreducible in F [x].
We will prove a series of irreducibility criteria which help us find minimal polyno-

mials of certain algebraic elements.

10.1 Irreducibility and zeros of polynomials

We start with pointing out a consequence of the factor theorem.

Lemma 10.1.1. Suppose F is a field, and f(x) ∈ F [x].

1. If deg f = 1, then f is irreducible.

2. If deg f ≥ 2 and f has a zero in F , then f is not irreducible.

3. Suppose deg f = 2 or 3. Then f is irreducible in F [x] if and only if f does not
have a zero in F .

Proof. (1) Suppose deg f = 1. Then clearly it is not constant. If f = gh, then
1 = deg g + deg h, which implies that we cannot have deg g,deg h < 1. Therefore f
is irreducible.

(2) Suppose deg f ≥ 2 and f(a) = 0 for some a ∈ F . Then by the factor theorem,
there is g(x) ∈ F [x] such that f(x) = (x−a)g(x). Hence deg g = deg f−1 < deg f
and deg(x− a) < deg f . Therefore f(x) is not irreducible in F [x].

(3) Suppose deg f = 2 or 3 and f(x) is not irreducible. Then there are g, h ∈
F [x] such that f(x) = g(x)h(x) and deg g,deg h < deg f ≤ 3. These imply that
deg g,deg h ≥ 1 and deg f = deg g + deg h ≤ 3. Hence either deg g = 1 or
deg h = 1. Without loss of generality, we can and will assume that deg g = 1. Thus
g(x) = a0 + a1x for some a0, a1 ∈ F and a1 6= 0. Then −a0a−11 ∈ F is a zero of
g(x), which implies that f(x) has a zero in F .

61
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Example 10.1.2. 1. f(x) := x3 − x+ 1 is irreducible in Z3[x].

2. Z3[x]/〈f(x)〉 is a field of order 27.

Proof. (1) Since deg f = 3, f is irreducible in Z3[x] if and only if it does not have a
zero in Z3. As we have seen earlier, by the Fermat’s little theorem, x3 − x+ 1 does
not have a zero in Z3, which finishes the proof of part one.

(2) Since f(x) is irreducible and Z3[x] is a PID, 〈f(x)〉 is a maximal ideal of Z3[x]
(see Lemma 9.3.2). Therefore Z3[x]/〈f(x)〉 is a field (see Proposition 9.3.3). We have
proved that every element of Z3[x]/〈f(x)〉 can be uniquely written as r(x)+〈f(x)〉 for
a polynomial r(x) ∈ Z3[x] with degree at most 2. Notice that there are 27 polynomials
of degree at most 2 in Z3[x]. (see Proposition 8.3.1).

Exercise 10.1.3. Every odd degree polynomial in R[x] is not irreducible.

10.2 Rational root criterion

Next we give an effective criterion for finding out whether or not a polynomial in
Z[x] has a zero in Q.

Proposition 10.2.1 (Rational root criterion). Suppose

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x],

a0 6= 0, and an 6= 0. If f( bc ) = 0 for some b, c ∈ Z with c 6= 0 and gcd(b, c) = 1, then

b|a0 and c|an.

(The denominator divides the leading coefficient and the numerator divides the
constant term.)

Proof. Since f( bc ) = 0, multiplying both sides by cn, we have

anb
n + an−1b

n−1c+ · · ·+ a1bc
n−1 + a0c

n = 0. (10.1)

This implies that

anb
n = −c(an−1bn−1 + · · ·+ a1bc

n−2 + a0c
n−1) is a multiple of c.

Since gcd(b, c) = 1 and c|anbn, by Euclid’s lemma, c|an. Similarly (10.1) implies that

a0c
n = −b(anbn−1 + an−1b

n−2c+ · · ·+ a1c
n−1) is a multiple of b.

Therefore again by Euclid’s lemma we deduce b|a0. This finishes the proof.

The rational root criterion has many implications. Here is one of them:

Corollary 10.2.2. Suppose f(x) ∈ Z[x] is a monic polynomial. Then every rational
zero of f is an integer which is the divisor of the constant term f(0).
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Proof. Suppose b
c is a zero of f and gcd(b, c) = 1. Then by the rational root criterion, c

divides the leading coefficient which is 1. Hence c = ±1. This implies that bc = ±b ∈ Z.
Another application of the rational root criterion implies that b divides the constant
term. This completes the proof.

Example 10.2.3. Suppose f(x) = xn + an−1x
n−1 + · · · + a1x + 1 ∈ Z[x]. Prove

that f has a rational zero if and only if either f(1) = 0 or f(−1) = 0.

Proof. By Corollary 10.2.2, since f is a monic integer polynomial, every rational zero
of f is integer and it is a divisor of the constant term which is 1. Hence a rational zero
of f is either 1 or −1. This finishes the proof.

10.3 Mod criterion: zeros

Though Corollary 10.2.2 theoretically gives us a relatively good algorithm for
finding out the rational zeros of a monic integer polynomial, but from computational
point of view it might be a daunting task to evaluate a polynomial of degree 20 at
2. On the other hand, finding what 2n modulo 5 is actually easy! This means from
computational point of view it is better to work with integers modulo a small positive
integer. The following lemma shows us how we can employ this technique.

Lemma 10.3.1. Suppose A and B are unital commutative rings, and c : A→ B is a
ring homomorphism. Then

1. c : A[x]→ B[x], c
(∑n

i=0 aix
i
)

:=
∑
i=0 c(ai)x

i is a ring homomorphism.

2. For a ∈ A and b ∈ B, let

φa : A[x]→ A, φa(f(x)) := f(a) and φb : B[x]→ B,φb(g(x)) := g(b)

be the corresponding evaluation maps. Then for every a ∈ A we have

c(φa(f(x))) = φc(a)(c(f(x))).

Proof. Both parts are easy to check and I leave the task of writing the details as an
exercise.

Lemma 10.3.1 immediately implies that if f(x) ∈ A[x] has a zero in A, then c(f)
has a zero in B. The contrapositive of this statement is often used.

Suppose c : A→ B is a ring homomorphism, and f(x) ∈ A[x]. If c(f(x)) does
not have a zero in B, then f(x) does not have a zero in A.

Here is one important example.

Lemma 10.3.2. Suppose f(x) ∈ Z[x] is a monic polynomial. If f(x) does not have a
zero in Zn for some positive integer n, then f(x) does not have a zero in Q.

The common steps for proving statements of this type where we want to show
certain property P passes from Zn to Q are:
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0. Look at the contrapositive, and start with Q.

1. Show that we can pass to Z.

2. Use the residue maps and pass to Zn.

Usually Step 1 is the hard step where we want to go from Q to Z.

Proof of Lemma 10.3.2. Suppose f(x) has a zero in Q. Since f(x) ∈ Z[x] is monic,
by Corollary 10.2.2 f(x) has a zero a ∈ Z. Then by Lemma 10.3.1, cn(a) := [a]n is
a zero of cn(f) where cn : Z → Zn. (We simply say that a is a zero of f(x) in Zn).
This shows that the contrapositive of the claim holds, which finishes the proof.

Lemma 10.3.2 in conjunction with Fermat’s little theorem can become a very strong
tool. Let’s recall that Fermat’s little theorem states

ap = a for every a ∈ Zp.

Hence ap2 = (ap)p = ap = a for every a ∈ Zp. Therefore inductively we can show
that the following holds:

For every positive integer n, prime p, and a ∈ Zp,

ap
n

= a. (10.2)

By (10.2), we have that for non-negative integers c0, . . . , cn, prime p, and a ∈ Zp the
following holds:

acnp
n+cn−1p

n−1+···+c0 = acn+···+c0 .

This gives us a fast algorithm for finding large powers of elements in Zp. This makes it
easier to evaluate (large degree) polynomials in Zp.

Example 10.3.3. Suppose p is prime. Prove that f(x) := xp
2

+pxp
2−p−x+(2p+1)

does not have a rational zero.

Proof. We will show that f(x) does not have a zero in Zp. Notice that f(x) modulo p
is xp2 − x+ 1. Hence for every a ∈ Zp, we have

f(a) = ap
2

− a+ 1 = 1, (10.3)

where the last equality holds because of (10.2). By (10.3), f(x) does not have a zero
in Zp. By Lemma 10.3.2, we deduce that f(x) does not have a zero in Q. This finishes
the proof.
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Lecture 11

In the previous lecture, we showed that if F is a field, f(x) ∈ F [x] is a polynomial
with degree at least 2, and f(x) has a zero in F , then f is not irreducible. We further
showed that the converse holds if the degree of f is either 2 or 3. Then we proved the
rational root criterion and use it to show that if f(x) ∈ Z[x] is a monic polynomial
which does not have a zero in Zn for some positive integer n, then f does not have a
zero in Q. We proved the the contrapositive by first passing from Q to Z, and then from
Z to Zn.

We can use the residue maps to find out if a polynomial f(x) ∈ Z[x] is irreducible
or not.

Theorem 11.0.1 (mod-p criterion). Suppose f(x) ∈ Z[x] is a monic polynomial and p
is a prime number. If f(x) is irreducible in Zp[x], then f(x) is irreducible in Q[x].

The proof of this theorem has many steps. The general strategy is the same as the
one explained in Section 10.3. We prove the contrapositive statement, and it will be
done by (1) going from Q to Z and (2) going from Z to Zp. The main difficulty is in
the first step, where we need Gauss’s Lemma.

11.1 Content of a polynomial with rational coefficients.

Before we go to the proof, we point out an important difference between being
irreducible in Q[x] and being irreducible in Z[x].

Example 11.1.1. 2x is irreducible in Q[x], but it is not irreducible in Z[x].

Proof. By Lemma 10.1.1, we know that every degree 1 polynomial with coefficients in
a field is irreducible. Therefore 2x is irreducible in Q[x]. On the other hand, 2x is 2
times x and neither 2 nor x is a unit in Z[x] as Z[x]× = Z× = {1,−1}.

In fact in general if the greatest common divisor of the coefficients of a non-constant
integer polynomial f(x) is not 1, then f(x) cannot be irreducible in Z[x]. This is the
case as we can simply factor out the greatest common divisor of the coefficients of f

65
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and write f(x) as a product of two non-unit elements of Z[x]. This brings us to the
definition of the content of an integer polynomial.

Definition 11.1.2. Suppose f(x) := anx
n + · · ·+a0 ∈ Z[x] is a non-zero polynomial.

The content of f is the greatest common divisor of the coefficients a0, . . . , an, and we
denote it by α(f). 1

Example 11.1.3. 1. α(2x2 − 6) = 2 and α(2x3 − 6x+ 3) = 1.

2. The content of a monic integer polynomial is 1.

Using properties of the greatest common divisors, one can prove the following basic
properties of content of polynomials.

Lemma 11.1.4. Let n be a positive integer, cn : Z[x]→ Zn[x] be the modulo n residue
map, a ∈ Z \ {0}, and suppose f(x), g(x) ∈ Z[x] are two non-zero polynomials. Then

1. α(af(x)) = |a|α(f).

2. If α(f) = d, then 1
df(x) ∈ Z[x] and α( 1

df(x)) = 1.

3. n|α(f) if and only if f ∈ ker cn.

Proof. Part one follows from the fact that

gcd(aa0, . . . , aam) = |a| gcd(a0, . . . , am).

The second part is equivalent to the following property of the greatest common divisor:

gcd(a0, . . . , am) = d implies gcd
(a0
d
, . . . ,

am
d

)
= 1.

The last part is a consequence of the following statement:

n|a0, . . . , n|am if and only if n| gcd(a0, . . . , am).

Definition 11.1.5. We say f(x) ∈ Z[x] is a primitive polynomial if α(f) = 1.

Lemma 11.1.6. For every f ∈ Z[x], there is a primitive polynomial f such that

f(x) = α(f)f(x).

Proof. This is equivalent to part (2) of Lemma 11.1.4.

Next, we extend the definition of content to polynomials in Q[x].

Lemma 11.1.7. For every non-zero polynomial f(x) ∈ Q[x], there are unique positive
rational number q and primitive polynomial f such that f(x) = qf(x). Moreover for
f(x) ∈ Z[x], q = α(f).

1The content of f is often denoted by c(f), but we use the notation cn for the residue map modulo n.
So to avoid the possible confusion, we write α(f) for the content of f .
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Proof. (Existence) After multiplying by the common denominator n of the coefficients
of f , we get an integer polynomial f̃(x); that means f̃(x) := nf(x) ∈ Z[x]. By
Lemma 11.1.6, there is a primitive polynomial f(x) such that f̃(x) = α(f̃)f(x).
Overall we get

α(f̃)f(x) = nf(x) which implies that f(x) =
α(f̃)

n
f(x).

This completes proof of existence.
Lemma 11.1.6 implies that for f(x) ∈ Z[x], we have that q = α(x) satisfies the

desired result.
(Uniqueness) Suppose q1, q2 ∈ Q are positive and q1f1(x) = q2f2(x) for some

primitive polynomials f1(x) and f2(x). Suppose qi = mi
n for some positive integers

m1,m2 and n. Then m1f1 = m2f2, which implies that

m1 = α(m1f1) = α(m2f2) = m2.

Hence q1 = q2. This in turn implies that f1(x) = f2(x). The existence follows.

Definition 11.1.8. The unique rational number given in Lemma 11.1.7 is called the
content of f , and it is denoted by α(f).

Let’s point out the Part (1) of Lemma 11.1.4 holds for polynomials in Q[x].

Lemma 11.1.9. For every non-zero f(x) ∈ Q[x] and a ∈ Q \ {0}, we have

α(af(x)) = |a|α(f(x)).

Proof. By the definition of the content, there is a primitive polynomial f(x) such that
f(x) = α(f)f(x). Hence af(x) = (aα(f))f(x). As ±f(x) are primitive, we deduce
that α(af(x)) = |a|α(f), which finishes the proof.

11.2 Gauss’s lemma

Gauss’s lemma is the critical result that help us pass from Q to Z.

Lemma 11.2.1 (Gauss’s lemma, version 1). If f and g are two primitive polynomials,
then fg is also primitive.

Proof. Suppose to the contrary that α(fg) 6= 1. Then there is a prime p which divides
α(fg). Hence cp(fg) = 0 (by Part (3) of Lemma 11.1.4). Therefore cp(f)cp(g) = 0.
Notice that as Zp is an integral domain, so is Zp[x]. Therefore cp(f)cp(g) = 0 implies
that either cp(f) = 0 or cp(g) = 0. Another application of Part (3) of Lemma 11.1.4
gives us that either p|α(f) or p|α(g). This contradicts the assumption that both f and
g are primitive.

Lemma 11.2.2 (Gauss’s lemma, version 2). Suppose f and g are two non-zero polyno-
mials in Q[x]. Then

α(fg) = α(f)α(g).
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Proof. By Lemma 11.1.7, there are primitive polynomials f and g such that

f(x) = α(f)f(x) and g(x) = α(g)g(x). (11.1)

By (11.1), we have that
f(x)g(x) = α(f)α(g)fg. (11.2)

Lemma 11.1.9 implies that

α(f(x)g(x)) =α(α(f)α(g)f(x)g(x))

=α(f)α(g)α(f(x)g(x)). (11.3)

By the first version of Gauss’s lemma, α(f(x)g(x)) = 1. Hence (11.3) implies that

α(fg) = α(f)α(g).

This completes the proof.

11.3 Factorization: going from rationals to integers.

The following is the main result of this section, which gives us Step 1 of proof of
Theorem 11.0.1. This result says that having a non-trivial decomposition in over Q, we
can get a non-trivial decomposition over Z.

Theorem 11.3.1. Suppose f(x) is a primitive polynomial and f(x) =
∏n
i=1 gi(x) for

some gi ∈ Q[x]. Then there are primitive polynomials gi(x) such that

gi(x) = α(gi)gi(x),

n∏
i=1

α(gi) = 1, and f(x) =

n∏
i=1

gi(x).

Proof. By the second version of Gauss’s lemma, we have

α(f) = α
( n∏
i=1

gi

)
=

n∏
i=1

α(gi) which implies that
n∏
i=1

α(gi) = 1. (11.4)

The last implication holds as α(f) = 1. Next notice that by the definition of the content,
there are primitive polynomials gi(x) such that gi(x) = α(gi)gi(x), and so

n∏
i=1

gi(x) =

n∏
i=1

(
α(gi)

−1gi(x)
)

=
( n∏
i=1

α(gi)
)−1 n∏

i=1

gi(x) = f(x).

This finishes the proof.

We have already pointed out that a subtle difference between being irreducible in
Q[x] and being irreducible in Z[x] is having a non-trivial content. By Theorem 11.3.1,
we can show that this is the only thing that one needs to be worried about:

Corollary 11.3.2. Suppose f(x) is primitive and deg f ≥ 1. Then f(x) is irreducible
in Z[x] if and only if it is irreducible in Q[x].
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Proof. We prove the contrapositive of this statement. Suppose f(x) is not irreducible
in Q[x]. As deg f ≥ 1, not being irreducible implies that f(x) = g1(x)g2(x) for some
smaller degree polynomials g1, g2 ∈ Q[x]. By Theorem 11.3.1, there are primitive
polynomials gi such that

f(x) = g1(x)g2(x) and deg gi = deg gi ≥ 1. (11.5)

By (11.5), we deduce that f(x) is not irreducible in Z[x].
Now let’s assume that f(x) is not irreducible in Z[x]. Since deg f ≥ 1, it is

not a unit. Hence not being irreducible implies that there are non-unit polynomials
h1, h2 ∈ Z[x] such that f(x) = h1(x)h2(x). We claim that deg hi ≥ 1. Suppose to
the contrary that deg hi = 0. This means that hi(x) = c ∈ Z and c 6= ±1 (as hi is not
a unit). This implies that c|α(f) which contradicts the assumption that f is primitive.
Hence deg hi ≥ 1, and so f(x) is not irreducible in Q[x].

11.4 Mod criterion: irreducibility

Now we are ready to prove the mod-p irreducibility criterion (Theorem 11.0.1). We
show the following slightly stronger result.

Theorem 11.4.1. Suppose f(x) ∈ Q[x] is primitive, p is prime which does not divide
the leading coefficient of f(x), and cp : Z[x]→ Zp[x] is the modulo p residue map. If
cp(f(x)) is irreducible in Zp[x], then f(x) is irreducible in Q[x].

Proof. As it has been mentioned earlier, we show the contrapositive of this statement. So
suppose f(x) is not irreducible in Q[x]. Hence f(x) is either a constant polynomial or it
can be written as product of two smaller degree polynomials. Since cp(f) is irreducible
in Zp[x], cp(f) is not constant. Hence f(x) cannot be constant either. Therefore there
are non-constant polynomials gi(x) ∈ Q[x] such that f(x) = g1(x)g2(x). As f(x) is
primitive, by Theorem 11.3.1 there are non-constant primitive polynomials gi such that

f(x) = g1(x)g2(x). (11.6)

This equality implies that the leading coefficient of f is the product of the leading
coefficients of gi’s. Since p does not divide the leading coefficient of f , we obtain that
p does not divide the leading coefficient of gi’s. Hence

deg cp(gi) = deg gi = deg gi ≥ 1.

Another application of (11.6) implies that

cp(f) = cp(g1)cp(g2),

which means that cp(f) can be written as a product of two smaller degree polynomials.
As Zp is a field, we deduce that cp(f) is not irreducible in Zp[x]. This completes the
proof of the contrapositive statement.





Chapter 12

Lecture 12

In the previous lecture, we proved many important results on irreducibility of integer
polynomials in Q[x]. We proved Gauss’s lemma and used to show that a monic non-
constant integer polynomial can be written as a product of two non-constant primitive
polynomials if and only if it is not irreducible in Q[x]. We used this result to show the
mod-p irreducibility criterion.

12.1 An example on the mod irreducibility criterion.

Later we will show that for every prime p and a ∈ Z×p , xp − x+ a is irreducible in
Zp. This result in combination with the mod p irreducibility criteria can be quit helpful.

Example 12.1.1. Prove that f(x) := x7−7x5 +21x3 +14x2−8x+11 is irreducible
in Q[x].

Proof. Notice that f(x) modulo 7 is x7−x+4. By the mentioned result, this polynomial
is irreducible in Z7[x]. We also notice that f(x) is monic, it is primitive, and the leading
coefficient is not a multiple of 7. Therefore by the mod-p irreducibility criteria, f(x) is
irreducible in Q[x].

For small degree and small primes p, one can go over all the polynomials and cross
out all the multiples of smaller degree polynomials. This way we can get the list of all
the irreducible polynomials of small degree in Zp[x]. Based on the mod-p irreducibility
criteria and using the list of small degree irreducible polynomials of Zp[x], we can find
lots of irreducible polynomials in Q[x].

Example 12.1.2. 1. Prove that x4 + x+ 1 is irreducible in Z2[x].

2. Prove that f(x) := 5x4 + 2x3 − 2020x2 + 2021x+ 1 is irreducible in Q[x].

Proof. (1) For every a ∈ Z2 and every positive integer n, we have that an = a.
Hence a4 + a + 1 = 1 for every a ∈ Z2. This means this polynomial does not
have a degree one factor. Hence it is enough to show that it does not have a degree
2 factor. There are exactly 22 degree 2 polynomials in Z2[x]. Let’s the list of them:

71
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x2, x2 + 1, x2 + x, x2 + x+ 1. Notice that the first three have zeros in Z2, and so they
cannot possibly be a factor of x4 + x+ 1. Next we use the long division and divide
x4 + x+ 1 by x2 + x+ 1. We deduce that x4 + x+ 1 = (x2 + x+ 1)(x2 + x) + 1,
and so the remainder is 1 6= 0. Hence x4 + x+ 1 does not have degree 1 or 2 factors.
If x4 + x + 1 is not irreducible in Z2[x], then it can be written as a product of two
non-constant polynomials. Since the degree of these factors should add up to 4, we
get deduce that one of the factors should be of degree 1 or 2. This is a contradiction.
Hence x4 + x+ 1 is irreducible in Z2[x].

(2) Notice that f(x) is primitive, the leading coefficient is odd, and f(x) modulo 2
is x4 +x+ 1 which is irreducible in Z2[x]. Hence by the mod-p irreducibility criterion,
f(x) is irreducible in Q[x].

12.2 Eisenstein’s irreducibility criterion

One of the most elegant irreducibility criteria is due to Eisenstein.

Theorem 12.2.1. Let f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x] and p be prime. Suppose

p - an, p|an−1, . . . , p|a0, and p2 - a0.

Then f(x) is irreducible in Q[x].

Here we start our proof in a systematic manner, but we finish it by showing an
ad-hoc result. One gets a better understanding of the final stage using the Unique
Factorization property of the ring of polynomials with coefficients in a field. The
Unique Factorization property will be proved later in the course.

Proof of Theorem 12.2.1. Suppose to the contrary that there are non-constant polynomi-
als g1, g2 ∈ Q[x] such that f(x) = g1(x)g2(x). Then there are primitive polynomials
gi(x) such that gi(x) = α(gi)gi(x) (see Lemma 11.1.7), and by the second version of
Gauss’s lemma α(f) = α(g1g2) = α(g1)α(g2). Altogether we obtain that

f(x) = α(f) g1(x)g2(x). (12.1)

Notice that ld(f) = α(f) ld(g1) ld(g2) together with the assumption that p does not
divide the leading coefficient an imply the p does not divide ld(g1) and ld(g2). Next
we look at the equation 12.1 modulo p to obtain that cp(f) = cp(α(f))cp(g1)cp(g2).
By the assumption on the divisibility of all the non-leading coefficients by p, we deduce
that

cp(an)xn = cp(α(f)) cp(g1)cp(g2). (12.2)

Since p does not divide ld(gi), we have that deg(cp(gi)) = deg(gi) > 0. Equation 12.2
takes us to the following lemma:

Lemma 12.2.2. Suppose F is a field and g1, g2 ∈ F [x] are two non-constant polyno-
mials such that g1(x)g2(x) = cxn for some c ∈ F×. Then g1(0) = g2(0) = 0.



12.2. EISENSTEIN’S IRREDUCIBILITY CRITERION 73

Proof. Suppose to the contrary that g1(0) 6= 0. Set

g1(x) = brx
r + · · ·+ b1x+ b0 and g2(x) = csx

s + · · ·+ c1x+ c0,

where bi, cj ∈ F , br, cs ∈ F×. The contrary assumption g1(0) 6= 0 implies that
b0 ∈ F×. Suppose s′ is the smallest non-negative integer such that cs′ 6= 0. This
means

cs′ ∈ F× and g2(x) = csx
s + · · ·+ cs′x

s′ .

Consider the coefficient of xs′ in g1(x)g2(x). Since every term of g2(x) is of degree
at least s′, we deduce that the coefficient of xs′ in g1(x)g2(x) is b0cs′ 6= 0. We also
notice that s′ ≤ s < s+ r = n; this implies that g1(x)g2(x) has at least two non-zero
terms and it cannot be equal cxn. This is a contradiction. By symmetry, we obtain that
g2(0) = 0, which completes proof of Lemma.

By Lemma 12.2.2 and (12.2), we deduce that

cp(g1)(0) = cp(g2)(0) = 0.

This means p|g1(0) and p|g2(0). Hence

p2|g1(0)g2(0).

On the other hand, a0 = f(0) = α(f)g1(0)g2(0) is a multiple of g1(0)g2(0). Hence
p2|a0, which is a contradiction. This completes proof of Eisenstein’s irreducibility
criterion.

Example 12.2.3. Prove that f(x) := 5
2x

6 − 4
3x

3 + 7x− 3
11 is irreducible in Q[x].

Proof. First we find the content α(f) and the primitive form f of f . To find the content
of a polynomial first we factor out a common denominator of the coefficients, and take
the greatest common divisor of the numerators of the coefficients:

5

2
x6 − 4

3
x3 + 7x− 3

11
=

1

66
((33× 5)x6 − (22× 4)x3 + (66× 7)x− (6× 3))

So the primitive form of f(x) is

f(x) = (33× 5)x6 − (22× 4)x3 + (66× 7)x− (6× 3)

Notice that since α(f) is a unit in Q, f(x) is irreducible in Q[x] if and only if f(x) is
irreducible in Q[x]. Next we check that we can apply Eisenstein’s irreduciblity criterion
for p = 2, and deduce that f is irreducible in Q[x]:

2 - (33× 5), 2|(22× 4), 2|(66× 7), 2|(6× 3), and 22 - (6× 3),

and the claim follows.

Next we discuss a tricky application of Eisenstein’s irreducibility criterion. As you
will see, the polynomial given in the next example at the first glance has nothing to do
with Eisenstein’s irreducibility criterion. After applying a useful trick, however, we
will get a polynomial where the hypothesis of Eisenstein’s criterion clearly hold.



74 CHAPTER 12. LECTURE 12

Example 12.2.4. Suppose p is prime. Then f(x) := xp−1+xp−2+· · ·+1 is irreducible
in Q[x].

Proof. Notice that

f(x)(x− 1) = (xp + xp−1 + · · ·+ x)− (xp−1 + xp−2 + · · ·+ 1) = xp − 1,

and so f(x) = xp−1
x−1 . Let g(y) := f(y + 1). Then

g(y) =
(y + 1)p − 1

y
= yp−1 +

(
p

p− 1

)
yp−2 + · · ·+

(
p

1

)
.

Notice that p - 1, p|
(
p
i

)
for every integer i ∈ [1, p− 1], and p2 -

(
p
1

)
. Hence by Eisen-

stein’s irreducibility criterion, we have that g(y) is irreducible in Q[y]. Finally notice
that if f(x) = f1(x)f2(x) for two non-constant polynomials f1 and f2 in Q[x], then
f(y + 1) = f1(y + 1)f2(y + 1), which implies that g(y) can be written as a product
of two non-constant polynomials in Q[y]. This contradicts the irreducibility of g(y) in
Q[y].

12.3 Factorization: existence, and a chain condition

Let’s go back to Lemma 12.2.2, and see what really we can say about the factors of
xn. Notice that x is an irreducible element of F [x], and so all the irreducible factors of
xn are x. If F [x] has the Unique Factorization property, then all the irreducible factors
of gi(x)’s are x as well. This means gi = cix

ni for some ci ∈ F× and positive integer
ni.

Definition 12.3.1. An integral domain D is called a Unique Factorization Domain
(UFD) if every non-zero non-unit element ofD can be written as a product of irreducible
elements (the existence part), and the irreducible factors are unique up to reordering
and multiplying by a unit (the uniqueness part).

Example 12.3.2. The ring of integers is a UFD. Let’s understand that the flexibility
given in the uniqueness part are needed. In Z, 2, 3,−2, and −3 are irreducible and
2× 3 = (−3)× (−2). Hence for the uniqueness we have to allow a reordering of the
factors and a possible multiplication by units.

We start with investigating the existence part for an arbitrary integral domain D.
Suppose d ∈ D is a non-zero non-unit element. We would like to write d as a product
of irreducible elements. We go through the following pseudo-algorithm:

1. If d is irreducible, we are done.

2. If d is not irreducible, then there are non-zero non-unit elements d1, d′1 ∈ D such
that d = d1d

′
1.

3. Repeat this process for each one of the factors.
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If this process terminates, we end up writing d as a product of irreducible elements.
Let’s see what it means for this process to not terminate. We can visualize this process
with a binary rooted tree, where all the vertices are labeled by non-zero non-units and
label of each vertex is the product of its children.

d

d′1 d1

d′2 d2

d′3 . . .

Let’s translate this to the language of ideals. Saying that d is a multiple of d1 is
equivalent to 〈d〉 ⊆ 〈d1〉. Recall that 〈d〉 = 〈d1〉 if and only if d = ud1 for some
u ∈ D× (see Lemma 9.2.4). Hence 〈d〉 = 〈d1〉 if and only if d1u = d1d

′
1. By the

cancellation law and d′1 not being a unit, we deduce that we have an infinite ascending
chain of (principal) ideals:

〈d〉 ( 〈d1〉 ( 〈d2〉 · · · .

This takes us to the definition of Noetherian rings.

Definition 12.3.3. A ring A is called Noetherian if there is no infinite ascending chain
of ideals. That means if I1 ⊆ I2 ⊆ · · · is an ascending chain of ideals of A, then for
some positive integer n0 we have In0

= In0+1 = · · · .

The above discussion on the existence of a factorization into irreducible elements
immediately gives us the following result.

Proposition 12.3.4. Suppose D is a Noetherian integral domain. Then every non-zero
non-unit element of D can be written as a product of irreducible elements of D.

Proposition 12.3.4 would not be a satisfactory result unless we have an effect way
of determining whether or not an integral domain is Noetherian.

Lemma 12.3.5. Suppose A is a unital commutative ring. Then A is Noetherian ring if
and only if every ideal of A is finitely generated.

(An ideal I is called finitely generated if there is a finite set {a1, . . . , an} such that
I = 〈a1, . . . , an〉 (see Lemma 5.2.3).)

Proof. (⇒) Suppose to the contrary that there is an ideal I which is not finitely generated.
Inductively we define a sequence of elements {ai}∞i=1 of I such that

〈a1〉 ( 〈a1, a2〉 ( · · · ,
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which contradicts the assumption thatA is Noetherian. Let a1 be an element of I . Since
I is not finitely generated, 〈a1〉 is a proper subset of I . Hence there is a2 ∈ I \ 〈a1〉.
Again, as I is not finitely generate, 〈a1, a2〉 is a proper ideal of I . Therefore there is
a3 ∈ I \ 〈a1, a2〉. We continue this process inductively, and the proof can be completed
as it is explained above.

(⇐) Suppose I1 ⊆ I2 ⊆ · · · is an ascending chain of ideals of A. Consider
I :=

⋃∞
i=1 Ii. Next we prove that I is an ideal of A.

For every a, a′ ∈ I , there are positive integers i and i′ such that a ∈ Ii and a′ ∈ Ii′ .
Without loss of generality we can and will assume that i ≤ i′, and so Ii ⊆ Ii′ . Therefore
a, a′ ∈ Ii′ . Hence a− a′ ∈ Ii′ , which implies that a− a′ ∈ I .

For every a ∈ I , there is a positive integer i such that a ∈ Ii. Hence for every
r ∈ A, we have that ra ∈ Ii, which implies that ra ∈ I . This completes the proof of
the claim that I is an ideal.

Since I is an ideal, it is finitely generated. Hence there are a1, . . . , an ∈ I such that
I = 〈a1, . . . , an〉. Notice that ai ∈ I implies that ai ∈ Iki for some positive integer
ni. Suppose m := max{k1, . . . , kn}. Then Im contains Iki for every i. Therefore
a1, . . . , an ∈ Im. This implies that

〈a1, . . . , an〉 ⊆ Im.

Hence for every j ≥ m, we have

Ij ⊆
∞⋃
i=1

Ii = 〈a1, . . . , an〉 ⊆ Im ⊆ Ij . (12.3)

By (12.3), we obtain that Im = Ij for every j ≥ m. This means that A is Noetherian.

We immediately deduce that a PID is Noetherian, and so every non-zero non-unit
element can be factored into irreducible elements.

Corollary 12.3.6. Suppose D is a PID. Then D is Noetherian and every non-zero
non-unit element of D can be written as a product of irreducible elements.

Proof. SinceD is a PID, every ideal is principal. Hence every ideal is finitely generated.
Therefore by Lemma 12.3.5, D is Noetherian. By Proposition 12.3.4, we obtain that
every non-zero non-unit element of D can be written as a product of irreducible
elements.
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Lecture 13

In the previous lecture we said an integral domain is called a unique factorization
domain if every non-zero non-unit element can written as a product of irreducible
elements (the existence part) and the irreducible factors are unique up to reordering and
multiplying by units (the uniqueness part). We showed that the existence part holds
in a Noetherian integral domain (see Proposition 12.3.4 together with Lemma 12.3.5).
Today we will investigate the uniqueness part.

13.1 Factorization: uniqueness, and prime elements.

Let’s first formulate what the uniqueness precisely means: suppose p1, . . . , pm and
q1, . . . , qn are irreducible elements of D. If

p1 · · · pm = q1 · · · qn, (13.1)

then p1 = u1qi1 , p2 = u2qi2 , and so on, for some ui ∈ D× and a permutation
1 7→ i1, . . . ,m 7→ im of 1, 2, . . . , n; in particularm = n. This means we need to show
if an irreducible element p divides a product of irreducible elements qi’s, then p = uqj
for some unit u and some index j. This takes us to the definition of prime elements.

Definition 13.1.1. Suppose D is an integral domain.

1. For a, b ∈ D, we say a divides b and write a|b if there is d ∈ D such that b = ad

2. A non-zero non-unit element p of D is called prime when for every a, b ∈ D, if
p|ab, then either p|a or p|b.

Base on the above discussion, for uniqueness to hold, we need to have that every
irreducible element is prime. Next we show this statement and its converse hold.

Proposition 13.1.2. Let D be an integral domain. Suppose every non-zero non-unit
element of D can be written as a product of irreducible elements. Then D is a UFD if
and only if every irreducible element is prime.

77
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The formal proof has many little details that make the proof a bit hard to digest.
The idea of proof, however, is rather simple. For that reason first I write an outline of
the proof:

Outline of proof. (⇒) Suppose p is irreducible and p|ab. Then ab = pd for some
d ∈ D. We decompose a, b, and d into irreducible factors. We notice that p is an
irreducible factor of the left hand side, and so by the uniqueness of irreducible factors,
it should be an irreducible factor of either a or b. This means that either p|a or p|b.

(⇐) The existence part is given as an assumption. So we focus on the uniqueness
part. Starting with p1 · · · pm = q1 · · · qn, using the assumption that p1 is prime, we
can find an index i1 such that p1|qi1 . As qi1 is irreducible, we can deduce that p1 is qi1
upto multiplying by a unit. Now we cancel out p1 and continue by induction on the
number of involved irreducible factors.

Proof. (⇒) Suppose p is an irreducible element. We have to show that p is prime. Since
p is irreducible, it is not either zero or unit. Now suppose for a, b ∈ D, p|ab. Notice
that if either a = 0 or b = 0, we are done as p|0. So without loss of generality we can
and will assume that a and b are non-zero. By the assumption either a is a unit or it can
be written as product of irreducible elements. A similar statement holds for b. Suppose
a = uq1 · · · qm and b = u′qm+1 · · · qn for irreducible elements q1, . . . , qn and units
u, u′. Then p|(uu′

∏n
i=1 qi). This means there is d ∈ D such that pd = uu′

∏n
i=1 qi.

Notice that the right hand side of this equation cannot be zero, and so d 6= 0. Therefore
d = u′′`1 · · · `k for some irreducible elements `1, . . . , `k and a unit u′′. Hence

u′′p`1 · · · `k = uu′q1 · · · qn. (13.2)

Since p is not a unit, the right hand side of Equation 13.2 cannot be a unit. Therefore
n ≥ 1. As p and q1 are irreducible, so are u′′p and uu′q1. By the assumption the
irreducible elements u′′p, `1, · · · , `k are the same as uu′q1, . . . , qn upto reordering and
multiplying by units. Hence there is a unit u and an index j such that

p = uqj . (13.3)

Notice that, if j ≤ m, then uqj |a, and if j > m, then uqj |b. Therefore by (13.3), we
obtain that either p|a or p|b. This shows that p is prime.

(⇐) By the assumption every non-zero non-unit element can be written as a product
of irreducible elements. So we focus on the uniqueness part. Suppose p1, . . . , pm and
q1, . . . , qn are irreducible elements and

p1 · · · pm = q1 · · · qn. (13.4)

We have to show that m = n, there is a reordering i1, . . . , im of 1, . . . ,m, and units
uj such that pj = ujqij for every j.

We proceed by induction on n. By (13.4), we have that p1 divides q1 · · · qn. Since
every irreducible element is prime, p1 is prime. Whenever a prime element divides
product of certain elements, it should divide one of them. Hence there is an index i1
such that p1|qi1 . This means qi1 = p1u1 for some u1 ∈ D. Since qi1 is irreducible,
either p1 is a unit or u1 is a unit. As p1 is irreducible, it is not a unit. Hence u1 is a
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unit. Overall we showed that there are an index i1 and a unit u1 such that qi1 = u1p1.
This implies that

p1 · · · pm = u1p1q1 · · · qi1−1qi1+1 · · · qn,

and so by the cancellation law, we obtain

p2 · · · pm = u1q1 · · · qi1−1qi1+1 · · · qn. (13.5)

If m = 1, the left hand side is 1. Hence all the terms in the right hand side are units.
This means n = 1, and we are done. For m ≥ 2, the left hand side is not a unit, and so
n 6= 1. Hence there is qj0 factor in the right hand side of (13.5). Then u1qj0 is also
irreducible. By the induction hypothesis, we deduce that m− 1 = n− 1, and there are
a reordering i2, . . . , im of 1, . . . , i1 − 1, i1 + 1, . . . ,m, and units uj for every index
j ∈ [2,m] such that qij = ujpj . This finishes the proof.

13.2 Prime elements and prime ideals

In this section we investigate prime elements. We have seen that in an integral
domain an element p is irreducible if and only if the ideal generated by p is maximal
among proper principal ideals (see Lemma 9.2.7). As we want to understand the
connection between prime and irreducible elements, we study properties of the principal
ideals that generated by prime elements. By the definition, p is a prime element of
an integral domain D if (1) p is not either zero or unit, and (2) for every a, b ∈ D, if
p|ab, then either p|a or p|b. We start with translating the concept of divisibility to the
language of ideals.

Lemma 13.2.1. Suppose D is an integral domain, and a, b ∈ D.

1. a|b if and only if b ∈ 〈a〉 if and only if 〈b〉 ⊆ 〈a〉.

2. a|b and b|a if and only if a = bu for some unit u.

Proof. We have that a|b if and only if b = ac for some c ∈ D. Since

〈a〉 = {ar | r ∈ D}

(see Lemma 5.2.3), the claim follows.
By the first part, we have a|b and b|a if and only if 〈a〉 = 〈b〉. The latter happens if

and only if a = bu for some unit u (see Lemma 9.2.4).

By Lemma 13.2.1, we have that p ∈ D is prime if and only if (1) 〈p〉 is a non-zero
proper ideal (see Lemma 9.2.5) and (2) if ab ∈ 〈p〉, then either a ∈ 〈p〉 or b ∈ 〈p〉. This
takes us to the definition of prime ideals.

Definition 13.2.2. Suppose A is a unital commutative ring and I is an ideal of A. we
say I is a prime ideal if (1) I is proper (that means I 6= A), and (2) if ab ∈ I for some
a, b ∈ D, then either a ∈ I or b ∈ I .

Hence we immediately deduce the following interpretation of prime elements in
the language of principal ideals:
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Lemma 13.2.3. Suppose D is an integral domain and p ∈ D. Then p is a prime
element if and only if p 6= 0 and 〈p〉 is a prime ideal.

We have seen that an ideal I in a unital commutative ring is maximal if and only if
the quotient ring A/I is a field (see Proposition9.3.3). Next we understand when an
ideal is prime in terms of the corresponding quotient ring.

Lemma 13.2.4. Suppose A is a unital commutative ring and I is an ideal of A. Then
I is a prime ideal if and only if A/I is an integral domain.

Proof. (⇒) Since I is a proper ideal, A/I is a non-trivial ring. Next we show that A/I
does not have a zero-divisor. Suppose (a+ I)(b+ I) = 0 + I for some a, b ∈ A. This
means that ab ∈ I . As I is a prime ideal, either a ∈ I or b ∈ I . From this we deduce
that either a+ I = 0 + I or b+ I = 0 + I . Hence A/I is an integral domain.

(⇐) Since A/I is an integral domain, A/I is a non-trivial ring. Therefore I is a
proper ideal. Now suppose ab ∈ I . Then (a + I)(b + I) = 0 + I . Since A/I is an
integral domain, we have that either a + I = 0 + I or b + I = 0 + I . Hence either
a ∈ I or b ∈ I . Altogether, we deduce that I is a prime ideal.

We immediately obtain that every maximal ideal is prime.

Corollary 13.2.5. Suppose A is a unital commutative ring and I is an ideal of A. If I
is a maximal ideal, then I is a prime ideal.

Proof. Suppose I is a maximal ideal. ThenA/I is a field (see Proposition 9.3.3). Hence
A/I is an integral domain, which implies that I is a prime ideal (by Lemma 13.2.4).

13.3 Prime vs irreducible

Next we investigate the connections between prime and irreducible elements. In
view of Proposition 13.1.2, such a connection can help us prove that certain integral
domains are UFD.

Lemma 13.3.1. Suppose D is a PID. Then every irreducible element of D is prime.

Proof. Suppose p is irreducible in D. Then by Lemma 9.3.2, 〈p〉 is a maximal ideal of
D. Therefore by Corollary 13.2.5, 〈p〉 is a prime ideal. Since p 6= 0 (as p is irreducible)
and 〈p〉 is a prime ideal, by Lemma 13.2.3 we deduce that p is a prime element.

The converse of Lemma 13.3.1 is true in every integral domain.

Lemma 13.3.2. Suppose D is an integral domain and p ∈ D. If p is a prime element,
then p is irreducible.

Proof. Since p is prime, it is not either zero or unit. Hence to show it is irreducible, we
have to argue why p = ab implies that either a is a unit or b is a unit.
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For a, b ∈ D suppose p = ab. Since p is prime and p|ab, we deduce that either p|a
or p|b. This means that either a = pa′ for some a′ ∈ D or b = pb′ for some b′ ∈ D. In
the former case, we have

a = pa′ = aba′ which implies that ba′ = 1. (13.6)

(Notice that since p is prime, it is not zero. Hence a and b are not zero, and so we are
allowed to use the cancellation law.) By (13.6), we obtain that b is a unit. Similarly we
can show that b = pb′ implies that a is a unit. Altogether we have that p = ab implies
that either a is a unit or b is unit. This completes this proof.

An immediate consequence of the above lemmas is the following theorem.

Theorem 13.3.3. Suppose D is a PID. Then

1. An element d ∈ D is irreducible if and only if it is prime.

2. D is a UFD.

Proof. Since D is an integral domain, by Lemma 13.3.2 every prime is irreducible.
Since D is a PID, by Lemma 13.3.1 every irreducible is prime.

The existence part of being a UFD follows from Corollary 12.3.6. The Uniqueness
part of being a UFD follows from the first part and Proposition 13.1.2.

As a corollary we deduce the following:

Theorem 13.3.4. The following rings are UFD: Z, F [x] where F is a field, Z[i], and
Z[ω] where ω := −1+

√
−3

2 .

Proof. We have proved that all of these rings are Euclidean domains. This implies that
they are PIDs. Hence they are UFDs.

13.4 Some integral domains that are not UFD.

We have seen some interesting examples that are UFDs. Now we want to see that
there are many interesting integral domains that are not UFDs.

Example 13.4.1. The ring Z[
√
−6] := {a+ b

√
−6 | a, b ∈ Z} is not a UFD.

Proof. By Proposition 13.1.2, it is enough to find an irreducible element which is not a
prime element. To show an element is irreducible, first we have to prove it is not a unit.
Therefore we have to describe units of this ring. Let

N : Z[
√
−6]→ Z, N(z) := |z|2.

Notice that N(z1z2) = N(z1)N(z2) for every z1, z2 ∈ Z[
√
−6].

Claim 1. z ∈ Z[
√
−6] is a unit if and only if N(z) = 1.
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Proof of Claim 1. (⇒) Since z ∈ Z[
√
−6]×, there is z′ ∈ Z[

√
−6] such that

zz′ = 1. Hence

N(zz′) = 1 which implies that N(z)N(z′) = 1.

ThereforeN(z) ∈ Z× = {±1}. SinceN(z) is non-negative, we deduce thatN(z) = 1.
(⇐) Suppose N(z) = 1. and x = a+ b

√
−6. Then

(a+ b
√

6)(a− b
√

6) = 1,

which implies that x = a + b
√
−6 ∈ Z[

√
−6]× as a − b

√
−6 ∈ Z[

√
−6]. This

completes the proof of Claim 1.
Claim 2.

√
−6 is irreducible in Z[

√
−6].

Proof of Claim 2. Since N(
√
−6) = 6 6= 1, by Claim 1,

√
−6 is not a unit. Now

suppose
√
−6 = xy for some x, y ∈ Z[

√
−6]. Then

N(
√
−6) = N(xy) which implies that 6 = N(x)N(y). (13.7)

If neither x nor y are units, by Claim 1 and (13.7) we have that either N(x) = 2 or
N(y) = 2. This means the next claim completes the proof of Claim 2.

Claim 3. There is no x ∈ Z[
√
−6] such that N(x) = 2.

Proof of Claim 3. Suppose N(a+ b
√
−6) = 2 for some a, b ∈ Z. Then

a2 + 6b2 = 2. (13.8)

If b 6= 0, then 6b2 ≥ 6. This implies that a2 + 6b2 ≥ 6, which means (13.8) cannot
hold. Hence b = 0, in which case (13.8) implies that b2 = 2, which is not possible as√

2 is irrational.
Claim 4.

√
−6 is not prime in Z[

√
−6].

Proof of Claim 4. Suppose to the contrary that
√
−6 is prime. Then

√
−6|2 × 3

implies that either
√
−6|2 or

√
−6|3. This means there is z ∈ Z[

√
−6] such that either

z
√
−6 = 2 or z

√
−6 = 3. Comparing the norms of both sides, we obtain that either

6N(z) = 4 or 6N(z) = 9. This is a contradiction as 6 - 4 and 6 - 9.
Altogether, we found an irreducible element which is not prime, and so Z[

√
−6] is

not a UFD.



Chapter 14

Lecture 14

We have proved that

Euclidean Domain ⇒ PID ⇒ UFD.

We have also showed a method to works with rings of the form Z[α] where α is a
zero of a monic integer quadratic polynomial. We argued how using a norm function
sometimes we can find elements that are irreducible but not prime, and deduce that the
given integral domain is not a UFD.

14.1 Ring of integer polynomials is a UFD.

Next we show that Z[x] is a UFD. Remember that this is not a PID as the ideal
〈2, x〉 is not a principal ideal of Z[x].

Theorem 14.1.1. The ring Z[x] is a UFD.

There are three main ingredients in the proof:

1. Z is a UFD,

2. Q[x] is a UFD, and

3. Irreducibility of a polynomial in Q[x] is equivalent to the irreducibility of the
primitive form the polynomial in Z[x] (Gauss’s lemma).

Lemma 14.1.2. Suppose c ∈ Z. Then we have that

1. c is irreducible in Z if and only if it is irreducible in Z[x].

2. c is prime in Z if and only if it is prime in Z[x].

Proof. (1) (⇒) Since c is irreducible in Z, it is not 0 or ±1. As Z[x]× = {±1}, we
deduce that c is not zero or a unit in Z[x]. Now suppose c = f(x)g(x). Comparing
the degrees of both sides, we deduce that f(x) = a ∈ Z and g(x) = b ∈ Z. As c is

83
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irreducible in Z, c = ab implies that either a = ±1 or b = ±1. Therefore either f(x)
is a unit or g(x) is a unit. This means c is irreducible in Z[x].

(⇐) As c is irreducible in Z[x], c is not zero or ±1. Hence c is a non-zero non-unit
element of Z. Suppose c = ab for some a, b ∈ Z. Then either a ∈ Z[x]× or b ∈ Z[x]×.
Since Z[x]× = Z×, we deduce that either a ∈ Z× or b ∈ Z×. Hence c is irreducible in
Z.

(2) (⇒) Suppose c|f(x)g(x) for some f, g ∈ Z[x]. Then there is q(x) ∈ Z[x] such
that cq(x) = f(x)g(x). Hence |c|α(q) = α(f)α(g), which implies that c|α(f)α(g).
Since c is prime inZ, we have that either c|α(f) or c|α(g). Asα(f)|f(x) andα(g)|g(x)
in Z[x], we deduce that either c|f(x) or c|g(x).

(⇐) Suppose c|ab for some integers a and b. Viewing a and b as constant polynomi-
als, as c is prime in Z[x], we deduce that either c|a or c|b in Z[x]. This means for some
f(x) ∈ Z[x] we have that either cf(x) = a or cf(x) = b. Comparing the degrees, we
deduce that f(x) ∈ Z. Hence c|a or c|b in Z. This means c is prime in Z.

Next we show that the primitive form f(x) of a polynomial f(x) in Q[x] captures
the divisibility properties of f(x) in Q[x].

Let’s recall that for every non-zero polynomial f(x) ∈ Q[x], there is a unique
primitive polynomial f(x) ∈ Z[x] such that f(x) = α(f)f(x) where α(f) ∈ Q× is
the content of f .

Proposition 14.1.3. Suppose f, g ∈ Q[x] are two non-zero polynomials, and f(x), g(x) ∈
Z[x] are their primitive forms, respectively.

1. We have that f ∈ Q[x]× if and only if f(x) ∈ Z[x]×.

2. We have that f |g in Q[x] if and only if f |g in Z[x].

3. We have that f is irreducible in Q[x] if and only if f is irreducible in Z[x].

4. We have that f is prime in Q[x] if and only if f is prime in Z[x].

Proof. (1) f(x) ∈ Q[x]× if and only if f(x) = c ∈ Q×. The latter occurs if and only
if f(x) = ±α(f). Notice that f(x) = ±α(f) precisely when f(x) = ±1. Altogether
we have that f(x) ∈ Q[x]× if and only if f(x) ∈ Z[x]×.

(2) (⇒) Since f(x)|g(x) in Q[x], there is a polynomial q(x) ∈ Q[x] such that
g(x) = f(x)q(x). Let q(x) be the primitive form of q(x). Then

α(g)g(x) = α(f)f(x)α(q)q(x). (14.1)

By Gauss’s lemma, we have

α(g) = α(f)α(q) = α(q). (14.2)

By (14.1) and (14.2), we deduce that g(x) = f(x)q(x), which implies that f |g in Z[x].
(⇐) Since f |g in Z[x], there is a polynomial h(x) ∈ Z[x] such that g(x) =

f(x)h(x). Hence

g(x) = α(g)g(x) = α(g)f(x)h(x) = (α(g)α(f)−1h(x))︸ ︷︷ ︸
is in Q[x]

f(x),
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which implies that f(x)|g(x) in Q[x].
(3) Since f(x) = α(f)f(x) and α(f) ∈ Q[x]×, f(x) is irreducible in Q[x] if

and only if f(x) is irreducible in Q[x]. By part (1) we can assume that deg f ≥ 1.
By Corollary 11.3.2, we have that f(x) is irreducible in Q[x] precisely when it is
irreducible in Z[x]. This finishes the proof.

(4) (⇒) Suppose f |h1(x)h2(x) for some h1, h2 ∈ Z[x]. This means that there
is q(x) ∈ Z[x] such that h1(x)h2(x) = f(x)q(x) = (α(f)−1q(x))f(x). Hence
f(x)|h1(x)h2(x) in Q[x]. Since f is prime in Q[x], we deduce that either f(x)|h1(x)
in Q[x] or f(x)|h2(x) in Q[x]. By part (2), we have that either f |h1 in Z[x] or f |h2 in
Z[x]. Notice that hi|hi in Z[x]. Altogether we obtain that either f |h1 in Z[x] or f |h2.
This means that f is prime in Z[x].

(⇐) Suppose f |g1g2 for some g1, g2 ∈ Q[x]. By part (2), we deduce that f divides
the primitive form of g1g2 in Z[x]. By Gauss’s lemma, we have that the primitive form
of g1g2 is the product of the primitive forms of g1 and g2. Hence f |g1g2 in Z[x]. Since
f is prime in Z[x], either f |g1 in Z[x] or f |g2 in Z[x]. Another application of part
(2) implies that either f |g1 in Q[x] or f |g2 in Q[x]. This means that f is prime in
Q[x].

Proof of Theorem 14.1.1. Existence part. Suppose f(x) ∈ Z[x] is a non-zero non-
unit polynomial. We have to show that we can write f(x) as a product of irreducible
elements. If f(x) is a constant function, then f(x) = a ∈ Z. As Z is a UFD, a can
be written as a product of irreducible elements of Z. By Lemma 14.1.2, irreducible
elements of Z are also irreducible in Z[x]. Hence f(x) can be written as a product of
irreducible elements of Z[x].

Next we assume that f(x) is not a constant polynomial and consider its primitive
form f(x). Hence f(x) = α(f)f(x), where α(f) is the content of f . Notice that
α(f) ∈ Z can be viewed as a constant polynomial, and so it can be written as a product
of irreducible elements of Z[x] (unless it is 1). Next we view f(x) as a non-constant
polynomial inQ[x]. SinceQ[x] is a UFD, f(x) can be written as a product of irreducible
elements of Q[x]. Say pi(x) ∈ Q[x] are irreducible and f(x) =

∏n
i=1 pi(x). Suppose

pi(x) is the primitive form of pi(x). By Theorem 11.3.1, we have

f(x) =

n∏
i=1

pi(x). (14.3)

By Proposition 14.1.3, part (3), we have that pi’s are irreducible in Z[x].
Altogether we end up getting a factorization of f(x) into irreducible elements of

Z[x].
Uniqueness part. By Proposition 13.1.2, it is sufficient to show that every irre-

ducible element of Z[x] is prime. Suppose f(x) ∈ Z[x] is irreducible. The decom-
position f(x) = α(f)f(x) implies that either f(x) is a constant polynomial or it is
primitive and f(x) = f(x).

Case 1. f(x) = a is constant.
By Lemma 14.1.2, part (1), a is irreducible in Z. Since Z is a UFD, a is prime in Z.

Hence by Lemma 14.1.2, part (2), f(x) = a is prime in Z[x].
Case 2. f(x) = f(x) is primitive.
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Since f(x) is irreducible in Z[x], by Proposition 14.1.3 part (3), f(x) is irreducible
in Q[x]. Since Q[x] is a UFD and f(x) is irreducible in Q[x], f(x) is prime in Q[x].
By Proposition 14.1.3 part (4), f is prime in Z[x]. This means f(x) = f(x) is prime
in Z[x], which finishes the proof.

Theorem 14.1.1 is a special case of the following theorem:

Theorem 14.1.4. Suppose D is a UFD. Then D[x] is a UFD.

Going through the main ingredients of the above proof, we notice that we have to
use the field of fractions F := Q(D) of D. As F [x] is a PID, we know that it is a UFD.
So if we manage to define a primitive form of a non-zero polynomial Q(D)[x] with
properties as in Proposition 14.1.3, we can go through the above proof and show that
Theorem 14.1.4 holds.

To define a primitive form of polynomials inQ(D)[x], following the case of integer
polynomials, we need to define the greatest common divisor of finitely many elements
of a UFD D.

Proposition 14.1.5. SupposeD is a UFD. Then for non-zero elements a1, . . . , an there
is d ∈ D with the following properties:

1. d|a1, . . . , d|an.

2. If d′|a1, . . . , d′|an, then d′|d.

If d1 and d2 satisfy the above properties, then d1 = ud2 for some u ∈ D×.
An element d ∈ D which satisfies the above properties is called a greatest common

divisor of a1, . . . , an.



Chapter 15

Lecture 15

In the previous lecture we proved that Z[x] is a UFD, and mentioned that in general
D[x] is a UFD if D is a UFD. We pointed out the missing ingredient in proving this
general statement is a generalization of Gauss’s lemma in the context of UFDs. In order
to formulate this general form, we need to know what greatest common divisor mean in
a UFD.

15.1 Valuations and greatest common divisors in a UFD

We prove the following result and use it to define a greatest common divisor of
finitely many elements of a UFD.

Proposition 15.1.1. SupposeD is a UFD. Then for non-zero elements a1, . . . , an there
is d ∈ D with the following properties:

1. d|a1, . . . , d|an.

2. If d′|a1, . . . , d′|an, then d′|d.

If d1 and d2 satisfy the above properties, then d1 = ud2 for some u ∈ D×.
An element d ∈ D which satisfies the above properties is called a greatest common

divisor of a1, . . . , an.

We start by recalling that in a UFD every non-zero non-unit element can be written
as a product of irreducible factors and these irreducible factors are unique up to a
multiplication by a unit. In order to avoid the need for multiplication by a unit, we fix a
subset PD of irreducible elements of D with the following properties:

1. Every element of PD is irreducible.

2. For every irreducible element p of D, there is a unique element p ∈PD such
that p = up for some unit u.

Let’s recall that p = up for some unit u precisely when 〈p〉 = 〈p〉. We also notice that
in a UFD and element p is irreducible if and only if it is prime. The latter holds exactly

87
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when p is prime. An element p is prime if and only if 〈p〉 is a prime ideal. Altogether,
we obtain that there is a bijection between PD and the set of non-zero principal prime
ideals of D. Notice that there are many choices for such a set. Here we fix one such set
and many of the functions that will be defined later depend on this choice.

Since D is a UFD, for every a ∈ D \ {0}, there are unique ua ∈ D× and non-
negative integers np such that

a = ua
∏

p∈PD

pnp .

We use the following functions to refer these values. Let σ : D \ {0} → D× and
vp : D \ {0} → Z≥0 be such that for every a ∈ D \ {0} the following holds

a = σ(a)
∏

p∈PD

pvp(a).

This means vp(a) is the power of p in the factorization of a with respect to the prime
factors PD. Notice that every a ∈ D \ {0} has only finitely many irreducible factors.
This means only finitely many vp(a)’s are non-zero for p ∈PD. Therefore this product
has finitely many terms (the rest are 1).

To understand the function σ better, let’s go over the case of ring of integers. The
classical convention in the definition of a prime number is slightly different from the
way we have defined prime elements of Z. The subtle difference is that in the classical
setting a prime number must be positive, but in the modern language, say, −2 is also
considered a prime element of the ring of integers. In a sense the classical convention
factors integers with respect to

PZ = {p ∈ Z | p is a positive prime element of the ring Z}.

With this choice, σ(a) is precisely the sign of a; that means it is 1 when a is positive,
and it is −1 when a is negative. Because of this, even for an arbitrary UFD, we call
σ(a) the sign of a. Inspired with the case of D = Z, we let

|a| := σ(a)−1a =
∏

p∈PD

pvp(a).

For every a ∈ D \ {0}, vp(a) is called the p-valuation of a. Here are basic properties
of these functions.

Proposition 15.1.2. Suppose D is a UFD, a, b ∈ D \ {0}. Then

1. a) σ(ab) = σ(a)σ(b).
b) |ab| = |a||b|.
c) vp(ab) = vp(a) + vp(b) for every p ∈PD.

2. a|b if and only if vp(a) ≤ vp(b) for every p ∈PD.

3. There is u ∈ D× such that a = ub if and only if vp(a) = vp(b) for every
p ∈PD.
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Proof. (1) By the factorization of a and b with respect to PD, we have

a = σ(a)
∏

p∈PD

pvp(a), and b = σ(b)
∏

p∈PD

pvp(b). (15.1)

Multiplying equations given in (15.1), we deduce that

ab = (σ(a)σ(b))
∏

p∈PD

pvp(a)+vp(b).

Notice that since σ(a) and σ(b) are units, so is σ(a)σ(b). Hence by the uniqueness of
this factorization, we obtain that

σ(ab) = σ(a)σ(b) and vp(ab) = vp(a) + vp(b) (15.2)

for every p ∈PD. Hence

|ab| = σ(ab)−1(ab) = (σ(a)−1a)(σ(b)−1b) = |a||b|.

(2) (⇒) Suppose a|b. Then for d ∈ D, we have b = ad. Hence for every p ∈PD we
have

vp(b) = vp(ad) = vp(a) + vp(d) ≥ vp(a).

(⇐) We start with the prime factorizations of a and b (with respect to PD) a =
σ(a)

∏
p∈PD

pvp(a) and b = σ(b)
∏
p∈PD

pvp(b). We want to write b as a multiple of
a. This makes us to consider

d :=
∏

p∈PD

pvp(b)−vp(a),

and notice that d ∈ D as vp(b) ≥ vp(a) and vp(b) = vp(a) = 0 except for finitely
many p’s. Hence

b =σ(b)
∏

p∈PD

pvp(b)

=σ(b)
∏

p∈PD

pvp(b)−vp(a)
∏

p∈PD

pvp(a)

=(σ(b)dσ(a)−1)a.

This implies that a|b as σ(a) is a unit.
(3) By part (2) we have that vp(a) = vp(b) for every p ∈PD exactly when a|b and

b|a. By Lemma 13.2.1, we have that a|b and b|a holds if and only if a = bu for some
unit u. This completes the proof.

Next we extend these functions to the groupQ(D)× of units of the field of fractions
ofD. This is needed as we have to work with the ring of polynomialsQ(D)[x] in order
to show that D[x] is a UFD.

Proposition 15.1.3 (Basic properties of valuations and the sign function). Suppose D
is a UFD and Q(D) is the field of fractions of D. Then
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1. The following functions are well-defined group homomorphisms:

σ :Q(D)× → D×, σ
(a
b

)
:= σ(a)σ(b)−1.

vp :F× → Z, vp

(a
b

)
:= vp(a)− vp(b).

| · | :Q(D)× → Q(D)×,
∣∣∣a
b

∣∣∣ :=
|a|
|b|
.

2. ker | · | = D× and ||q|| = |q| for every q ∈ Q(D)×.

3. LetG(D) be the image of |·|. Thenm : D××G(D)→ Q(D)×, m(u, q) := uq
is a group isomorphism.

Proof. (1) Here we just check why these functions are well-defined. I leave to you to
check why these maps are group homomorphisms.

Suppose a
b = c

d for some a, b, c, d ∈ D \ {0}. Then ad = bc. Applying the
functions σ, vp and σ to the both sides of this equality, by Proposition ??, we obtain
that

σ(a)σ(d) = σ(b)σ(c), vp(a) + vp(d) = vp(b) + vp(c), and |a||d| = |b||c|

Therefore

σ(a)σ(b)−1 = σ(c)σ(d)−1, vp(a)− vp(b) = vp(c)− vp(d), and
|a|
|b|

=
|b|
|c|
.

This shows that the given functions are well-defined.
(2) ab is in the kernel of | · | if and only if |ab | = 1. By part (1), the latter holds exactly

when |a||b| = 1. This is equivalent to having |a| = |b|. By Proposition ??, |a| = |b| holds
if and only if a = bu for some unit u. Altogether we have that

a

b
∈ ker | · | ⇔ a

b
=
u

1

for some u ∈ D×. Hence ker | · | = D×.
The other claim of Part (2) follows from the definition of | · |.
(3) Since Q(D)× is abelian, m is a group homomorphism. For every q ∈ Q(D)×,

we have
q = σ(q)|q| = m(σ(q), |q|)

which implies that m is surjective.
Now suppose (u, q) ∈ kerm. Then q = u−1 ∈ D× ∩G(D). Then by Part (2), we

have q = |q| = |u−1| = 1. This means that kerm is trivial, and so m is injective. This
finishes the proof.
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15.2 Greatest common divisor for UFDs

Using valuations, we can study common divisors of a finite set of non-zero elements
of a UFD and prove Proposition 15.1.1.

Proof of Proposition 15.1.1. Suppose a1, . . . , an are non-zero elements of a UFD D.
By Proposition ??, b ∈ D\{0} is a common divisor of ai’s exactly when vp(b) ≤ vp(ai)
for every index i and every p ∈PD. Hence we have

b|a1, . . . , b|an ⇔ vp(b) ≤ min{vp(a1), . . . , vp(an)} for every p ∈PD. (15.3)

Notice that min{vp(a1), . . . , vp(an)} = 0 except for finitely many p’s, and so

d :=
∏

p∈PD

pmin{vp(a1),...,vp(an)}

is an element of G(D) ∩D. By (15.3), we deduce that

b|a1, . . . , b|an ⇔ b|d.

This shows the existence part of Proposition 15.1.1.
Now suppose d1 and d2 satisfy the mentioned properties in Proposition 15.1.1. This

means di’s are common divisors of a1, . . . , an, and every common divisor of a1, . . . , an
is a divisor of di’s. Therefore d1|d2 and d2|d1. Hence by Lemma 13.2.1, there is a unit
u such that d2 = ud1. As di’s are inG(D), we obtain thatm(1, d2) = m(u, d1) where
m is the group isomorphism given in Part (3) of Proposition 15.1.2. Thus d1 = d2.
This completes the proof.

The greatest common divisor of a1, . . . , an ∈ D \ {0} is the unique d ∈ G(D)
which is given by Proposition 15.1.1, and from the proof it is clear that

gcd(a1, . . . , an) :=
∏

p∈PD

pmin(vp(a1),...,vp(an)). (15.4)

Notice that gcd depends on the choice of PD, but its value up to a multiplication by
a unit is independent of the choice of PD. Now it is easy to get the following basic
properties of the gcd function, and we leave it as an exercise.

Proposition 15.2.1. In the above setting, suppose a1, . . . , an ∈ D \ {0}. Then

1. For every c ∈ D \ {0}, gcd(ca1, . . . , can) = |c| gcd(a1, . . . , an).

2. If gcd(a1, . . . , an) = d, then ai
d ∈ D and gcd(a1d , . . . ,

an
d ) = 1.

15.3 Content of polynomials: UFD case

Now we are ready to define the content of f(x) ∈ D[x] where D is a UFD.



92 CHAPTER 15. LECTURE 15

Definition 15.3.1. Suppose D is a UFD and f(x) := anx
n + · · ·+ a1x+ a0 ∈ D[x]

is a non-zero polynomial. The content of f is

α(f) := gcd(an, an−1, . . . , a0),

where gcd is defined as in (15.4). We say f(x) ∈ D[x] is primitive if α(f) = 1.

By Proposition 15.2.1, we deduce the following properties of the content function.

Lemma 15.3.2. Suppose D is a UFD, f, g ∈ D[x] are non-zero polynomials, and
a ∈ D \ {0}. Then

1. α(af) = |a|α(f).

2. If α(f) = d, then 1
df(x) ∈ D[x] and α( 1

df(x)) = 1.

3. For d ∈ D\{0}, d|α(f) if and only if cd(f) = 0 where cd : D[x]→ (D/〈d〉)[x]
is the natural quotient map.

By Part (2) of Lemma 15.3.2, every f(x) ∈ D[x] \ {0} can be written as α(f)f(x)
and f(x) is a primitive polynomial.

Next we define the content of a non-zero polynomial f(x) ∈ Q(D)[x] where Q(D)
is the field of fractions of D.

Lemma 15.3.3. Suppose D is a UFD and Q(D) is the field of fractions D. Then for
every non-zero polynomial f ∈ Q(D)[x] there are unique q ∈ G(D) and primitive
polynomial f ∈ D[x] such that f(x) = qf(x).

Proof. (Existence) Suppose f(x) =
∑n
i=0

ai
bi
xi for some ai, bi ∈ D. Let d :=∏n

i=0 |bi|. Then f̃(x) := d f(x) ∈ D[x]. Then by Lemma 15.3.2, f̃(x) = α(f̃)f(x)
and f(x) is primitive. Hence we have that

f(x) =
1

d
f̃(x) =

α(f̃)

d
f(x).

Notice that since α(f̃) and d are in the image of | · |, α(f̃)d ∈ G(D). This shows the
existence part.

(Uniqueness) Suppose q1, q2 ∈ G(D), f1, f2 ∈ D[x] are primitive polynomials,
and q1f1(x) = q2f2(x). Suppose qi := ci

di
for i = 1, 2. Let d := |d1||d2|; then

dqi ∈ D. Hence (dq1)f1(x) = (dq2)f2(x), which implies that

α((dq1)f1(x)) = α((dq2)f2(x)).

Therefore by Part (1) of Lemma 15.3.2, we have |dq1| = |dq2|. Since d, qi ∈ G(D), by
Part (2) of Proposition 15.1.2 we have that |dqi| = dqi. Thus dq1 = dq2, which implies
that q1 = q2. This in turn gives us that f1 = f2, and the uniqueness follows.

The unique element q ∈ G(D) given in Lemma 15.3.3 is called the content of f(x)
and it is denoted by α(f), and the primitive polynomial f(x) given in Lemma 15.3.3 is
called the primitive form of f(x).
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15.4 Gauss’s lemma for UFDs.

Having the definition of the content of a polynomial in Q(D)[x], we can formulate
and prove Gauss’s lemma for UFDs.

Lemma 15.4.1. Suppose D is a UFD, and f, g ∈ D[x] are primitive. Then fg is
primitive.

Proof. Suppose to the contrary that fg is not primitive. Then there is p ∈PD which
divides α(fg). This means all the coefficients of fg are in 〈p〉. Therefore cp(fg) = 0
where cp : D[x] → (D/〈p〉)[x] is the natural quotient map. Notice that since D is
a UFD and p is irreducible, p is a prime element of D. Hence 〈p〉 is a prime ideal.
This implies that D/〈p〉 is an integral domain. Thus (D/〈p〉)[x] is also an integral
domain. Knowing that cp(f)cp(g) = 0 and (D/〈p〉)[x] is an integral domain, we
obtain that either cp(f) = 0 or cp(g) = 0. This means either p|α(f) or p|α(g), which
is a contradiction as α(f) = α(g) = 1.

Lemma 15.4.2. Suppose D is a UFD. Then for every f, g ∈ Q(D)[x] \ {0} we have
α(fg) = α(f)α(g).

Proof. By the definition of the content, we have

f(x) = α(f)f(x) and g(x) = α(g)g(x) (15.5)

and f(x) and g(x) are primitive polynomials. By (15.5), we obtain that

f(x)g(x) = (α(f)α(g))f(x)g(x). (15.6)

By the first version of Gauss’s lemma for UFDs, we have that f(x)g(x) is primitive.
Sinceα(f), α(g) ∈ G(D), we haveα(f)α(g) ∈ G(D). By (15.6),α(f)α(g) ∈ G(D),
f(x)g(x) being a primitive polynomial, and the definition of content of a polynomial,
we have that α(fg) = α(f)α(g). This completes the proof.

The following is an immediate consequence of the second version of Gauss’s lemma
for UFDs.

Corollary 15.4.3. Let prim : Q(D)[x] \ {0} → D[x] \ {0},prim(f) be the primitive
form of f . Then

prim(fg) = prim(f) prim(g)

for every f, g ∈ Q(D)[x] \ {0}.

Proof. We have f = α(f) prim(f), g = α(g) prim(g), and fg = α(fg) prim(fg).
Hence by the second version of Gauss’s lemma for UFDs, we obtain that

prim(fg) = prim(f) prim(g).

This completes the proof.
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Now we have all the needed tools to redo the proof of why Z[x] is a UFD and obtain
its generalization. I leave it to you to go over the proof and make sure all the arguments
go through to prove the following theorem.

Theorem 15.4.4. If D is a UFD, then D[x] is a UFD.

By induction, one can easily show the following.

Corollary 15.4.5. If D is a UFD, then D[x1, . . . , xn] is a UFD.

In particular, we have that Z[x1, . . . , xn] and F [x1, . . . , xn] where F is a field, are
UFDs.



Chapter 16

Lecture 16

We have used the central problem of understanding zeros of polynomials as our
point of reference in exploring algebra. So far we have worked under the assumption
that we are given a field extension E of F that contains a zero α of f(x) ∈ F [x] and
among other things proved:

1. There is a unique polynomial mα,F (x) ∈ F [x] with the following properties:

a) α is a zero of g(x) ∈ F [x] if and only if mα,F (x)|g(x).
b) p(x) = mα,F (x) if and only if p(x) is a monic irreducible element of F [x]

and p(α) = 0.

2. F [α] ' F [x]/〈mα,F (x)〉.

3. F [α] is a field.

4. Every element of F [α] can be uniquely written as an F -linear combination of
1, α, . . . , αn−1 where n := degmα,F (x).

Next we want to answer the following questions:

1. For f(x) ∈ F [x], can we find a field extension E of F that contains a zero of f?
Is there a field extension that contains all the zeros of f?

2. Do we have a canonical choice for such a field extension? Can we talk about the
smallest field extension that contains all the zeros of f?

16.1 Existence of a splitting field.

In this section we prove that every polynomial f(x) ∈ F [x] can be decomposed to
linear factors over a field extension.

Proposition 16.1.1. SupposeF is a field and f(x) ∈ F [x] is a non-constant polynomial.
Then there are a field extension E of F and α1, . . . , αn such that

95
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1. f(x) = a(x− α1) · · · (x− αn), where a = ld(f) is the leading coefficient of f ,
and

2. E = F [α1, . . . , αn].

Here F [α1, . . . , αn] is the subring of E that is generated by F and αi’s. By adding
αi’s one-by-one, we see that

F [α1, . . . , αn] = (F [α1, . . . , αn−1])[αn],

and so

F [α1, . . . , αn] =
{∑

i

ciα
i1
1 · · ·αinn | ci ∈ F, i = (i1, . . . , in)

}
.

A field extension E of F which satisfies the properties of Proposition 16.1.1 is called a
splitting field of f(x) over F .

To prove this result, we start with finding a single linear factor in a field extension
when f is irreducible.

Lemma 16.1.2. Suppose F is a field and f(x) ∈ F [x] is an irreducible polynomial.
Then there are a field extension E of F and α ∈ E such that f(α) = 0 and E = F [α].

To find such a field extension, we make a backward argument. If E = F [α], then
we have that

θ : F [x]/〈mα,F (x)〉 → E, θ(g(x) + 〈mα,F (x)〉) := g(α)

is an isomorphism. Notice that since f(α) = 0, mα,F (x)|f(x). As f(x) is irreducible
in F [x] and mα,F (x)|f(x), there is c ∈ F× such that f(x) = cmα,F (x). This implies
that 〈mα,F (x)〉 = 〈f(x)〉. Hence there is an isomorphism from F [x]/〈f(x)〉 to E
which sends x+ 〈f(x)〉 to α. This shows us what we should choose for E and α.

Proof. Let E := F [x]/〈f〉. Since F is a field, F [x] is a PID. As F [x] is a PID and
f ∈ F [x] is irreducible, 〈f〉 is a maximal ideal of F [x]. Therefore F [x]/〈f〉 is a field.

Next we show thatE is a field extension ofF . Let I := 〈f〉, and i : F → E, i(c) :=
c + I . It is easy to see that i is a ring homomorphism which sends 1F to 1E . Thus
ker i is a proper ideal of F . Since 0 is the only proper ideal of a field, we obtain that
ker i = 0. This implies that i is injective. Hence E is a field extension of F .

Now we show that α := x+ I ∈ E is a zero of f . In order to evaluate f at α, we
have to view the coefficients of F as elements of E. This means we have to work with
the copy of F in E. Suppose

f(x) = anx
n + · · ·+ a0.

Then

f(α) =i(an)αn + · · ·+ i(a0)

=(an + I)(x+ I)n + · · ·+ (a0 + I)

=(anx
n + · · ·+ a0) + I

=f(x) + I = 0 + I.
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The last equality holds because f(x) ∈ I . Notice that 0 + I is the zero of E. Hence
f(α) = 0.

Finally every element of E is of the form

( m∑
j=0

bjx
j
)

+ I =

m∑
j=0

i(bj)α
j ∈ F [α].

Hence E = F [α]. This completes the proof.

Proof of Proposition 16.1.1. We proceed by the strong induction on deg f . We start
with the base of induction. Suppose deg f = 1. Then f(x) = ax+ b = a(x+ b/a).
Then α := −b/a ∈ F is a zero of f(x). ThenE := F and α ∈ E satisfy the properties
mentioned in the statement of Proposition 16.1.1. This completes the proof of the base
case.

To prove the strong induction step, we consider two cases.
Case 1. f is not irreducible in F [x].
In this case, there are non-constant g, h ∈ F [x] such that f(x) = g(x)h(x). So

deg g,deg h < deg f . By the strong induction hypothesis, there are a field extension
E1 of F and α1, . . . , αm ∈ E1 such that

g(x) = b(x− α1) · · · (x− αm) (16.1)

where b = ld(g) and
E1 = F [α1, . . . , αm]. (16.2)

Another application of the strong induction hypothesis implies that there are a field
extension E of E1 and β1, . . . , βk ∈ E such that

h(x) = c(x− β1) · · · (x− βk) (16.3)

where c = ld(h) and
E = E1[β1, . . . , βk]. (16.4)

Altogether we obtain that

f(x) = g(x)h(x) = (bc)(x− α1) · · · (x− αm)(x− β1) · · · (x− βk),

and
E = (F [α1, . . . , αm])[β1, . . . , βk] = F [α1, . . . , αm, β1, . . . , βk].

And the claim follows in this case.
Case 2. f(x) ∈ F [x] is irreducible.
In this case, by Lemma 16.1.2, there are a field extension E1 of F and α ∈ E1 such

that
f(α) = 0 and E1 = F [α].

By the factor theorem, there is g(x) ∈ E1[x] such that

f(x) = (x− α)g(x).
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Notice that deg g < deg f , and so by the strong induction hypothesis, there are a field
extension E of E1 and α1, . . . , αn ∈ E such that

g(x) = b(x− α1) · · · (x− αn) (16.5)

where b = ld(g) and
E1 = F [α1, . . . , αn]. (16.6)

Altogether we have that

f(x) = (x− α)g(x) = b(x− α)(a− α1) · · · (x− αn),

and
E = (F [α])[α1, . . . , αn] = F [α, α1, . . . , αn].

This completes the proof.

16.2 Towards uniqueness of a splitting field.

In this section among other things we show that two splitting fields of f(x) over F
are isomorphic. The results of this section play an important role in Galois theory.

Similar to the proof of the existence part, we start with adding one zero of an
irreducible factor. We formulate a result which is essentially proved in the discussion
prior to the proof of Lemma 16.1.2.

Lemma 16.2.1. Suppose F is a field and f(x) ∈ F [x] is irreducible. Assume E is a
field extension of E and α ∈ E such that

f(α) = 0 and E = F [α].

Then
φα : F [x]/〈f〉 → E, φα(g(x) + 〈f〉) := g(α)

is an isomorphism.

Proof. we have that

φα : F [x]/〈mα,F (x)〉 → E, φα(g(x) + 〈mα,F (x)〉) := g(α) (16.7)

is an isomorphism. Notice that since f(α) = 0, mα,F (x)|f(x). As f(x) is irreducible
in F [x] and mα,F (x)|f(x), there is c ∈ F× such that f(x) = cmα,F (x). This implies
that 〈mα,F (x)〉 = 〈f(x)〉. Therefore the claim follows form (16.7).

Lemma 16.2.1 can be viewed as a type of uniqueness result for such a field. In the
next lemma, we strengthen this uniqueness result in a way which makes it more suitable
for a later use in an inductive argument.

Roughly the next lemma says that if we have two copies of a field, let’s call them F1

and F2, and an irreducible polynomial f1 ∈ F1[x], then the copy of f1 in F2[x], let’s
call it f2, is irreducible, and after adding a zero α1 of f1 to F1 and adding a zero α2 of
f2 to F2, we end up getting isomorphic fields.
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Lemma 16.2.2. Suppose F and F ′ are fields and θ : F → F ′ is an isomorphism. Let
f(x) ∈ F [x] be an irreducible polynomial. Suppose E is a field extension of F , α ∈ E,
E′ is a field extension of F ′, and α′ ∈ E satisfy the following properties:

1. f(α) = 0 and E = F [α].

2. θ(f)(α′) = 0 and E′ = F ′[α′].

Then there is a unique isomorphism θ̂ : E → E′ such that for every a ∈ F , θ̂(a) = θ(a)

and θ̂(α) = α′.

Notice that the ring isomorphism θ : F → F ′ can be extended to a ring isomorphism
from F [x] to F ′[x] that is also denoted by θ:

θ
( n∑
i=0

aix
i
)

:=

n∑
i=0

θ(ai)x
i.

Roughly for f ∈ F [x], θ(f) is the copy of f in F ′[x].
The conclusion of Lemma 16.2.2 is often captured in the following diagram as it is

often better to see what we can prove. We say the following is a commutative diagram:

E E′

F F ′

θ̂

θ

This means all directed paths in the diagram with the same start and endpoints lead to
the same result.

Our proof can be summarized in the following diagram:

E F [x]/〈f〉 F ′[x]/〈θ(f)〉 E′

F F F ′ F ′

φα
−1

θ̂

θ

φα′

θ

θ

(16.8)

Going though the above diagram, we give the details of the proof.

Proof of Lemma 16.2.2. Lemma 16.2.1 gives us the first block in the diagram in (16.8).
To understand the second block, we start with a ring homomorphism from the numerator
of the left hand side to the right hand side. Let

θ̃ : F [x]→ F ′[x]/〈θ(f)〉, θ̃(g) := θ(g) + 〈θ(f)〉.
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Notice that θ̃ is the composite of θ with the quotient map

p : F ′[x]→ F ′[x]/〈θ(f)〉,

and so θ̃ is a surjective ring homomorphism. By the first ring isomorphism we have
that

θ : F [x]/ ker θ̃ → F ′[x]/〈θ(f)〉, θ(g + ker θ̃) := θ(g) + 〈θ(f)〉 (16.9)

is a ring isomorphism. We also have that g ∈ ker θ̃ if and only if

θ(g) ∈ 〈θ(f)〉 = θ(〈f〉),

and the latter holds precisely when g ∈ 〈f〉. This implies that ker θ̃ = 〈f〉. Hence by
(16.9), we have that θ is an isomorphism from F [x]/〈f〉 to F ′[x]/〈θ(f)〉. This gives
us the middle block in the diagram given in (16.8). We also notice that since θ is an
isomorphism and f ∈ F [x] is irreducible, θ(f) is irreducible in F ′[x]. As α′ ∈ E′
is a zero of θ(f), another application of Lemma 16.2.1 gives us the last block in the
diagram given in (16.8). The composite of the ring isomorphisms in the first row give
us an isomorphism θ̂ : E → E′ and because the diagram in (16.8) is a commutative
diagram, the claim follows.

Lemma 16.2.2 will be used to show that splitting fields of f(x) ∈ F [x] are isomor-
phic.



Chapter 17

Lecture 17

In the previous lecture we proved the existence of a splitting field (see Proposi-
tion 16.1.1), and to work towards the uniqueness of splitting fields, we proved that
adding zeros of an irreducible polynomial and its twin in another copy of the base field
give us isomorphic fields (see Lemma 16.2.1).

From Lemma 16.2.1, we immediately obtain that adding two zeros of an irreducible
polynomial to the base field give us two isomorphic fields.

Corollary 17.0.1. Suppose F is a field and f(x) ∈ F [x] is irreducible. Suppose E
and E′ are field extensions of F , α ∈ E and α′ ∈ E′ are zeros of f(x). Then there is
a ring isomorphism θ̂ : F [α]→ F ′[α′] such that

θ̂(g(α)) := g(α′)

for every g(x) ∈ F [x].

Proof. By Lemma 16.2.2, there is a ring isomorphism θ̂ : F [α] → F [α′] such that
θ̂(c) = c for every c ∈ F , and θ(α) = α′. Then, for every g(x) =

∑n
i=0 cix

i ∈ F [x]
we have

θ̂(g(α)) = θ̂(

n∑
i=0

ciα
i) =

n∑
i=0

θ̂(ci)θ̂(α)i =

n∑
i=0

ciα
′i = g(α′).

This completes the proof.

Exercise 17.0.2. Suppose E is a field extension of F and α, α′ ∈ E are algebraic
over F . Suppose g(α) 7→ g(α′) for every g(x) ∈ F [x] is a well-defined map. Then
mα,F (x) = mα′,F (x), and so they are zeros of a single irreducible polynomial in
F [x].

17.1 Extension of isomorphisms to splitting fields.

Now we are ready to prove the uniqueness of splitting fields. The following theorem
plays an important role in Galois theory and understanding symmetries of splitting
fields.
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Theorem 17.1.1. Suppose F and F ′ are fields, and θ : F → F ′ is a ring isomorphism.
Let f(x) ∈ F [x] \ F . Suppose E is a splitting field of f over F , and E′ is a splitting
field of θ(f) over F ′. Then θ can be extended to an isomorphism θ̂ : E → E′. This
means that for every c ∈ F , we have θ̂(c) = θ(c).

The conclusion of Theorem 17.1.1 can be captured in the following commutative
diagram.

E E′

F F ′

θ̂

θ

A dashed arrow means that this function was not initially given, and having other
functions, we can find this one in a way that results in obtaining a commutative diagram,
and a hooked arrow means that it is a natural inclusion map.

Proof. We proceed by induction on deg f . If deg f = 1, then f has a zero in F , and
θ(f) has a zero in F ′. Therefore E = F and E′ = F ′. Hence we can choose θ̂ = θ.

To prove the induction step, we start by recalling what it means that E and E′ are
splitting fields. Since E is a splitting field of f over F , there are α1, . . . , αn ∈ E such
that

E = F [α1, . . . , αn] and f(x) = a(x− α1) · · · (x− αn), (17.1)

where a = ld(f). Similarly we have that there are α′1, . . . , α′n ∈ E′ such that

E′ = F ′[α′1, . . . , α
′
n] and θ(f(x)) = a′(x− α′1) · · · (x− α′n), (17.2)

where a′ = ld(θ(f)). Since α1 is a zero of f , we have that mα1,F is an irreducible
factor of f in F [x]. Therefore θ(mα1,F ) is an irreducible factor of θ(f) in F ′[x]. Since
x− α′i’s are irreducible factors of θ(f) in E′[x], θ(mα1,F ) divides θ(f) in E′[x] and
E′[x] is a UFD, we deduce that

θ(mα1,F ) = (x− α′i1) · · · (x− α′ik) (17.3)

for some i1, . . . , ik. After the rearranging the indexes, if needed, we can and will
assume that x− α′1 is a factor of θ(mα1,F ) which means α′1 is a zero of θ(mα1,F ).

Sincemα1,F is irreducible in F [x] and α′1 is a zero of θ(mα1,F ), by Lemma 16.2.2
there is ring isomorphism θ̂1 : F [α1]→ F ′[α′1] which is an extension of θ (this means
the diagram in (17.4) is a commutative diagram), and θ̂1(α1) = α′1.

F [α1] F ′[α′1]

F F ′

θ̂1

θ

(17.4)

Notice that by the factor theorem, there is g ∈ (F [α1])[x] such that

f(x) = (x− α1)g(x). (17.5)
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By (17.5) and (17.1), we deduce that

g(x) = a(x− α2) · · · (x− αn). (17.6)

Applying θ̂1 to the both sides of (17.5), we obtain that

θ̂1(f) = (x− θ̂1(α1))θ̂1(g). (17.7)

Since θ̂1(α1) = α′1, by (17.2), it follows that

θ̂1(g) = a′(x− α′2) · · · (x− α′n). (17.8)

By (17.6), after adding zeros of g to F [α1]

(F [α1])[α2, . . . , αn] = F [α1, . . . , αn]

we getE. HenceE is a splitting field of g over F [α1]. Similarly, by (17.8), after adding
zeros of θ̂1(g) to F ′[α′1] we getE′. ThereforeE′ is a splitting field of θ̂1(g) over F ′[α′1].
Since deg g < deg f , we can and will apply the induction hypothesis. By the induction
hypothesis, we obtain a ring isomorphism θ̂ : E → E′ which is an extension of θ̂1 (see
the commutative diagram given in (17.9)).

E E′

F [α1] F ′[α′1]

θ̂

θ̂1

(17.9)

By (17.4) and (17.9) (see the diagram in (17.10)),

E E′

F [α1] F ′[α′1]

F F ′

θ̂

θ̂1

θ

(17.10)

we deduce that θ̂ is an extension of θ, which completes the proof.

The idea of the above proof is easy:

1. Find an irreducible factor of f in F [x], say h(x).

2. Add a zero of h to F and a zero of θ(h) to F ′, and find θ̂1 : F [α1]→ F ′[α′1].

3. View E as a splitting field of g and E′ as a splitting field of θ̂1(g). Use induction
hypothesis.
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Based on Theorem 17.1.1, we can prove the uniqueness of splitting fields up to an
isomorphism.

Theorem 17.1.2. Suppose F is a field, f(x) ∈ F [x] \ F , and E,E′ are splitting fields
of f(x) over F . Then there is a ring isomorphism θ̂ : E → E′ such that θ̂|F = idF ;
that means for every c ∈ F we have that θ̂(c) = c.

Proof. Notice that idF : F → F is an isomorphism, and so by Theorem 17.1.1, there
is a ring isomorphism θ̂ : E → E′ which is an extension of idF . This completes the
proof.

17.2 Two examples

In general giving a precise description of a splitting field of a polynomial is a very
hard task. In this section, we learn two examples where to some extend we can describe
a splitting of the given polynomial.

Example 17.2.1. Let ζn := e2πi/n. Then Q[ζn] is a splitting field of xn − 1 over Q.

Proof. Notice that the multiplicative order of ζn is n. Hence (ζjn)n = 1 for every
integer j in [0, n), and 1, ζn, . . . , ζ

n−1
n are distinct. Therefore these are distinct zeros

of xn − 1. Thus by the generalized factor theorem, comparing the degrees and the
leading coefficients, we obtain that

xn − 1 = (x− 1)(x− ζn) · · · (x− ζn−1n ).

Hence E := Q[1, ζn, . . . , ζ
n−1
n ] is a splitting field of xn − 1 over Q. Notice that

Q[ζn] ⊆ E. Since ζjn ∈ Q[ζn] for every integer j, we have that E ⊆ Q[ζn]. The claim
follows.

Example 17.2.2. Let ζn := e2πi/n. Then Q[ζn,
n
√

2] is a splitting field of xn − 2 over
Q.

Proof. Notice that (ζjn
n
√

2)n = 2 for every integer j. Hence n
√

2, ζn
n
√

2, . . . , ζn−1n
n
√

2
are distinct zeros of xn − 2. Therefore by the generalized factor theorem, comparing
degrees and leading coefficients, we obtain that

xn − 2 = (x− n
√

2)(x− ζn n
√

2) · · · (x− ζn n
√

2
n−1

).

Therefore E := Q[ n
√

2, ζn
n
√

2, . . . , ζn−1n
n
√

2] is a splitting field of xn − 2 over Q.
Notice that ζn := (ζn

n
√

2)( n
√

2)−1 ∈ E. Hence Q[ n
√

2, ζn] ⊆ E. We also have that
ζjn

n
√

2 ∈ Q[ζn,
n
√

2] for every integer j. This implies that E ⊆ Q[ n
√

2, ζn], and the
claim follows.

Next we use splitting fields to study finite fields.



Chapter 18

Lecture 18

In the previous couple of lectures we proved the following results about splitting
fields.

Theorem (Existence (See Proposition 16.1.1)). Suppose F is a field and f ∈ F [x] \F .
Then there is a s splitting field E of f over F .

Let’s recall that E is called a splitting field of f over F if there are α1, . . . , αn ∈ E
such that f(x) = a(x− α1) · · · (x− αn), for some a ∈ F , and E = F [α1, . . . , αn].

Theorem (Uniqueness (See Theorem 17.1.2)). Suppose F is a field and f ∈ F [x] \ F ,
E,E′ are splitting fields of f over F . Then there is θ̂ : E → E′ such that for every
c ∈ F , θ̂(c) = c.

For field extensions E and E′ of F , we say a ring isomorphism θ̂ : E → E′ is an
F -isomorphism if θ̂(c) = c for every c ∈ F .

The Uniqueness result was proved using the following isomorphism extension
theorem.

Theorem (Isomorphism extension (See Theorem 17.1.1)). Suppose F and F ′ are fields,
θ : F → F ′ is an isomorphism, and f(x) ∈ F [x] \ F . Suppose E is a splitting field
of f over F , and E′ is a splitting field of θ(f) over F ′. Then there is an isomorphism
θ̂ : E → E′ which is an extension of θ.

Prove of Isomorphism Extension Theorem is based on the following result on
sending a zero of an irreducible polynomial to another zero.

Theorem (Sending a zero to another (See Lemma 16.2.2)). Suppose F and F ′ are
fields, f is irreducible in F [x]. Suppose E is a field extension of which contains a zero
α of f , and E′ is a field extension of F ′ which contains a zero of θ(f). Then there is
θ̂ : F [α]→ F ′[α′] which is an extension of θ and θ̂(α) = α′.

Now we use these results to study finite fields.
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18.1 Finite fields: uniqueness

Suppose F is a finite field. Then its characteristic is a prime number p.

Lemma 18.1.1 (Order of a finite field). Suppose F is a finite of characteristic p. Then
|F | = pn for some positive integer n.

Proof. Since F is a finite integral domain, p is prime. Suppose ` is a prime factor of
|F |. Then by Cauchy’s theorem from group theory, there is a ∈ F such that the additive
order of a is `. Since char(F ) = p, pa = 0. This implies that the additive order ` of a
divides p. As ` and p primes, we deduce that ` = p. Hence the only prime factor of
|F | is p, which implies that |F | is a power of p. This completes the proof.

We have seen that xp − x =
∏
a∈Zp(x− a). Next we generalize this to any finite

field. We start with the following lemma, which can be viewed as a generalization of
Fermat’s little theorem.

Lemma 18.1.2. Suppose F is a finite field of order q. Then aq = a for every a ∈ F .

Proof. If a = 0, then clearly we have that aq = a. If a 6= 0, then a is a unit. Hence
a|F

×| = 1 as we know that in every (multiplicative) group G we have g|G| = e. Since
F is a field, we have |F×| = |F | − 1 = q− 1. Therefore aq−1 = 1, which implies that
aq = a. This completes the proof.

Theorem 18.1.3. Suppose F is finite field of order q. Then

xq − x =
∏
α∈F

(x− α)

in F [x].

Proof. By Lemma 18.1.2, every α ∈ F is a zero of xq − x. Hence by the generalized
factor theorem, there is g(x) ∈ F [x] such that

xq − x = g(x)
∏
α∈F

(x− α). (18.1)

Comparing the degrees of both sides, we deduce that g is a non-zero constant. Sub-
sequently comparing the leading coefficients of both sides of (18.1), we obtain that
g = 1. The claim follows.

Theorem 18.1.4 (Uniqueness). Suppose F is a finite field of order q = pn where p is a
prime number. Then F is a splitting field of xq − x over Zp. In particular, if F and F ′
are two fields of order q, then they are isomorphic.

Proof. By Lemma 18.1.1, we obtain that the characteristic of F is p. Hence Zp can be
viewed as a subfield of F . By Theorem 18.1.3, we have that xq − x can be factored as
a product of degree one polynomials over F , and adding zeros of xq − x to Zp, we get
the entire F . Hence F is a splitting field of xq − x over Zp.

If F and F ′ are fields of order q, then both of them are splitting fields of xq − x
over Zp. Hence by Theorem 17.1.2, F and F ′ are isomorphic. This completes the
proof.
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18.2 Finite fields: towards existence

We want to show the existence of a finite field of order q = pn where p is prime
and n is a positive integer. By Theorem 18.1.4, we have to consider a splitting field E
of xq − x over Zp and show that it has q elements. So in this section, we let E be a
splitting field of xq − x over Zp and

F := {α ∈ E | αq = α}.

Lemma 18.2.1. In the above setting, F is a field.

Proof. To show F is a field, we prove that is closed under addition, multiplication,
negation, and inversion.

Notice that since the characteristic of F is a prime number p, the Frobenius map
σ : E → E, σ(a) := ap is a ring homomorphism (see Problem 4 in Week 1 assignment).
Therefore

σ(n) : E → E, σ(n)(a) = ap
n

is also a ring homomorphism. Notice that F is the set of fixed points of σ(n); that
means that

F = {a ∈ E | σ(n)(a) = a}.
For every α, β ∈ F , we have

σ(n)(α+β) = σ(n)(α)+σ(n)(β) = α+β and σ(n)(α·β) = σ(n)(α)·σ(n)(β) = α·β.

So α+ β and α · β are in F . Therefore F is closed under addition and multiplication.
For α ∈ F we also have that

σ(n)(−α) = −σ(n)(α) = −α,

and so −α ∈ F . Suppose α ∈ F \ {0}. Then α−1 ∈ E, and

σ(n)(α−1) = (α−1)q = (αq)−1 = α−1,

which implies that α−1 ∈ F . This completes the proof.

Next we want to show that |F | = q, which completes the proof of the existence of a
field of order q.

Corollary 18.2.2. In the above setting, the order of F is the same of the number of
distinct zeros of xq − x in E.

Proof. Since E is a splitting field of xq − x over Zp, there are α1, . . . , αq ∈ E such
that

xq − x =

q∏
i=1

(x− αi).

Notice that α ∈ F if and only if α is a zero of xq − x. Since E is an integral domain,
we obtain that

F = {α1, . . . , αn}.
The claim follows.
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By Corollary 18.2.2, we have that |F | = q if and only if zeros of xq − x in its
splitting field are distinct. So we need to find a mechanism to determine whether zeros
of a polynomial in its splitting field are distinct.

18.3 Separability: having distinct zeros in a splitting field.

We need to come up with a technique of finding out whether or not f(x) has a
multiple zero. Recall that we say a ∈ A is a multiple zero of f if f(x) = (x− a)2g(x)
for some g(x) ∈ A[x]. We use an idea from calculus: a polynomial f(x) ∈ C[x] has a
multiple zero at z if and only if f(z) = f ′(z) = 0. This means we need to define the
derivative of a polynomial in A[x] for an arbitrary unital commutative ring A.

Definition 18.3.1. Suppose f(x) :=
∑∞
i=0 aix

i ∈ A[x] where A is a unital commuta-
tive ring. We let

f ′(x) :=

∞∑
i=1

iaix
i−1, (18.2)

and call it the derivative of f .

Sometimes it is useful to write the sum in (18.2) starting from 0

f ′(x) =

∞∑
i=0

iaix
i−1.

One can check that the following properties of ordinary derivatives still hold for
polynomials in a general setting.

Lemma 18.3.2. Suppose A is a unital commutative ring, f, g ∈ A[x], and a, b ∈ A.
Then the derivative of af(x) + bg(x) is af ′(x) + bg′(x) and the product rule

(fg)′ = f ′g + fg′

holds.

Proof. It is easy to check that (af+bg)′ = af ′+bg′. Here we only discuss the product
rule. Suppose f(x) =

∑∞
i=0 aix

i and g(x) =
∑∞
j=0 bjx

j . Then the coefficient of xk
in fg is

ck :=
∑

i+j=k,i,j≥0

aibj .

Thus (fg)′ =
∑∞
k=0 kckx

k−1. Since f ′(x) =
∑∞
i=0 iaix

i−1 and g′(x) =
∑∞
j=0 jbjx

j−1,

the coefficient of xk−1 in f ′g is ∑
i+j=k,i,j≥0

iaibj

and the coefficient of xk−1 in fg′ is ∑
i+j=k,i,j≥0

jajbj .
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Hence

f ′g + fg′ =

∞∑
k=0

( ∑
i+j=k,i,j≥0

(i+ j)aibj

)
xk−1 =

∞∑
k=0

kckx
k−1.

The claim follows.

Lemma 18.3.3. SupposeA is a unital commutative ring and for a ∈ A and f, g ∈ A[x],
we have f(x) = (x− a)2g(x). Then f(a) = f ′(a) = 0.

Proof. Clearly f(a) = 0. By the product rule, we have that

f ′(x) = (x− a)2g(x) + 2(x− a)g(x) = (x− a)((x− a)g′(x) + 2g(x)).

Hence f ′(a) = 0. The claim follows.

Proposition 18.3.4. Suppose F is a field, f(x) ∈ F [x] \ F , and E is a splitting field
of f over F . Then f(x) does not have multiple zeros in E if and only if gcd(f, f ′) = 1
in F [x]1.

Proof. (⇒) Suppose gcd(f, f ′) 6= 1. Then there is a non-constant monic polynomial
q(x) ∈ F [x] which divides both f(x) and f ′(x). Since E is a splitting field of f over
F , there are α1, . . . , αn ∈ E such that

f(x) = a(x− α1) · · · (x− αn),

for some a ∈ F . As q(x)|f(x), x− αi’s are irreducible in E[x], and E[x] is a UFD,
we have that

q(x) = (x− αi1) · · · (x− αik)

for some i1, . . . , ik. Since q(x)|f ′(x), we have that f ′(αi1) = 0. After rearranging the
indexes, if necessary, we can and will assume that i1 = 1. Thus f ′(α1) = 0. By the
product rule, we have that f ′(x) is equal to

a((x−α2) · · · (x−αn)+(x−α1)(x−α3) · · · (x−αn)+· · ·+(x−α1) · · · (x−αn−1)).

Hence
f ′(α1) = a(α1 − α2) · · · (α1 − αn).

Therefore f ′(α1) = 0 implies that α1 = αj for some index j ≥ 2. This means f has
multiple zeros.

(⇐) Suppose f(x) = (x − α)2g(x). Then by Lemma 18.3.3, f ′(α) = 0. As
f ′(x) ∈ F [x], we deduce that mα,F (x)|f ′(x) in F [x]. Similarly, since f(α) = 0 and
f(x) ∈ F [x], we have mα,F (x)|f(x). Therefore mα,F (x) is a common divisor of f
and f ′ in F [x], which implies that gcd(f, f ′) 6= 1. This completes the proof.

1Here we are using the convention that the greatest common divisor of polynomials with coefficients in
a field are monic.
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18.4 Finite field: existence

Let’s recall some of the notation and results from Section 18.2. Let q = pn where p
is a prime and n is a positive integer. Let E be a splitting field of xq − x over Zp. Let

F := {α ∈ E | αq = α}.

By Lemma 18.2.1, F is a field, and by Corollary 18.2.2, the order of F is the number
of distinct zeros of xq − x in E.

Lemma 18.4.1. In the above setting, |F | = q.

Proof. Since |F | is the number of distinct zeros of xq − x in its splitting field, it is
enough to show that xq − x does not have multiple zeros in its splitting fields. By
Proposition 18.3.4, f(x) := xq − x does not have multiple zeros in E if and only if
gcd(f, f ′) = 1 in F [x]. Notice that f ′(x) = qxq−1−1 = −1 in F [x] as char(F ) = p.
Hence gcd(f, f ′) = 1, and the claim follows.

Altogether, we have proved:

Theorem 18.4.2 (Existence). Suppose p is prime and n is positive integer. Then there
is a finite field of order pn.

Theorem 18.4.3 (Construction). Finite field of order pn is a splitting field of xp
n − x

over Zp.

We let Fpn denote a finite field of order pn. Notice that by Theorem 18.4.2, there is
such a finite field, and by Theorem 18.1.4, Fpn is unique up to an isomorphism.
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Lecture 19

19.1 Vector spaces over a field

Let’s recall a couple of results that we have proved a while ago.

Proposition. (See Proposition 8.3.1) Suppose F is a field and f(x) ∈ F [x] is a
polynomial of degree n. Then every element of F [x]/〈f〉 can be uniquely written as

c01 + c1x+ · · ·+ cn−1x
n−1

for some c0, . . . , cn−1 ∈ F where 1 := 1 + 〈f〉 and x := x+ 〈f〉.

Proposition. (See Theorem 9.1.1) Suppose E is a field extension oof F , and α ∈ E is
algebraic over F . Suppose degmα,F = n. Then every element of F [α] can be uniquely
written as

c0 + c1α+ · · ·+ cn−1α
n−1

for some c0, · · · , cn−1 ∈ F .

In both of these statements, elements are uniquely written as an F -linear combi-
nation of certain elements. This is similar to the main property of a basis in a vector
space. It brings us to the definition of a vector space over a field F .

Definition 19.1.1. Suppose F is a field. We say V is a vector space over F if:

(1) (V,+) is an abelian group.

(2) There is a scalar multiplication F × V → V and for every c ∈ F and v ∈ V ,
the scalar multiplication of c by v is denoted by c · v (or simply cv). This scalar
multiplication is supposed to have the following properties.

a) For every c1, c2 ∈ F and v ∈ V ,

(c1 + c2) · v = c1 · v + c2 · v.

b) For every c ∈ F and v1, v2 ∈ V ,

c · (v1 + v2) = c · v1 + c · v2.
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c) For every v ∈ V , 1 · v = v.

Example 19.1.2. Suppose F is a field and n is a positive integer. Then

Fn := F × · · · × F︸ ︷︷ ︸
n times

is a vector space with respect to the following scalar multiplication

c · (a1, . . . , an) := (ca1, . . . , can).

Another example which plays an important role in this course is the following.

Example 19.1.3. Suppose A is a unital ring, F is a subfield of A, and 1A = 1F . Then
A is a vector space over F with respect to the following scalar multiplication:

∀c ∈ F, a ∈ A, c · a := ca

where ca is the multiplication in A.

Let’s recall some basic terminologies in linear algebra.

Definition 19.1.4. Suppose V is a vector space over a field F .

1. We say v1, · · · , vn ∈ V are F -linearly independent if, for c1, . . . , cn ∈ F ,

c1 · v1 + · · ·+ cnvn = 0 implies that c1 = · · · = cn = 0.

2. If v1, . . . , vn ∈ V are not F -linearly independent, we say they are F -linearly
dependent.

3. We say {v1, . . . , vn} ⊆ V is an F -spanning set if every element of V can be
written as an F -linear combination of v1, . . . , vn; that means for every v ∈ V
there are c1, . . . , cn ∈ F such that

v = c1 · v1 + · · ·+ cn · vn.

When {v1, . . . , vn} is an F -spanning set, we say v1, . . . , vn span V .

4. We say (v1, . . . , vn) is an F -basis of V if v1, . . . , vn are F -linearly independent
and {v1, . . . , vn} is an F -spanning set.

Though a basis is formally an ordered set, we sometimes refer to a set as a basis if
it is an F -spanning set and consists of F -linearly independent vectors.
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19.2 Subspace and linear map

As always, when we learn a new math object, we should talk about its substructures
and the maps that preserves its structure.

Definition 19.2.1. Suppose V is vector space over a field F . We say W ⊆ V is a
subspace of V if W is closed under addition and scalar multiplication.

Definition 19.2.2. Suppose V1 and V2 are two vector spaces over a field F .

1. We say f : V1 → V2 is F -linear if

f(v + v′) = f(v) + f(v′) and f(c · v) = c · f(v)

for every c ∈ F and v, v′ ∈ V ; alternatively we can write f(cv + v′) =
cf(v) + f(v′).

2. We say f : V1 → V2 is an isomorphism of F -vector spaces if

a) f is F -linear,
b) f is bijective, and
c) f−1 is F -linear.

It is a good exercise to show that if f is F -linear and it is bijective, then f−1 is
F -linear. So the last condition for being an F -vector space isomorphism is redundant.

Let’s also point out that similar to Lemma 1.3.1, one can use the distribution
properties and show that

0F · v = 0V and c · 0V = 0V

for every v ∈ V and c ∈ F .

Lemma 19.2.3. Suppose V is a vector space over a field F , and v1, . . . , vn ∈ V . Then
the smallest subspace of V which contains vi’s is{ n∑

i=1

civi | ci ∈ F
}
.

(This is denoted by SpanF {v1, . . . , vn} or SpanF (v1, . . . , vn), and it is called either
the F -span of vi’s, or the subspace spanned by v1, . . . , vn).

Proof. Suppose W is a subspace of V which contains vi’s. Since W is closed under
scalar multiplication, we have civi ∈ W for every ci ∈ F . Since W is closed under
addition, we deduce that

∑n
i=1 civi ∈W . Hence SpanF (v1, . . . , vn) ⊆W .

Next we show that Span(v1, . . . , vn) is a subspace. Suppose c ∈ F and w,w′ are
in SpanF (v1, . . . , vn). Then w =

∑n
i=1 civi and w′ =

∑n
i=1 c

′
ivi for some ci, c′i ∈ F .

Hence

cw + w′ = c

n∑
i=1

civi +

n∑
i=1

c′ivi =

n∑
i=1

(cci + c′i)vi ∈ SpanF (v1, . . . , vn).
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Therefore SpanF (v1, . . . , vn) is a subspace.
Finally we notice that

vi = 0 · v1 + · · ·+ 0 · vi−1 + 1 · vi + 0 · vi+1 + · · ·+ 0 · vn ∈ SpanF (v1, . . . , vn).

Altogether, we proved that SpanF (v1, . . . , vn) is a subspace which contains vi’s and
every other subspace that contains vi’ contains SpanF (v1, . . . , vn) as a subset. This
completes the proof.

Next lemma shows the importance of Example 19.1.2.

Lemma 19.2.4. Suppose V is a vector space over a field F , and B := (v1, . . . , vn) is
an F -basis of V . Then

1. for every v ∈ V , there is a unique

(c1, . . . , cn) ∈ Fn

such that v = c1v1 + · · ·+ cnvn. We let [v]B := (c1, . . . , cn).

2. The map V → Fn, v 7→ [v]B is a vector space isomorphism.

Proof. (1) Since B spans V , every v ∈ V can be written as an F -linear combination
of vi’s; that means that there are ci’s in F such that

v = c1v1 + · · ·+ cnvn.

Now we want to show the uniqueness. So suppose
∑n
i=1 civi =

∑n
i=1 c

′
ivi for some

ci, c
′
i ∈ F . Then

(c1 − c′1)v1 + · · ·+ (cn − c′n)vn = 0. (19.1)

As vi’s are F -linearly independent and ci − c′i ∈ F , by (19.1) we have that ci − c′i = 0
for every i. Hence

(c1, . . . , cn) = (c′1, . . . , c
′
n).

(2) By part (1), v 7→ [v]B is well-defined and it is the inverse function of

Fn → V, (c1, . . . , cn) 7→
n∑
i=1

civi.

Hence v 7→ [v]B is a bijection. Let [v]B = (a1, . . . , an) and [v′]B = (a′1, . . . , a
′
n).

Then v =
∑n
i=1 aivi and v′ =

∑n
i=1 a

′
ivi. Therefore for every c, c′ ∈ F , we have

cv + cv′ =
∑n
i=1(cai + a′a′i)vi, which implies that

[cv + cv′]B =(ca1 + c′a′1, . . . , can + c′a′n)

=c(a1, . . . , an) + c′(a′1, . . . , a
′
n)

=c[v]B + c′[v′]B,

this completes the proof.
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19.3 Dimension of a vector space

The following theorem plays helps us define the dimension of a vector space and
more.

Theorem 19.3.1. Suppose V is a vector space over a field F . Suppose {v1, . . . , vn} is
an F -spanning set, and w1, . . . , wm are F -linearly independent. Then n ≥ m.

Proof. Inductively we will find distinct indexes i1, . . . , im such that for every integer k
in [0,m],

({v1, . . . , vn} \ {vi1 , . . . , vik}) ∪ {w1, . . . , wk}

is an F -spanning set. We are substituting wj for vij in {v1, . . . , vn} and still spanning
V .

Notice that finding these distinct indexes

1 ≤ i1, . . . , im ≤ n

implies that m ≤ n, and the claim follows.
The base of induction (k = 0) follows from the assumption that {v1, . . . , vn} is

an F -spanning set. Now we show the induction step. Suppose we have already found
i1, . . . , ik such that

({v1, . . . , vn} \ {vi1 , . . . , vik}) ∪ {w1, . . . , wk}

is an F -spanning set. To simplify our notation, after rearranging vi’s, we can and will
assume that i1 = 1, . . . , ik = k; and so

SpanF (w1, . . . , wk, vk+1, . . . , vn) = V. (19.2)

In particular,wk+1 can be written as anF -linear combination ofw1, . . . , wk, vk+1, . . . , vn.
Hence there are ci’s in F such that

wk+1 = c1w1 + · · ·+ ckwk + ck+1vk+1 + · · ·+ cnvn. (19.3)

Claim. There exists j ≥ k + 1 such that cj 6= 0.
Proof of Claim. If not, wk+1 =

∑k
i=1 ciwi. This contradicts the assumption that wi’s

are F -linearly independent.
Without loss of generality, after rearranging vl’s, we can and will assume that

ck+1 6= 0.

Claim. SpanF (w1, . . . , wk+1, vk+2, . . . , vn) = V .
Proof of Claim. Because of (19.2), to show the Claim it is sufficient to prove that vk+1

is in the F -span of w1, . . . , wk+1, vk+2, . . . , vn. By (19.3),

ck+1vk+1 = −
k∑
i=1

ciwi + wk+1 −
n∑

i=k+2

civi.
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Notice that since ck+1 6= 0 and F is a field, c−1k+1 exists. Hence

vk+1 =−
k∑
i=1

(c−1k+1ci)wi + c−1k+1wk+1 −
n∑

i=k+2

(c−1k+1ci)vi

∈SpanF (w1, . . . , wk+1, vk+2, . . . , vn),

and the claim follows.

Theorem 19.3.2. Suppose V is a vector space over a field F . Suppose V is the F -span
of a finite set {v1, . . . , vn}. Then

1. V has an F -basis which is a subset of {v1, . . . , vn}.

2. If B := (w1, . . . , wm) and B′ := (w′1, . . . , w
′
k) are two F -bases, then m = k.

The size of a basis of V is called the dimension of V over F and we denote it by
dimF V .

Proof of Theorem 19.3.2. (1) Suppose {vi1 , . . . , vim} is a maximal subset of {v1, . . . , vn}
that consists of F -linearly independent vectors. Then for every j 6∈ {i1, . . . , im}, the
vectors vi1 , . . . , vim , vj are F -linearly dependent. This means there are c1, . . . , cm+1 ∈
F that are not all zero and

c1vi1 + · · ·+ cmvim + cm+1vj = 0.

Since vi1 , . . . , vim are F -linearly independent, cm+1 6= 0. Hence c−1m+1 exists (as F is
a field). Therefore

vj =− (c−1m+1c1)vi1 − · · · − (c−1m+1cm)vim

∈SpanF (vi1 , . . . , vim). (19.4)

Since (19.4) holds for every j not in {i1, . . . , im}, we deduce that

SpanF (vi1 , . . . , vim) = SpanF (v1, . . . , vn) = V.

Hence (vi1 , . . . , vim) is an F -basis as it consists of F -linearly independent vectors and
it is an F -spanning set.

(2) Since {w1, . . . , wm} is an F -spanning set and w′1, . . . , w′k are F -linearly in-
dependent, by Theorem 19.3.1 we have k ≤ m. Similarly, since {w′1, . . . , w′k} is an
F -spanning set and w1, . . . , wm are F -linearly independent, by Theorem 19.3.1 we
have m ≤ k. Altogether we get m = k, and this completes the proof.

19.4 Quotient spaces

Similar to groups and rings, we want to define the quotient of a vector space.
Suppose V is a vector space over a field F , and W is a subspace of V . Then in
particular W is a (normal) subgroup of V . Hence we can consider the abelian group
V/W .
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Proposition 19.4.1. Suppose V is a vector space over a field F , and W is a subspace
of V . Then the following is a well-defined scalar multiplication

F × V/W → V/W, (c, v +W ) 7→ c · (v +W ) := cv +W.

Moreover V/W with its quotient abelian group structure and the above given scalar
product is an F -vector space.

Proof. Let’s start with arguing why · is a well-defined operation. So assuming v1+W =
v2 + W , we have to show that cv1 + W = cv2 + W for every c ∈ F . Notice that
v1+W = v2+W implies that v1−v2 ∈W . AsW is closed under scalar multiplication,
we have that c(v1 − v2) ∈W for every c in F . Therefore cv1 − cv2 ∈W , from which
we deduce that cv1 +W = cv2 +W . This shows that · is a well-defined operation.

Next, we check why V/W is an F -vector space. For every c ∈ F and v1, v2 ∈ V ,
we have

c · ((v1 +W ) + (v2 +W )) =c · ((v1 + v2) +W )

=c(v1 + v2) +W

=(cv1 + cv2) +W

=(cv1 +W ) + (cv2 +W )

=c · (v1 +W ) + c · (v2 +W ).

Similarly we can check that

(c1 + c2) · (v +W ) = c1 · (v +W ) + c2 · (v +W )

for every c1, c2 ∈ F and v ∈ V .
Finally we observe that

1 · (v +W ) = (1 v) +W = v +W

for every v ∈ V . This completes the proof.

Notice that the natural quotient map

pW : V → V/W, pW (v) := v +W

is F -linear and ker pW = W .
Since by Lemma 19.2.4 an F -vector space of a given dimension is unique up to an

isomorphism, we want to understand the dimension of V/W .

Proposition 19.4.2. Suppose V is a vector space over F and W is a subspace of V .
Then

dimF W + dimF V/W = dimF V ;

in particular if one of the sides is finite, then the other side is finite as well.
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Proof. First notice that if dimF V <∞, then there is a finiteF -spanning set {v1, . . . , vn}.
Then by Theorem 19.3.1, every subset of W that consists of F -linearly independent
vectors has cardinality at most n; in particular, dimF W <∞. We also observe that
{v1 +W, . . . , vn + W} is an F -spanning subset of V/W , and so by the first part of
Theorem 19.3.2, we have dimF V/W <∞. Hence from this point on, we can and will
assume that

dimF W = m <∞ and dimF V/W = k <∞.

Suppose (w1, . . . , wm) is an F -basis of W , and (v1 +W, . . . , vk +W ) is an F -basis
of V/W . We show that (w1, . . . , wm, v1, · · · , vk) is an F -basis of V . We prove this in
two steps. First we show this is an F -spanning set, and second we show that it consists
of F -linearly independent vectors.

Step 1. SpanF (w1, . . . , wm, v1, · · · , vk) = V .
Proof of Step 1. Let W ′ := SpanF (w1, . . . , wm, v1, · · · , vk). Then W ⊆ W ′ as

wi’s spanW and they are inW ′. HenceW ′/W is a subspace of V/W . Since vi+W ’s
are in W ′/W and they span V/W , we deduce that W ′/W = V/W . Therefore by the
correspondence theorem for the subgroups of a quotient group, we have that V = W ′.
(We can avoid using the correspondence theorem and use the following argument: for
every v ∈ V , knowing that v+W ∈W ′/W , we can deduce that there is w′ ∈W such
that v +W = w′ +W . This means v − w′ = w for some w ∈W ⊆W ′. Hence

v = w′ + w ∈W ′.

Altogether we proved that every element v of V is in W . Therefore V = W ′.)
Step 2. w1, . . . , wm, v1, · · · , vk are F -linearly independent.
Proof of Step 2. Suppose

m∑
i=1

ciwi +

k∑
j=1

cm+jvj = 0 (19.5)

for some ci’s in F . Then

pW

( m∑
i=1

ciwi +

k∑
j=1

cm+jvj

)
= 0,

where pW : V → V/W, pW (v) := v + W is the natural quotient map. Since
W = ker pW , we obtain that

k∑
j=1

cm+j · pW (vj) = 0,

and so
cm+1 · (v1 +W ) + · · ·+ cm+k · (vk +W ) = 0. (19.6)

As vj + W ’s are F -linearly independent, we deduce that cm+1 = · · · = cm+k = 0.
Hence by (19.5), we obtain that

m∑
i=1

ciwi = 0.
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Aswi’s are F -linearly independent, we have c1 = · · · = cm = 0. Altogether we deduce
that all the coefficients in (19.6) are zero. This completes the proof of the second step.

By Steps 1 and 2, we obtain that

(w1, . . . , wm, v1, . . . , vk)

is an F -basis. Hence

dimF V = m+ k = dimF W + dimF V/W,

which completes the proof.

19.5 The first isomorphism theorem for vector spaces

Similar to groups and rings, next we prove the first isomorphism theorem. Then we
use this result to show the kernel-image theorem.

Theorem 19.5.1. Suppose V1 and V2 are two F -vector spaces, and f : V1 → V2 is an
F -linear map. Then

1. Im(f) is a subspace of V2, and ker f is a subspace of V1.

2. f : V1/ ker f → Im f, f(v1 + ker f) := f(v1) is an isomorphism of F -vector
spaces.

3. dimF (ker f) + dimF (Im f) = dimF V1.

Proof. (1) Since f is an additive group homomorphism, Im f is a subgroup of V2 and
ker f is a subgroup of V1. So it is sufficient to prove that Im f and ker f are closed
under scalar multiplication. Suppose v2 ∈ Im f . Then v2 = f(v1) for some v1 ∈ V1.
Hence for every c ∈ F , we have

cv2 = cf(v1) = f(cv1) ∈ Im f.

This shows that Im f is closed under scalar multiplication, and so it is a subspace of V2.
Suppose v1 ∈ ker f and c ∈ F . Then

f(cv1) = cf(v1) = c0 = 0,

which implies that cv1 ∈ ker f . Hence ker f is closed under scalar multiplication,
which implies that ker f is a subspace of V1.

(2) By the first isomorphism theorem for groups, we have that

f : V1/ ker f → Im f, f(v1 + ker f) := f(v1)

is a well-defined group isomorphism. So to show that f is an F -vector space isomor-
phism, it suffices to argue why f preserves the scalar multiplication. For every c ∈ F
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and v1 ∈ V1, we have

f(c · (v1 + ker f)) =f(cv1 + ker f)

=f(cv1)

=cf(v1)

=c · f(v1 + ker f),

and part (2) follows.
(3) By Proposition 19.4.2 and the second part, we have

dimF (Im f) = dimF (V1/ ker f) = dimF V1 − dimF (ker f),

and the claim follows.



Chapter 20

Lecture 20

We have proved basic properties of vector spaces over a field F . Here we will
explore their implications in field theory.

20.1 Previous results in the language of linear algebra

We have motivated our digression to vector spaces over fields by considering the
conclusions of Proposition 8.3.1 and Theorem 9.1.1. Here we rephrase those conclusions
using terminologies from linear algebra.

Proposition 20.1.1. Suppose F is a field and f(x) ∈ F [x] is a polynomial of degree n,
where n is a positive integer. Then (1, x, . . . , xn−1) is an F -basis of F [x]/〈f〉, where
xi := xi + 〈f〉 for every integer i in [0, n− 1]. In particular, dimF F [x]/〈f〉 = deg f .

Proof. By Proposition 8.3.1, every element of F [x]/〈f〉 can be uniquely written as

(c0 + c1x+ · · ·+ cn−1x
n−1) + 〈f〉 =

n−1∑
i=0

cix
i.

Hence the F -span of {1, x, . . . , xn−1} is F [x]/〈f〉. Moreover if
∑n−1
i=0 cix

i = 0, then
because of the uniqueness the above expression we obtain that ci’s are 0. This implies
that 1, x, . . . , xn−1 are F -linearly independent. The claim follows.

Proposition 20.1.2. Suppose E is a field extension of F , and α ∈ E is algebraic over
F . Then (1, α, . . . , αn−1) is an F -basis of F [α] where n = degmα,F . In particular,
dimF F [α] = degmα,F .

Proof. By Theorem 9.1.1, every element of F [α] can be uniquely written as

c0 + c1α+ · · ·+ cn−1α
n−1

for some c0, . . . , cn−1 ∈ F wheren = degmα,F . Hence theF -span of {1, α, . . . , αn−1}
is F [α]. Moreover if

∑n−1
i=0 ciα

i = 0, then because of the uniqueness the above ex-
pression we obtain that ci’s are 0. This implies that 1, α, . . . , αn−1 are F -linearly
independent. The claim follows.

121



122 CHAPTER 20. LECTURE 20

20.2 Finite fields and vector spaces

Suppose F is a finite field and V is a vector space over F . If dimF V = n, then by
Lemma 19.2.4, we have that V ' Fn, and so

|V | = |F |dimF V . (20.1)

This helps us get a strong condition for the tower of finite fields.

Proposition 20.2.1. If Fpm can be embedded into Fpn , then m|n.

Proof. If Fpm can be embedded into Fpn , we can view Fpn as a vector space over Fpm .
Since these are finite sets, dimFpm Fpn = d <∞. Hence by (20.1), we have

|Fpn | = |Fpm |d, which implies that n = md.

This completes the proof.

One can use the cardinality of the group of units of finite fields to prove the same
result. Assuming that Fpm can be embedded in Fpn , we deduce that the group of units
of Fpm can be embedded into the group of units of Fpn . Hence pm − 1|pn − 1. From
this one can show that m|n. As you can see the presented proof, which is based on
linear algebra, is much more natural.

Exercise 20.2.2. Suppose m and n are positive integers and m|n. Prove that Fpm can
be embedded into Fpn .

20.3 Tower rule for field extensions

We have already seen in Proposition 20.2.1 how useful it is to think about a field
extension E of F as an F -vector space.

Definition 20.3.1. Suppose E is a field extension of F . Then we can view E as an
F -vector space (see Example 19.1.3). The dimension dimF E of E as an F -vector
space is denoted by [E : F ] and it is called the degree of this field extension.

Theorem 20.3.2 (Tower rule). Suppose L is a field extension of E,
and E is a field extension of F . Then

[L : F ] = [L : E][E : F ];

in particular, if one of the sides is finite, then the other side is finite as
well.

L

E

F

(20.2)

We often use a diagram as in (20.2) to show field extensions. In this type of diagram,
we connect two fields if one is a subfield of the other. The subfield is located lower than
the larger field.
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Proof of Theorem 20.3.2. If [L : F ] = n < ∞, then there is a finite F -spanning set
{v1, . . . , vn}. Hence the L-span of {v1, . . . , vn} is also L, and so by Theorem 19.3.2,
[L : E] ≤ n. And also, by Proposition 19.4.2, we have

[E : F ] = dimF E ≤ dimF L <∞.

Therefore from this point on, we can and will assume that

[L : E] = m <∞ and [E : F ] = n <∞.

Suppose (`1, . . . , `m) is an E-basis of L, and (e1, . . . , en) is an F -basis of E. We
prove that

{`iej | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
(with respect to some ordering) is an F -basis of L. We do this in two steps.

Step 1. SpanF (`iej | 1 ≤ i ≤ m, 1 ≤ j ≤ n) = L.
Proof of Step 1. Every ` ∈ L can be written as an E-linear combination of `i’s.

This means there are xi ∈ E such that

` = x1`1 + · · ·+ xm`m. (20.3)

Every element of E can be written as an F -linear combination of ej’s. Hence for every
i, there are yij ∈ F such that

xi = yi1e1 + · · ·+ yinen. (20.4)

By (20.3) and (20.4), we deduce that

` =

m∑
i=1

xi`i =

m∑
i=1

( n∑
j=1

yijej

)
`i

=
∑

1≤i≤m,1≤j≤n

yij `iej .

This means ` can be written as an F -linear combination of `iej’s. This completes the
proof of Step 1.

Step 2. `iej’s are F -linearly independent.
Proof of Step 2. Suppose ∑

1≤i≤m,1≤j≤n

yij `iej = 0 (20.5)

for some yij’s in F . Then by (20.5), we have
m∑
i=1

( n∑
j=1

yijej

)
`i = 0. (20.6)

Notice that for every i, xi :=
∑n
j=1

∑n
j=1 yijej is in E. Since `i’s are E-linearly

independent, by (20.6) we deduce that xi = 0 for every i. Hence we have
n∑
j=1

n∑
j=1

yijej = 0 (20.7)
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for every index i. Since ej’s are F -linearly independent, by (20.7) we obtain that
yij = 0 for every pair of indexes i and j. This completes the proof of the second step.

By Steps 1 and 2, we deduce that

[L : F ] = |{`iej | 1 ≤ i ≤ m, 1 ≤ j ≤ n}| = mn = [L : E][E : F ],

which completes the proof.

20.4 Some applications of the Tower Rule for field extensions

Here we mention some examples on how one can use the Tower Rule.

Example 20.4.1. Suppose E is a field extension of Q such that [E : Q] = 2n for some
positive integer n. Then x3 − 2 is irreducible in E[x].

Proof. Suppose to the contrary that x3 − 2 is not irreducible in E[x].
Then by the irreducibility criterion for degree 2 and 3 polynomials
(see 10.1.1), we deduce that there is α ∈ E which is a zero of x3 − 2.
Then Q[α] is an intermediate field; that means we have the tower
of field extensions given in (20.9). Hence by the Tower Rule (see
Theorem 20.3.2), we have [E : Q] = [E : Q[α]][Q[α] : Q]. Therefore
by Proposition 20.1.2 and our hypothesis, we obtain that

2n = [E : Q[α]] degmα,Q. (20.8)

E

Q[α]

Q

(20.9)

So we it is useful to find the minimal polynomial mα,Q of α over Q. Notice that α is a
zero of x3 − 2, x3 − 2 is monic, and by Eisenstein’s irreducibility criterion (see Theo-
rem 12.2.1), x3−2 is irreducible in Q[x]. Hence by Theorem 8.2.5,mα,Q(x) = x3−2.
Thus by (20.8), 3 is a divisor of 2n which is a contradiction. This completes the
proof.

Example 20.4.2. Suppose E is a field extension of F and α ∈ E is algebraic over F .
Suppose [F [α] : F ] is odd. Then F [α] = F [α2].

Proof. Notice that F [α] is a field extension of F [α2].
So we have the tower of field extensions given in (20.11). Hence
by the Tower Rule (see Theorem 20.3.2), we have

[F [α] : F ] = [F [α] : F [α2]][F [α2] : F ].

Therefore by Proposition 20.1.2 and our hypothesis, we obtain
that

(degmα,F [α2])[F [α2] : F ] is odd. (20.10)

F [α]

F [α2]

F

(20.11)

By (20.10), we have that degmα,F [α2] is odd. Notice thatα is a zero of x2−α2 ∈ F [α2].
Hence degmα,F [α2] ≤ 2. As the only positive odd integer less than or equal to 2 is 1,
we have degmα,F [α2] = 1. This implies that α ∈ F [α2], and so F [α] ⊆ F [α2]. The
claim follows.
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Example 20.4.3. Suppose α, β ∈ C are algebraic over Q. Let f(x) := mα,Q(x) and
g(x) := mβ,Q(x). Then

f is irreducible in (Q[β])[x] ⇐⇒ g is irreducible in (Q[α])[x].

Proof. (⇒) We will be using the right and the left legs of the diagram given in (20.12).

Q[α, β]

Q[α] Q[β]

Q

(20.12)

Going through the right leg of the diagram in (20.12), using the Tower Rule (see
Theorem 20.3.2) and Proposition 20.1.2, we obtain that

[Q[α, β] : Q] =[Q[α, β] : Q[β]][Q[β] : Q]

=(degmα,Q[β])(degmβ,Q). (20.13)

Notice that since α is a zero of f , f is monic and irreducible in (Q[β])[x], by Theo-
rem 8.2.5, we have mα,Q[β](x) = f(x) = mα,Q(x). Hence, by (20.13), we have that

[Q[α, β] : Q] = (degmα,Q)(degmβ,Q). (20.14)

Going through the left leg of the diagram in (20.12), using the Tower Rule (see Theo-
rem 20.3.2) and Proposition 20.1.2, we obtain that

[Q[α, β] : Q] =[Q[α, β] : Q[α]][Q[α] : Q]

=(degmβ,Q[α])(degmα,Q). (20.15)

By (20.14) and (20.15), we deduce that

degmβ,Q[α] = degmβ,Q. (20.16)

Notice that since β is a zero of mβ,Q ∈ (Q[α])[x], we obtain that

mβ,Q[α]|degmβ,Q. (20.17)

By (20.16) and (20.17), we obtain that g(x) = mβ,Q(x) = mβ,Q[α](x). This implies
that g(x) is irreducible in (Q[α])[x].

(⇐) This direction follows by a similar argument.

Let’s remark that if L is a field extension of E, E is a field extension of F , and
α ∈ L is algebraic over F , then α is a zero of mα,F ∈ E[x]. Hence mα,E |mα,F ; this
is a generalization of (20.17).
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20.5 Algebraic closure in a field extension

Suppose E is a field extension of F . The algebraic closure of F in E is the set of
all the elements of E that are algebraic over F . Here we will prove that the algebraic
closure of F in E is a subfield of E. We start with proving that a field extension of
finite degree is an algebraic extension.

Lemma 20.5.1. Suppose E is a field extension of F of finite degree. Then every α ∈ E
is algebraic over F .

We say a field extensionE of F is an algebraic extension if every α ∈ E is algebraic.
So we are proving that a field extension of finite degree is algebraic.

Proof of Lemma 20.5.1. Suppose [E : F ] = n. Then by Theorem 19.3.1, every n+ 1
elements of E are F -linearly dependent. Hence 1, α, . . . , αn are F -linearly dependent.
Thus there are c0, . . . , cn ∈ F that are not all zero and

c0 + c1α+ · · ·+ cnα
n = 0.

This means that α is algebraic over F .

Theorem 20.5.2 (Algebraic closure in a field extension). SupposeE is a field extension
of F . Let

K := {α ∈ E | α is algebraic over F}.

Then K is a field extension of F .

Proof. Suppose α, β ∈ K. Then by Proposition 20.1.2, we have [F [α] : F ] =
degmα,F <∞. Moreover as β is algebraic over F [α], we have [F [α, β] : F [α]] <∞.
Hence by the Tower Rule (see Theorem 20.3.2) we obtain that

[F [α, β] : F ] = [F [α, β] : F [α]][F [α] : F ] <∞. (20.18)

By Lemma 20.5.1 and (20.18), we deduce that F [α, β] is an algebraic extension of F ;
this means that F [α, β] ⊆ K. This implies that F ⊆ K, α± β and αβ are in K, and
if β 6= 0, then αβ−1 is in K, as well. Altogether, we deduce that K is field extension
of F . This completes the proof.

20.6 Geometric constructions by ruler and compass

Let’s recall some ancient Euclidean geometry problems. Can we construct 3
√

2, π,
or angle 20◦ using ruler and compass? Let’s formulate it properly what it means to
construct a number. We start with a unit segment. The end points are considered
constructed. If two points are constructed, then the line which passes through them is
considered constructed. The circles that are centered at one of these points and pass
through the other are called constructed. The points of intersection of constructed
circles and lines are considered constructed points. A number is called constructed
if its absolute value is the distance of two constructed points. The following theorem
gives us an excellent understanding of constructed points.
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Theorem 20.6.1. Suppose the initial points are (0, 0) and (1, 0). If (α, β) is a con-
structed point, then [Q[α] : Q] and [Q[β] : Q] are powers of 2.

Here only the main ideas will be presented. To get to the point (α, β), we have
to construct finitely many lines and circles, and consider their intersection points. To
find the coordinates of intersection points we end up solving degree 1 and degree 2
polynomials with coefficients that are in the ring generated by the coordinates of the
constructed points that we have so far. This means there is a tower of field extensions

Q =: F0 ⊆ F1 ⊆ · · · ⊆ Fn

such that [Fi+1 : Fi] = 2 for every i and α ∈ Fn. By the Tower Rule, [Fn : Q] is
power of 2. Since Q[α] is an intermediate subfield, by the Tower Rule we deduce that
[Q[α] : Q] divides [Fn : Q]. Hence [Q[α] : Q] is a power of 2.

Corollary 20.6.2. 3
√

2 and π cannot be constructed by ruler and compass.

Proof. By Theorem 20.6.1, if α can be constructed by ruler and compass, then [Q[α] :
Q] is a power of 2. In particular, α is algebraic. Hence π cannot be constructed (we
do not prove this here, but it can be proved that π is not algebraic over Q). Notice that
degm 3√2,Q = 3, and so 3

√
2 cannot be constructed by ruler and compass.

Exercise 20.6.3. Show that degmcos 20◦,Q = 3, and use this to deduce the angle 20◦

cannot be constructed by ruler and compass. (Hint: cos 3θ = 4 cos3 θ − 3 cos θ.)

By the above Exercise, we can deduce that there is no general method of dividing a
given angle into three equal parts using only ruler and compass.
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Lecture 21

By now we have a basic understanding of vector spaces over a field and how it can
help us study field extensions. We go back and further study splitting fields. Here we
focus on the splitting field of xn − 1 over Q. Let us recall that by Example 17.2.1, we
have that Q[ζn] is a splitting field of xn − 1 over Q, where ζn := e2πi/n, and

xn − 1 = (x− 1)(x− ζn) · · · (x− ζn−1n ). (21.1)

This field has a historical significance, because of its role in the initial modern attempts
towards proving Fermat’s last conjecture. We want to answer a very basic question
about this field: what is [Q[ζn] : Q]? By Proposition 20.1.2, we have

[Q[ζn] : Q] = degmζn,Q.

Hence we need to find the minimal polynomial of ζn over Q.

21.1 Cyclotomic polynomials

In this section, we will arrive at the definition of the n-th cyclotomic polynomial.
This will be done as we investigate the minimal polynomial of ζn over Q.

Notice that since ζn is a zero of xn − 1, mζn,Q divides xn − 1. Hence by (21.1)
and the fact the C[x] is a UFD, we deduce that

mα,Q(x) = (x− ζi1n ) · · · (x− ζimn )

for some integers ij’s in [1, n]. As ζn is a zero of mζn,Q, without loss of generality, we
can and will assume that i1 = 1.

By Lemma 16.2.2, if E is a field extension of F and α, α′ ∈ E are two zeros of
an irreducible polynomial f ∈ F [x], then there is an F -isomorphism θ : F [α] →
F [α′] such that θ(α) = α′; an F -isomorphism is a ring isomorphism which F -linear.
Applying this result for the two zeros ζn and ζijn of the irreducible polynomialmζn,Q ∈
Q[x], we obtain a Q-isomorphism θj : Q[ζn]→ Q[ζ

ij
n ] such that θj(ζn) = ζ

ij
n . Notice

that, since θj is a ring isomorphism, the multiplicative order of ζn and θj(ζn) are

129
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the same. As o(gk) = o(g)
gcd(o(g),k) , o(ζn) = n, and θj(ζn) = ζ

ij
n , we deduce that

gcd(n, ij) = 1 for every j. This takes us to the definition of the n-th cyclotomic
polynomial.

Definition 21.1.1. The n-th cyclotomic polynomial is

Φn(x) :=
∏

1≤i≤n,gcd(i,n)=1

(x− ζin).

In particular, Φn is a monic polynomial of degree φ(n), wherer φ is the Euler-phi
function.

By the above discussion, we have that mζn,Q(x) divides Φn(x) in C[x]. We will
prove that mζn,Q(x) = Φn(x).

21.2 Cyclotomic polynomials are integer polynomials

The following is a key property of cyclotomic polynomials that, among other things,
help us prove cyclotomic polynomials are integer polynomials.

Theorem 21.2.1. For every positive integer n, we have

xn − 1 =
∏
d|n

Φd(x). (21.2)

Before we go to the details of the proof of Theorem 21.2.1, let us compare the
degrees of the both sides of (21.2):

n =
∑
d|n

φ(d). (21.3)

Proof of this formula is based on the partitioning of the set [1..n] := {1, . . . , n} in
terms of the greatest common divisor of the elements with n. To be more precise, we
let

Cd,n := {i ∈ [1..n] | gcd(i, n) = d}. (21.4)
Then {Cd,n | d|n} is a partitioning of [1..n]. Moreover

i ∈ Cd,n ⇐⇒ gcd(i, n) = d ⇐⇒ i = dj and gcd
(
j,
n

d

)
= 1.

Hence

Cd,n = {dj | j ∈ C1,nd
} which imlies that |Cd,n| = |C1,nd

| = φ
(n
d

)
. (21.5)

Therefore
n = |[1..n]| =

∑
d|n

|Cd,n| =
∑
d|n

φ
(n
d

)
.

Finally we notice that as d ranges over all the positive divisors of n, so does n
d ; that

means d 7→ n
d is a bijection from the set of positive divisors of n to itself. Hence∑

d|n φ(nd ) =
∑
d|n φ(d), and (21.3) follows. We will be following the same steps to

prove (21.2).
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Proof of Theorem 21.2.1. Since xn − 1 =
∏
i∈[1..n](x − ζin) and {Cd,n | d|n} is a

partition of [1..n], we have that

xn − 1 =
∏
d|n

∏
i∈Cd,n

(x− ζin). (21.6)

By (21.5), we have that ∏
i∈Cd,n

(x− ζin) =
∏

j∈C1, n
d

(x− ζdjn ). (21.7)

Notice that ζdn = e(2πi/n)d = e2πi/(
n
d ) = ζn

d
. So by (21.7), we deduce that∏

i∈Cd,n

(x− ζin) =
∏

0≤j<n
d ,gcd(j,

n
d )=1

(x− ζjn
d

) = Φn
d

(x). (21.8)

By (21.6) and (21.8), we obtain

xn − 1 =
∏
d|n

Φn
d

(x). (21.9)

As it is mentioned earlier, d 7→ n
d is a bijection from the set of positive divisors of n to

itself. Hence by (21.9), (21.2) follows.

Using we are ready to prove that cyclotomic polynomials are integer polynomials.

Corollary 21.2.2. For every positive integer n, Φn(x) ∈ Z[x].

Proof. We proceed by strong induction on n. The base case is clear as Φ1(x) = x− 1.
Next we prove the strong induction step. By the strong induction hypothesis, for every
positive integer m < n, Φm(x) ∈ Z[x]. Hence

Ψn(x) :=
∏

d|n,d 6=n

Φd(x) ∈ Z[x], (21.10)

and as Φd’s are monic, Ψn(x) is monic as well. By Theorem 21.2.1, we have

xn − 1 = Φn(x)Ψn(x). (21.11)

As xn − 1,Ψn(x) ∈ Z[x] and Ψn(x) is monic, by the Long Division for elements in
Z[x] (see Theorem 6.4.1) there are unique q(x), r(x) ∈ Z[x] such that

1. xn − 1 = q(x)Ψn(x) + r(x) and

2. deg r < deg Ψn.

Using the Long Division for elements in C[x], we see that the same q and r are the
quotient and remainder of xn − 1 divided by Ψn(x) as elements of C[x]. By (21.11),
however, we have that the quotient and the remainder of xn − 1 divided by Ψn(x) as
elements of C[x] are Φn(x) and 0, respectively. Hence Φn(x) = q(x) ∈ Z[x], and the
claim follows.
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Let us remark that the last part of the above argument implies the following:

Lemma 21.2.3. Suppose A is a subring of a unital commutative ring B and 1B ∈ A.
Suppose f, g ∈ A[x] and ld(f) ∈ A×. If f |g in B[x], then f |g in A[x].

Use long division in A[x] and B[x] to prove this Lemma. I leave it to you to fill out
the details.

21.3 Cyclotomic polynomials are irreducible

The main goal of this section is to prove the following:

Theorem 21.3.1. For every integer n, Φn(x) is irreducible in Q[x].

As before the general steps are proceeding by contradiction, going from Q to Z,
and using the residue maps modulo primes. The last step, however, will be more subtle
than the other examples that we have done so far.

Proof of Theorem 21.3.1. Suppose to the contrary that Φn(x) is not irreducible in Q[x].
Then Φn(x) = f(x)g(x) for some non-constant smaller degree polynomials f and g.
Since Φn(x) is a monic integer polynomial, it is a primitive polynomial. By Gauss’s
lemma (see Corollary 15.4.3), we have Φn(x) = f(x)g(x) where f and g are primitive
forms of f and g, respectively. Notice that ζn is a zero Φn, it is either a zero of f or
a zero of g. Without loss of generality, we can and will assume that ζn is a zero of f .
Every other zero ζ of f is a zero of Φn(x), and so the multiplicative order of ζ (as an
element of C×) is n.

(Here is where the magic is happening.)
If p is a prime which does not divide n and ζ ∈ C× has multiplicative order n, then

the multiplicative order of ζp is also n. Therefore ζp is a zero of Φn(x), and so it is a
zero of either f or g.

Claim 1. If ζ is a zero of f and p is a prime which does not divide n, then ζp is a
zero of f as well.

Proof of Claim 1. Suppose to the contrary that f(ζp) 6= 0. Since o(ζp) = n, Φn(ζp) =
0. As f(ζp) 6= 0 and Φn(ζp) = f(ζp)g(ζp), we deduce that g(ζp) = 0. This means
ζ is a common zero of f(x) and g(xp). Thus mζ,Q(x) is a common divisor of f(x)
and g(xp) in Q[x]. Let h(x)Z[x] be the primitive form of mζ,Q(x). By Gauss’s lemma
(see Corollary 15.4.3), h(x) is a common divisor of f(x) and g(xp) in Z[x]. As f is
monic, so is h. Therefore cp(h) is a common divisor of cp(f(x)) and cp(g(xp)) where
cp : Z[x]→ Zp[x] is the residue map modulo p. Notice that h is a monic non-constant
polynomial, so is cp(h).

(Here you see why we considered raising to power p at the first place.)
Since Zp[x] is of characteristic p, by Fermat’s little theorem we have

cp(h(x))p = cp(h(xp)). (21.12)
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To see this better, notice that in Zp[x] we have

(

∞∑
i=0

aix
i)p =

∞∑
i=0

api (x
i)p =

∞∑
i=0

ai(x
p)i.

So cp(h) is a non-constant common divisor of cp(f) and cp(g)p. Let `(x) be a prime
factor of cp(h). Then `(x) divides cp(g)p, and so `(x) divides cp(g) as Zp[x] is a UFD.
Therefore `(x)2 divides

cp(f)cp(g) = cp(fg) = cp(Φn). (21.13)

As cp(Φn) divides xn − 1 in Zp[x], `(x)2 divides xn − 1 in Zp[x]. Hence xn − 1
has multiple zeros in its splitting field over Zp. By Proposition 18.3.4, we deduce
that gcd(xn − 1, nxn−1) 6= 1. This is a contradiction as p - n and x - xn − 1. This
completes the proof of Claim 1.

Claim 2. Suppose i is a positive integer and gcd(i, n) = 1. If ζ is a zero of f , then
ζi is a zero of f .

Proof of Claim 2. We proceed by induction on the number k of prime factors of i.
In the base case of k = 0, we have i = 1, and there is nothing to prove. Suppose
i = p1 · · · pk+1, where pj’s are primes that do not divide n. By the induction hypothesis
ζp1···pk is a zero of f . By Claim 1, we deduce that

(ζp1···pk)pk+1 = ζi

is a zero of f . This completes the proof of Claim 2.

By Claim 2, since ζn is a zero of f , ζin is a zero of f if i is a positive integer
and gcd(i, n) = 1. This implies that Φn(x) divides f , which is a contradiction as
deg f < deg Φn. This completes the proof.

21.4 The degree of cyclotomic extensions

Field Q[ζn] is called a cyclotomic extension.

Theorem 21.4.1. Suppose n is a positive integer and ζn := e2πi/n. Then the minimal
polynomial of ζn over Q is mζn,Q(x) = Φn(x) and [Q[ζn] : Q] = φ(n).

Proof. We have that ζn is a zero of Φn(x), Φn(x) is a monic polynomial, and Φn(x)
is irreducible in Q[x] (by Theorem 21.3.1). Hence by Theorem 8.2.5, we have that
mζn,Q(x) = Φn(x). By Proposition 20.1.2, we have

[Q[ζn] : Q] = degmζn,Q = deg Φn = φ(n),

which completes the proof.
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Lecture 22

22.1 The group of automorphism of a field extension.

Through out this course one of our main goals has been understanding zeros of
polynomials. We proved the existence and the uniqueness (up to an isomorphism) of
a smallest field which contains all the zeros of a given polynomial (a splitting field).
A better understanding of splitting fields can help us to learn more about the zeros of
polynomials. One of our main tools of characterizing (intricate) objects is their group of
symmetries. The group of symmetries of a field extension E of F is defined as follows.

Definition 22.1.1. For a field extension E of F , let

AutF (E) := {θ : E → E | θ is a ring isomorphism, and F -linear}.

An element of AutF (E) is called an F -automorphism. An F -linear, ring homomor-
phism is called an F -homomorphism.

One can easily see that AutF (E) is a group under composition. We would like to
know how much AutF (E) tells us about the field extension.

Similar to the proof of the uniqueness of splitting fields, we need to work with two,
possibly different, copies of the base field F , and with not necessarily surjective ring
homomorphisms: we proved the isomorphism extension theorem in order to deduce
the uniqueness of splitting fields up to an isomorphism. That is why we introduce the
following notation.

Definition 22.1.2. Suppose θ : F → F ′ is a field isomorphism, E is a field extension
of F , and L′ is a field extension of F ′. Then

Embθ(E,L
′) := {θ̂ : E → L′ | θ̂ injective ring homomorphism and θ̂|F = θ}

and an element of Embθ(E,L
′) is called an θ-embedding. An isomorphism which is

an θ-embedding is called an θ-isomorphism, and the set of θ-isomorphisms is denoted
by Isoθ(E,L

′). When F ′ = F and θ = idF , we write EmbF (E,L′) instead of
EmbidF (E,L′). Instead of saying idF -embedding, we say F -embedding.

135
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Notice that θ̂ is in Embθ(E,L
′) exactly when the following is a commutative

diagram.

E L′

F F ′

θ̂

θ

Lemma 22.1.3. If [E : F ] <∞, then EmbF (E,E) = AutF (E).

Proof. Clearly AutF (E) ⊆ EmbF (E,E). Suppose θ ∈ EmbF (E,E). To show
that θ is an F -automorphism, it suffices to argue why θ is surjective. By the first
isomorphism theorem for vector spaces (see Theorem 19.5.1), we have

dimF Im(θ) + dimF ker(θ) = dimF E.

Since θ is a injective, ker θ = 0. Hence dimF Im(θ) = dimF E. Since ImF (θ) is a
subspace of E and it has the same dimension as E, by Proposition 19.4.2 Im(θ) = E.
This completes the proof.

The following easy lemma is the corner stone of our understanding of the group of
symmetries of algebraic field extensions.

Lemma 22.1.4. Suppose θ : F → F ′ is a field isomorphism, E is a field extension of
F , and L′ is a field extension of F ′. Suppose f(x) ∈ F [x] and α ∈ E is a zero of f .
Then

for every θ̂ ∈ Embθ(E,L
′), θ̂(α) is a zero of θ(f).

In particular, if L is a field extension of F , then

for every F -embedding θ̂ : E → L, θ(α) is a zero of f .

Proof. Suppose f(x) =
∑n
i=0 cix

i. Then
∑n
i=0 ciα

i = 0. Therefore

0 = θ̂
( n∑
i=0

ciα
i
)

=
n∑
i=0

θ̂(ci)θ̂(α)i =
∑
i=0

θ(ci)θ̂(α)i = θ(f)(θ̂(α)),

and the claim follows.

22.2 Normal extensions

The following theorem and the ideas involved in its proof play an important role in
our understanding of field extensions of finite degree.

Theorem 22.2.1. Suppose E is a field extension of F and [E : F ] < ∞. Then the
following statements are equivalent.

1. There is f ∈ F [x] such that E is a splitting field of f over F .
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2. For every field extension L of E and θ ∈ AutF (L), we have θ(E) = E.

3. For every β ∈ E, mβ,F (x) = (x− β1) · · · (x− βm) for some β1, . . . , βm ∈ E.

Each one of these properties gives us a very different perspective of the given field
extension.

1. The first property (in terms of splitting fields) is very concrete and one can
construct many examples with it.

2. The second property gives us a relation between symmetries of field extensions
of E over F and symmetries of E over F . It is quite surprising that a property
about E and F tells us something about symmetries of every field extension of
E.

3. In contrast with the second property, the third property is completely internal. It
is all about E and F and no other additional information is involved.

The second and the third properties make sense even if the given field extension is
not of finite degree. The first property, however, implies that the field extension is of
finite degree. One can talk about a splitting field of a family of polynomials, replace the
statement with this extended notation, and still get equivalent properties. This is a key
result for understanding algebraic extensions of infinite degree. Here, however, we do
not discuss infinite degree algebraic extensions.

Definition 22.2.2. Suppose E is an algebraic extension of F . We say E is a normal
field extension of F if the third property in Theorem 22.2.1 holds.

Proof of Theorem 22.2.1. (1)⇒ (2) Since E is a splitting field of f over F , there are
α1, . . . , αn ∈ E such that

f(x) = ld(f)

n∏
i=1

(x− αi) and E = F [α1, . . . , αn].

Suppose L is a field extension of E and θ ∈ AutF (L). Then by Lemma 22.1.4, θ(αi)
is a zero of f in L. Since α1, . . . , αn are the only zeros of f in E ⊆ L, we obtain that

θ(αi) ∈ {α1, . . . , αn} (22.1)

for every i. As θ is injective, form (22.1) we deduce that θ permutes elements of
{α1, . . . , αn}. Therefore

θ(E) = θ(F [α1, . . . , αn]) = θ(F )[θ(α1), . . . , θ(αn)] = F [α1, . . . , αn] = E.

(2)⇒ (3) This is the most technical part of the proof. For every β ∈ E, we want to
show that there are βi’s inE such thatmβ,F (x) =

∏m
i=1(x−βi). The second property

is about the field extensions of E. Hence we need to work with field extensions
of E that contain all the zeros βi of mβ,F , say L is such a field. Since β and βi
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are zeros of the irreducible polynomial mβ,F (x), by Lemma 16.2.2 there is an F -
isomorphism θi : F [β]→ F [βi] such that θi(β) = βi. If we manage to extend θi to an
F -automorphism θ̂i of L, then by hypothesis, θ̂i(E) = E, which implies that

θ̂i(β) = θi(β) = βi

is in E, and the claim follows. Hence we focus on extending θi to an F -isomorphism
from L to itself. This reminds of the isomorphism extension theorem (see Theo-
rem 17.1.1). By the isomorphism extension theorem, we can extend θi to an F -
automorphism θ̂i of L if L is a splitting field of a polynomial over F .

Altogether we have proved that the claim follows if we show the existence of a field
L with the following properties.

1. L is a field extension of E.

2. There are βi’s in L such that mβ,F (x) =
∏m
i=1(x− βi).

3. There is f ∈ F [x] such that L is a splitting field of f over F .

Notice that the conditions (2) and (3) are satisfied by a splitting field of mβ,F over F ,
but this field does not necessarily contain E as a subfield. The following is a common
technique that is used to construct a field which is a splitting field of a polynomial over
F and contains E as a subfield. 1

Suppose (γ1, . . . , γn) is an F -basis of E, and let

f(x) := mβ,F (x)mγ1,F (x) · · ·mγn,F (x) ∈ F [x].

Suppose L is a splitting field of f over E. Clearly L satisfies the first and the second
desired properties that are mentioned above. Next we show that L is a splitting field of
f over F . Since L is a splitting field of f over E, there are βi’s and γi,j’s in L such
that

mβ,F (x) =

m∏
i=1

(x− βi) and mγi,F (x) =

mi∏
j=1

(x− γi,j), (22.2)

and
L = E[β1, . . . , βm, γ1,1, . . . , γn,mn ]. (22.3)

Since γi ∈ E ⊆ L is a zero of mγi,F , γi ∈ {γi,1, . . . , γi,mi}. Hence without loss of
generality we can and will assume that γi,1 = γi for every i.

Notice that (22.3) means that if a subfield of L contains E, βi’s and γi,j’s, then
it is the entire L. On the other hand, as γi’s form an F -basis of E, if a subfield of L
contains F and γi’s, then it contains E. Altogether we obtain that a subfield of L which
contains F , βi’s, and γi,j’s is the entire L. This means

L = F [β1, . . . , βm, γ1,1, . . . , γn,mn ]. (22.4)

By (22.2) and (22.4), we deduce that L is a splitting field of f over F . This gives us a
field L with the mentioned desired properties, and the claim follows.

1We will use this method to show the existence of a normal closure of a field extension.
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(3)⇒ (1) We use the same technique as in the proof of the previous step. Suppose
(γ1, . . . , γn) is an F -basis of E, and let

g(x) := mγ1,F (x) · · ·mγn,F (x).

By hypothesis, mγi,F can be written as a product of degree one factors in E[x]. Hence
there are αi’s in E such that

g(x) = (x− α1) · · · (x− αd). (22.5)

We also notice that γi’s are zeros of g in E, and so

γi ∈ {α1, . . . , αd} (22.6)

for every i. Therefore

E = SpanF (γ1, . . . , γn) ⊆F [γ1, . . . , γn]

⊆F [α1, . . . , αd] ⊆ E.

Hence E = F [α1, . . . , αn], which together with (22.5) implies that E is a splitting
field of g over F . This completes the proof.
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Lecture 23

23.1 The group of automorphism of normal field extensions.

Using Theorem 22.2.1, we obtain the following result on the group of automor-
phisms.

Proposition 23.1.1. Suppose E is a normal extension of F and [E : F ] <∞. Then

1. For every field extension L of E,

rL,E : AutF (L)→ AutF (E), rL,E(θ) := θ|E

is a well-defined group homomorphism. Moreover ker rL,E = AutE(L); in
particular, AutE(L) is a normal subgroup of AutF (L).

2. For every extension L of E which is a finite normal extension of F , rL,E is
surjective and

AutF (L)/AutE(L) ' AutF (E).

Proof. (1) Since E is a finite normal extension of F , by Theorem 22.2.1 for every
field extension L of E and every θ ∈ AutF (L), θ(E) = E. Hence θ|E is an F -
automorphism of E. Therefore rL,E is a well-defined map. It is easy to check that it is
a group homomorphism.

Notice that θ ∈ ker rL,E if and only if θ|E = idE . Hence ker rL,E = AutE(L).
From group theory, we know that kernel of a group homomorphism is a normal sub-
group.

(2) Let’s start by understanding what the surjectivity of rL,E means. It means that
every θ ∈ AutF (E) can be extended to an F -automorphism of L. By the isomorphism
extension theorem, θ can be extended to an F -isomorphism from L to itself if L is a
splitting field of a polynomial f ∈ F [x]. Let’s explain why this is the case. If L is a
splitting field of f ∈ F [x] over F , then by f = θ(f) and E = θ(E), we observe that
L is also a splitting field of θ(f) over θ(E). Therefore by the isomorphism extension
theorem (see Theorem 17.1.1) we get the desired extension.
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Since L is a finite normal extension of F , by Theorem 22.2.1 there is f ∈ F [x] such
that L is a splitting field of f over F . Hence as explained above by the isomorphism
extension theorem, there is θ ∈ AutF (L) such that θ|E = θ, and so rL,E is surjective.

By the first isomorphism theorem for groups, we have

AutF (L)/ ker rL,E ' Im rL,E ,

and so
AutF (L)/AutE(L) ' AutF (E).

This completes the proof.

The following commutative diagram captures the surjectivity of
rL,E when L is a finite normal extension of F . In this diagram,
every row is an isomorphism, and the dashed arrow means that
for a given θ, we can find θ that makes the diagram commutative.

L L

E E

F F

θ

θ

id

23.2 Normal extensions and tower of fields

When we learn about a property of field extensions, we have to ask ourselves how it
behaves in a tower of fields. For instance, by the Tower Rule, we know that for a tower
of fields F ⊆ E ⊆ L, L is a finite extension of F if and only if L is a finite extension
of E and E is a finite extension of F . We will see that normal extensions do not have
such a nice behavior. We, however, start with a positive result.

Lemma 23.2.1. Suppose F ⊆ E ⊆ L is a tower of field extensions. Then the following
holds.

1. For every β ∈ L, mβ,E |mβ,F in E[x].

2. If L is a normal extension of F , then L is a normal extension of E.

Proof. (1) Since β is a zero of mβ,F (x) ∈ E[x], by Proposition 8.2.6 we have that
mβ,E divides mβ,F in E[x].

(2) Since L is a normal extension of F , for every β, mβ,F (x) can be written as
a product of degree one factors in L[x]. By part one, mβ,E divides mβ,F in E[x],
and so mβ,E divides mβ,F in L[x]. Since L[x] is a UFD, degree one polynomials
are irreducible in L[x], mβ,F can be written as a product of degree one factors, and
mβ,E |mβ,F inL[x], we obtain thatmβ,E can be written as product of degree one factors
in L[x]. This means L is a normal extension of E, which completes the proof.

The following examples show us that the normal extension property cannot be
deduced for other parts of a tower.

By Example 17.2.2 and Theorem 22.2.1, Q[ζn,
n
√

2] is a normal extension of Q.
We, however, claim that the intermediate field Q[ n

√
2] is not a normal extension of Q
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if n > 2. By Eisenstein’s criterion, xn − 2 is irreducible in Q[x]. As n
√

2 is a zero
of xn − 2, by Theorem 8.2.5 m n√2,Q(x) = xn − 2. This polynomial has at most two
real zeros, and so not all of its zeros are in Q[ n

√
2]. Therefore Q[ n

√
2] is not a normal

extension of Q. Notice that if [E : F ] = 2, then for every α ∈ E \ F we have

1 < degmα,F = [F [α] : F ] ≤ [E : F ] = 2.

Hence for every α ∈ E, we have 1 ≤ degmα,F ≤ 2,
and so all the zeros of mα,F are in E. Therefore E is
a normal extension of F . This implies that Q[ 4

√
2] is

a normal extension of Q[
√

2] and Q[
√

2] is a normal
extension of Q, but as we showed above Q[ 4

√
2] is not a

normal extension of Q.

L

F

⇒

L

E

F

,

Q[ζ3,
3
√

2]

Q[ 3
√

2]

Q

,

Q[ 4
√

2]

Q[
√

2]

Q

23.3 Normal closure of a field extension

Suppose E is a finite field extension of F . We prove the existence of a smallest
field extension of E which is a normal extension of F .

Proposition 23.3.1. Suppose E is a finite field extension of F . Then there is a field
extension L of E such that the following holds:

1. L is a normal extension of F .

2. If L′ is a field extension of E and L′ is a normal extension of F , then there is an
E-embedding θ : L→ L′.

In particular, if L1 and L2 satisfy the above properties, then there is an E-isomorphism
θ : L1 → L2.

A field L which satisfies the properties mentioned in Proposition 23.3.1 is called a
normal closure of the field extension E of F .

Proof. We use an identical technique as in the proof of Theorem 22.2.1 (going from
(2) to (3)). Suppose (γ1, . . . , γd) is an F -basis of E. Let L be a splitting field of

f(x) := mγ1,F (x) · · ·mγd,F (x)

over E. Then there are γi,j’s in L such that for every i

mγi,F (x) =

ni∏
j=1

(x− γi,j) and L = E[γ1,1, . . . , γd,nd ]. (23.1)

Since γi ∈ E is a zero of mγi,F (x) and E ⊆ L, we can and will assume that γi,1 = γi
for every i. Therefore

E = SpanF (γ1, . . . , γd) ⊆ F [γ1, . . . , γn] ⊆ F [γ1,1, . . . , γd,nd ]. (23.2)



144 CHAPTER 23. LECTURE 23

By (23.2), we obtain that

L = E[γ1,1, . . . , γd,nd ] ⊆ F [γ1,1, . . . , γd,nd ] ⊆ L.

Hence L = F [γ1,1, . . . , γd,nd ], and so by (17.2) we deduce that L is a splitting field of
f over F . Hence by Theorem 22.2.1, L is a normal field extension of F .

Suppose L′ is a field extension of E and L′ is a normal extension of F . Then for
every i, γi ∈ L′. Since L′ is a normal extension of F , there are γ′i,j’s in L′ such that

mγi,F (x) =

ni∏
j=1

(x− γ′i,j). (23.3)

Then L′′ := E[γ′1,1, . . . , γ
′
d,nd

] ⊆ L′ is a splitting field of f(x) over E. Therefore
by the uniqueness of splitting fields (see Theorem 17.1.2) there is an E-isomorphism
θ : L→ L′′. As L′′ is a subfield of L′, θ can be viewed as an element in EmbE(L,L′).

If L1 and L2 satisfy these conditions, then there are θ1 ∈ EmbE(L1, L2) and
θ2 ∈ EmbE(L2, L1). As Li’s are finite field extensions of E, we deduce that θi’s are
isomorphisms. This completes the proof.

23.4 Normal extension and extending embeddings

The following result on extending embeddings is a variant of the isomorphism
extension theorem.

Proposition 23.4.1. Suppose F ⊆ E ⊆ L is a tower of fields, and L is a finite normal
extension of F . Suppose θ ∈ EmbF (E,L). Then there is θ̂ ∈ AutF (L) such that
θ̂|E = θ.

Proof. Since L is a finite normal extension of F , there is f ∈ F [x] such that L is a
splitting field of f over F . So there are αi’s in L such that

f(x) = ld(f)
n∏
i=1

(x− αi) and L = F [α1, . . . , αn].

Notice that since E and θ(E) contain F as a subfield, L can be viewed as a splitting
field of f over E and also as a splitting field of θ(f) = f over θ(E). Thus by the
isomorphism extension theorem, there is θ̂ : L → L such that θ̂|E = θ, and this
completes the proof.

23.5 Group of automorphisms of a field extension

For every field extensionE ofF , by Lemma 22.1.4 and Lemma 16.2.2, the following
is a bijection

EmbF (F [α], E)→ {α′ ∈ E | mα,F (α′) = 0}, θ 7→ θ(α). (23.4)
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Then by (23.4) we have

|EmbF (F [α], E)| = # of distinct zeros of mα,F in E ≤ degmα,F = [F [α] : F ].

Suppose E is a finite normal extension of F and E = F [α]. Then

|AutF (E)| ≤ [E : F ]

and equality holds if mα,F has distinct zeros in E. This takes us to the following
questions.

1. What if E is not of the form F [α] for some α?

2. When can we be sure that E = F [α] for some α?

The following theorem addresses the first question (and more!).

Theorem 23.5.1. Suppose θ : F → F ′ is a field isomorphism, and f(x) ∈ F [x].
Suppose E is a splitting field of f over F , and E′ is a splitting field of θ(f) over F ′.
Then

| Isoθ(E,E′)| ≤ [E : F ].

Moreover the equality holds if irreducible factors of f in F [x] do not have multiple
zeros in E.

This is an extremely important result. Proof of this theorem has some similarities
with the proof of the isomorphism extension theorem (see Theorem 17.1.1).

Proof of Theorem 23.5.1. We proceed by strong induction on [E : F ]. If [E : F ] = 1,
then E = F and E′ = F ′, and so Isoθ(E,E

′) = Isoθ(F, F
′) = {θ} has exactly 1

element, and equality holds.
SupposeE 6= F . Hence f has a zero α ∈ E which is not in F . Notice that for every

θ̂ ∈ Isoθ(E,E
′), we have θ̂|F [α] is in Embθ(F [α], E′). Notice that by Lemma 22.1.4

Embθ(F [α], E′)→ {α′ ∈ E′ | θ(mα,F )(α′) = 0}, θ̂ 7→ θ̂(α) (23.5)

is a well-defined function. Since a ring homomorphism θ1 : F [α] → E′ is uniquely
determined by θ1|F and θ1(α), the function given in (23.5) is injective. If α′ is a zero
of θ(mα,F ) in E′, then by Lemma 16.2.2 there is θ1 ∈ Isoθ(F [α], F ′[α′]), and so the
function given in (23.5) is a bijection. Hence

|Embθ(F [α], E′)| =# of distinct zeros of mα,F in E
≤degmα,F = [F [α] : F ]. (23.6)

For every θ1 ∈ Embθ(F [α], E′), notice that E is a splitting field of f over F [α], and
E′ is a splitting field of θ(f) = θ1(f) over F ′[θ1(α)]. Since [E : F [α]] < [E : F ], by
the strong induction hypothesis, we have

| Isoθ1(E,E′)| ≤ [E : F [α]]. (23.7)
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Hence

| Isoθ(E,E′)| =
∑

θ1∈Embθ(F [α],E′)

| Isoθ1(E,E′)|

≤ [E : F [α]]|Embθ(F [α], E′)| (by (23.7))
≤ [E : F [α]][F [α] : F ] = [E : F ]. (by (23.6))

To prove the moreover part, we go back through the above argument and show the
equalities hold. If α is a zero of f , then mα,F is an irreducible factor of f in F [x].
Then, by hypothesis, mα,F has distinct zeros in E. Hence by Proposition 18.3.4,
gcd(mα,F ,m

′
α,F ) = 1. Thus gcd(θ(mα,F ), θ(mα,F )′) = 1, and so by Proposi-

tion 18.3.4, θ(mα,F ) has distinct zeros in E′. Therefore by (23.6), we have

|Embθ(F [α], E′)| = [F [α] : F ]. (23.8)

As in the above argument, we want to use the strong induction hypothesis to obtain
that | Isoθ1(E,E′)| = [E : F [α]] for every θ1 ∈ Embθ(F [α], E′). We have already
pointed out that E is a splitting field of f over F [α] and E′ is a splitting field of θ1(f)
over F ′[θ1(α)]. To use the strong induction hypothesis for θ1, E, and E′, it is enough
to show that all the irreducible factors of f in (F [α])[x] do not have multiple zeros in
E. Let p(x) be a monic irreducible factor of f . Then there is β ∈ E which is a zero of
p. Hence by Theorem 8.2.5, p(x) = mβ,F [α]. Hence by Lemma 23.2.1, p(x)|mβ,F in
(F [α])[x]. Since mβ,F is an irreducible factor of f in F [x], by hypothesis it does not
have multiple zeros in E. Hence its divisor p does not have multiple zeros in E, either.
Therefore by the strong induction hypothesis, we have

| Isoθ1(E,E′)| = [E : F [α]]. (23.9)

Hence

| Isoθ(E,E′)| =
∑

θ1∈Embθ(F [α],E′)

| Isoθ1(E,E′)|

= [E : F [α]]|Embθ(F [α], E′)| (by (23.9))
= [E : F [α]][F [α] : F ] = [E : F ]. (by (23.8))

This completes the proof.
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Lecture 24

24.1 Separable polynomials

To have a simpler formulation of Theorem 23.5.1, we define separable polynomials
as follows.

Definition 24.1.1. Suppose F is a field and f ∈ F [x]. We say f is separable (in F [x])
if its irreducible factors in F [x] do not have multiple zeros in a splitting field of f over
F .

Let us make two remarks:

1. The way we defined separability of f ∈ F [x] depends on both the polynomial
f and the field F . For instance every polynomial f ∈ F [x] is separable as an
element of E[x] where E is a splitting field of f over F (Notice that all the
irreducible factors of f in E[x] are of degree 1 and so they do not have multiple
zeros). On the other hand, xp − t is irreducible in Fp(t) and it has multiple
zeros in its splitting field. To show the latter you can use the fact that either the
derivative of this polynomial is zero or xp − t = (x− p

√
t)p.

2. If p ∈ F [x] is irreducible, then by Proposition 18.3.4, p is separable in F [x] if
and only if gcd(p, p′) = 1 in F [x]. Notice that if E is a field extension of F
and gcd(p, p′) = 1 in F [x], then gcd(p, p′) = 1 in E[x] as well. Hence for an
irreducible polynomial p ∈ F [x], separability only depends on the polynomial.

By the special case of Theorem 23.5.1 for F = F ′ and θ := idF , we obtain the
following:

Theorem 24.1.2. If E is a finite normal extension of F , then |AutF (E)| ≤ [E : F ].

Theorem 24.1.3. Suppose E is a splitting field of a separable polynomial f ∈ F [x]
over F . Then |AutF (E)| = [E : F ].
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24.2 Separable and Galois extensions

We start by defining separable field extensions.

Definition 24.2.1. Suppose E is an algebraic field extension of F . We say E is a
separable extension of F if, for every α ∈ E, mα,F is a separable element of F [x].

Theorem 24.2.2. Suppose E is a finite field extension of F . Then the following
statements are equivalent.

1. E is a normal separable extension of F .

2. E is a splitting field of a separable f ∈ F [x] over F .

3. |AutF (E)| = [E : F ].

Proof. (1) ⇒ (2). Suppose (γ1, . . . , γm) is an F -basis of E. Since E is a normal
extension of F , there are γi,j ∈ E such that mγi,F (x) =

∏ni
j=1(x− γi,j). Let

f(x) :=

m∏
i=1

mγi,F (x) =
∏
i,j

(x− γi,j).

We notice that γi ∈ E is among {γi,1, . . . , γi,ni}. So

E ⊇ F [γ1,1, . . . , γm,nm ] ⊇ SpanF (γ1, . . . , γm) = E.

Hence E is a splitting field of f over F . Since E is a separable extension of f ,
mγi,F ’s do not have multiple zeros in E. Hence f is separable in F [x] (notice that that
mγi,F (x)’s are irreducible in F [x]).

(2)⇒ (3). It follows from Theorem 24.1.3.
(3)⇒ (1). For every α ∈ E, we have

|AutF (E)| =
∑

θ∈EmbF (F [α],E)

| Isoθ(E,E)|

(By Theorem 23.5.1) ≤[E : F [α]]|EmbF (F [α], E)|
(By (23.4)) =[E : F [α]] · (#of distinct zeros of mα,F in E) (24.1)

On the other hand, by hypothesis and the Tower Rule, we have

|AutF (E)| = [E : F ] = [E : F [α]][F [α] : F ]. (24.2)

Hence by (24.2), (24.1), and Proposition 20.1.2, we obtain that

#of distinct zeros of mα,F in E ≥ [F [α] : F ] = degmα,F .

Therefore mα,F has degmα,F distinct zeros in E. Hence the following holds.

1. There are α1, . . . , αm ∈ E such that mα,F (x) =
∏m
i=1(x− αi).
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2. mα,F does not have multiple zeros in E. The first assertion implies that E is
a normal extension of F , and form the second statement we deduce that E is a
separable extension of F . This completes the proof.

Definition 24.2.3. An algebraic field extension E of F is called a Galois extension if it
is normal and separable.

Galois extensions will be explored more later.
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