QUIZ 1, VERSION A, MATH100B, WINTER 2021

1. Answer the following questions and briefly justify your answers.
(a) (1 point) True or false. Every integral domain can be embedded into a field.
(b) (2 point) Find $\left|(\mathbb{Z}[x])^{\times}\right|$.
(c) (3 points) True or false. There is an integral domain D such that

$$
\underbrace{1_{D}+\cdots+1_{D}}_{9 \text { times }}=0 \text { and } 1_{D}+1_{D}+1_{D} \neq 0
$$

(d) (4 points) Find $\left|\left(\mathbb{Z}_{9} \times \mathbb{Z}_{5}\right)^{\times}\right|$.
2. (5 points) Prove that $\mathbb{Q}[x] /\left\langle x^{2}-3\right\rangle \simeq \mathbb{Q}[\sqrt{3}]$ where $\mathbb{Q}[\sqrt{3}]$ is the smallest subring of \mathbb{C} that contains \mathbb{Q} and $\sqrt{3}$.
3. (5 points) Suppose p is a prime number and $f(x) \in \mathbb{Z}_{p}[x]$ is a polynomial of degree 3 . Use the long division for polynomials to prove that $\left|\mathbb{Z}_{p}[x] /\langle f(x)\rangle\right|=p^{3}$.
4. Suppose m and n are positive integers and $\operatorname{gcd}(m, n)=1$. Let $e: \mathbb{Z} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}, e(k):=k\left([1]_{n},[1]_{m}\right)$. You can use without proof that e is a ring homomorphism.
(a) (3 points) Find the kernel of e.
(b) (4 points) Prove that e is surjective.
(c) (3 points) Prove that $\mathbb{Z} / m n \mathbb{Z} \simeq \mathbb{Z}_{n} \times \mathbb{Z}_{m}$.

