SOLUTIONS OF QUIZ 1, VERSION A, MATH100B, WINTER 2021

- 1. Answer the following questions and briefly justify your answers.
 - (a) (1 point) True or false. Every integral domain can be embedded into a field.

By the universal property of field of fractions, every integral domain D can be embedded in its field of fractions Q(D).

(b) (2 point) Find $|(\mathbb{Z}[x])^{\times}|$.

For every integral domain D, we have $D[x]^{\times} = D^{\times}$. Hence $\mathbb{Z}[x]^{\times} = \mathbb{Z}^{\times} = \{1, -1\}$. Therefore $|(\mathbb{Z}[x])^{\times}| = 2$.

(c) (3 points) True or false. There is an integral domain D such that

$$\underbrace{1_D + \dots + 1_D}_{9 \text{ times}} = 0 \text{ and } 1_D + 1_D + 1_D \neq 0.$$

It is false. The characteristic of an integral domain is prime, and it is equal to the additive

order of 1_D . By the assumption, the additive order of 1_D is not 3 and it divides 9. Hence the additive order of 1_D is 9, which is not prime. Hence D is not an integral domain.

(d) (4 points) Find $|(\mathbb{Z}_9 \times \mathbb{Z}_5)^{\times}|$.

We know that $(A_1 \times A_2)^{\times} = A_1^{\times} \times A_2^{\times}$ and $\mathbb{Z}_n^{\times} = \{[a]_n \mid 1 \le a \le n, \gcd(a, n) = 1\}$. Therefore for every prime p and every positive integer n, we have

$$|\mathbb{Z}_{p^n}^{\times}| = p^n - |\{a \mid 1 \le a \le p^n, p|a\}| = p^n - p^{n-1}.$$

Hence

$$|(\mathbb{Z}_9 \times \mathbb{Z}_5)^{\times}| = |\mathbb{Z}_9^{\times}||\mathbb{Z}_5^{\times}| = (9-3)(5-1) = (6)(4) = 24.$$

2. (5 points) Prove that $\mathbb{Q}[x]/\langle x^2 - 3 \rangle \simeq \mathbb{Q}[\sqrt{3}]$ where $\mathbb{Q}[\sqrt{3}]$ is the smallest subring of \mathbb{C} that contains \mathbb{Q} and $\sqrt{3}$.

Let $\phi_{\sqrt{3}} : \mathbb{Q}[x] \to \mathbb{C}, \phi_{\sqrt{3}}(f(x)) := f(\sqrt{3})$ be the evaluation map. We know that $\phi_{\sqrt{3}}$ is a ring homomorphism, and its image is $\mathbb{Q}[\sqrt{3}]$. Therefore by the first isomorphism theorem we have that

$$\mathbb{Q}[x]/\ker\phi_{\sqrt{3}}\simeq\mathbb{Q}[\sqrt{3}].$$

As $\sqrt{3}$ is a zero of $x^2 - 3$, we have that $x^2 - 3 \in \ker \phi_{\sqrt{3}}$. Suppose $f(x) \in \ker \phi_{\sqrt{3}}$. By the long division, there are $q(x), r(x) \in \mathbb{Q}[x]$ such that

$$f(x) = (x^2 - 3)q(x) + r(x)$$
 and $\deg r < \deg(x^2 - 3)$.

Thus $r(x) = a_0 + a_1 x$ for some $a_0, a_1 \in \mathbb{Q}$. Evaluating f at $\sqrt{3}$, we obtain that

$$0 = r(\sqrt{3}) = a_0 + a_1\sqrt{3}$$

If $a_1 \neq 0$, then $\sqrt{3} = -\frac{a_0}{a_1}$. This is a contradiction as $\sqrt{3}$ is irrational. Therefore $a_1 = 0$, which implies that $a_0 = 0$. Hence r(x) = 0. This implies that $f(x) \in \langle x^2 - 3 \rangle$. Altogether we deduce that $\ker \phi_{\sqrt{3}} = \langle x^2 - 3 \rangle$. This finishes the proof.

3. (5 points) Suppose p is a prime number and $f(x) \in \mathbb{Z}_p[x]$ is a polynomial of degree 3. Use the long division for polynomials to prove that $|\mathbb{Z}_p[x]/\langle f(x)\rangle| = p^3$. For every p(x) by the long division, there

are unique q(x) and r(x) in $\mathbb{Z}_p[x]$ such that

$$p(x) = f(x)q(x) + r(x)$$
 and $\deg r < \deg f$.

Notice that since p is prime, \mathbb{Z}_p is a field, and so we are allowed to use the long division. Therefore

$$p(x) + \langle f(x) \rangle = r(x) + \langle f(x) \rangle$$

for some $r(x) \in \mathbb{Z}_p[x]$ that has degree at most 2.

Notice that if $r_1(x) + \langle f(x) \rangle = r_2(x) + \langle f(x) \rangle$ for some $r_1, r_2 \in \mathbb{Z}_p[x]$ with degree at most 2, then $r_1(x) - r_2(x) = f(x)g(x)$ for some g(x). As deg f = 3 and deg $(r_1 - r_2) \ge 2$, we deduce that $r_1 - r_2 = 0$.

Overall we obtain that every element of $\mathbb{Z}_p[x]/\langle f(x)\rangle$ can be uniquely written as

$$(a_0 + a_1x + a_2x^2) + \langle f(x) \rangle$$

for some $a_0, a_1, a_2 \in \mathbb{Z}_p$. We have p choices for each one of the a_0, a_1 , and a_2 . Hence

$$|\mathbb{Z}_p[x]/\langle f(x)\rangle| = p^3.$$

4. Suppose m and n are positive integers and gcd(m, n) = 1. Let e : Z → Z_n×Z_m, e(k) := k([1]_n, [1]_m). You can use without proof that e is a ring homomorphism.
(a) (3 points) Find the kernel of e.

 $k \in \ker e$ if and only if $k[1]_n = [0]_n$ and $k[1]_m = [0]_m$. The latter holds if and only if n|k and m|k. We know that n|k and m|k exactly when $\operatorname{lcm}(m,n)|k$. Since m and n are coprime, $\operatorname{lcm}(m,n) = mn$. Overall we deduce that $k \in \ker e$ if and only if mn|k. This means

 $\ker e = (mn)\mathbb{Z}.$

(b) (4 points) Prove that e is surjective.

Notice that $e(n) = ([0]_n, [n]_m)$ and $e(m) = ([m]_n, [0]_m)$. Therefore the additive subgroup groups generated by $([0]_n, [n]_m)$ and $([m]_n, [0]_m)$ are subsets of the image of e. Since gcd(m, n) = 1, $[n]_m$ is a unit in \mathbb{Z}_m , which implies that the group generated by $[n]_m$ is the entire \mathbb{Z}_m . Similarly the group generated by $[m]_n$ is the entire \mathbb{Z}_n . Therefore $\mathbb{Z}_n \times \{[0]_m\}$ and $\{0\} \times \mathbb{Z}_m$ are subsets of the image of e. Thus their sum is also a subset of the image of e, which implies that e is surjective.

(c) (3 points) Prove that $\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}_n \times \mathbb{Z}_m$.

By the first isomorphism theorem, we have

$$\mathbb{Z}/\ker e \simeq \operatorname{Im} e.$$

Notice that ker $e = (mn)\mathbb{Z}$ and Im $e = \mathbb{Z}_n \times \mathbb{Z}_m$; and so the claim follows.