SOLUTIONS OF QUIZ 1, VERSION B, MATH100B, WINTER 2021

- 1. Answer the following questions and briefly justify your answers.
 - (a) (1 points) True or false. Every integral domain is a field.

No, for instance \mathbb{Z} is an integral domain, but it is not a field.

(b) (2 point) True or false. A field has exactly two ideals. This is true. We know that if an ideal

contains a unit, it is the entire ring. In a field, every non-zero element is a unit. Hence there is only one non-zero ideal which is the entire ring. Since a field F is non-trivial, $F \neq \{0\}$. So F has exactly two ideals.

(c) (3 points) Find the characteristic of $\mathbb{Z}_3 \times \mathbb{Z}_7$.

In a finite unital ring, the characteristic is the additive order of the identity. So we need to find the smallest n such that $n([1]_3, [1]_7) = ([0]_3, [0]_7)$. We have

 $n([1]_3, [1]_7) = ([0]_3, [0]_7) \Leftrightarrow ([n]_3 = [0]_3 \text{ and } [n]_7 = [n]_7) \Leftrightarrow (3|n \text{ and } 7|n) \Leftrightarrow 21|n.$

Hence the characteristic of this ring is 21.

(d) (4 points) Find $|(\mathbb{Z}_{25} \times \mathbb{Z}_7)^{\times}|$.

We know that $(A_1 \times A_2)^{\times} = A_1^{\times} \times A_2^{\times}$ and $\mathbb{Z}_n^{\times} = \{[a]_n \mid 1 \le a \le n, \gcd(a, n) = 1\}$. Therefore for every prime p and every positive integer n, we have

$$|\mathbb{Z}_{p^n}^{\times}| = p^n - |\{a \mid 1 \le a \le p^n, p|a\}| = p^n - p^{n-1}.$$

Hence

$$|(\mathbb{Z}_{25} \times \mathbb{Z}_7)^{\times}| = |\mathbb{Z}_{25}^{\times}||\mathbb{Z}_7^{\times}| = (25-5)(7-1) = (20)(6) = 120.$$

2. Let's recall that Q[i] = {a + bi | a, b ∈ Q} is a subring of C.
(a) (4 points) Prove that Q[x]/(x² + 1) ≃ Q[i].

Let $\phi_i : \mathbb{Q}[x] \to \mathbb{C}, \phi_i(f(x)) := f(i)$ be the evaluation map. Then the image of ϕ_i is $\mathbb{Q}[i]$. Therefore by the first isomorphism theorem

$$\mathbb{Q}[x]/\ker\phi_i\simeq\mathbb{Q}[i].$$

Since *i* is a zero of $x^2 + 1$, $x^2 + 1$ is in the kernel of ϕ_i . We want to show that ker $\phi_i = \langle x^2 + 1 \rangle$. We have already showed that $\langle x^2 + 1 \rangle \subseteq \ker \phi_i$. Now suppose that $f(x) \in \ker \phi_i$. By the long division, there are $q(x), r(x) \in \mathbb{Q}[x]$ such that

$$f(x) = (x^2 + 1)q(x) + r(x)$$
 and $\deg r < \deg(x^2 + 1)$.

Hence $r(x) = a_0 + a_1 x$ for some $a_0, a_1 \in \mathbb{Q}$. Evaluating f at i, we deduce that $0 = r(i) = a_0 + a_1 i$. This implies that $a_0 = a_1 = 0$. Therefore r(x) = 0, and so $f(x) \in \langle x^2 + 1 \rangle$. This completes the proof. (b) (2 points) Prove that $\mathbb{Q}[x]/\langle x^2+1\rangle$ is a field.

By part (a) it is enough to show that $\mathbb{Q}[i]$ is a field. We already know that $\mathbb{Q}[i]$ is a subring of \mathbb{C} . So it is enough to show that every non-zero element of $\mathbb{Q}[i]$ is a unit. Suppose a + bi is a non-zero element of $\mathbb{Q}[i]$ for some $a, b \in \mathbb{Q}$. Then

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

which is in $\mathbb{Q}[i]$. This completes the proof.

3. (4 points) Suppose p is prime. Prove that $x^{p^2} - x + 1$ has no zero in \mathbb{Z}_p .

By Fermat's little theorem, for every $a \in \mathbb{Z}_p$, we have $a^p = a$. Raising both side to power p, we get $a^{p^2} = (a^p)^p = a^p = a$. Therefore

$$a^{p^2} - a + 1 = a - a + 1 = 1 \neq 0$$

for every $a \in \mathbb{Z}_p$. The claim follows.

4. (4 points) Suppose $\alpha \in \mathbb{C}$ is a zero of a polynomial $p(x) \in \mathbb{Q}[x]$ of degree 3. Use the long division for polynomials to prove that $\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + a_2\alpha^2 | a_0, a_1, a_2 \in \mathbb{Q}\}.$

By definition, $\mathbb{Q}[\alpha]$ is the image of the evaluation map $\phi_{\alpha} : \mathbb{Q}[x] \to \mathbb{C}, \phi_{\alpha}(f(x)) := f(\alpha)$. Hence every element of $\mathbb{Q}[\alpha]$ is of the form $f(\alpha)$ for some $f(x) \in \mathbb{Q}[x]$. By the long division, there are $q(x), r(x) \in \mathbb{Q}[x]$ such that

$$f(x) = p(x)q(x) + r(x)$$
 and $\deg r < \deg p$.

Hence $r(x) = a_0 + a_1 x + a_2 x^2$ for some $a_0, a_1, a_2 \in \mathbb{Q}$. Evaluating f at α and using the assumption that $p(\alpha) = 0$, we obtain that

$$f(\alpha) = r(\alpha) = a_0 + a_1\alpha + a_2\alpha^2.$$

On the other hand, for every $a_i \in \mathbb{Q}$, we have that $a_0 + a_1\alpha + a_2\alpha^2 = \phi_\alpha(a_0 + a_1x + a_2x^2)$ is in the image of ϕ_α . The claim follows.

- 5. Let's recall that $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .
 - (a) (2 points) Suppose p is a prime and there is a ring homomorphism $f : \mathbb{Z}[i] \to \mathbb{Z}_p$ such that f(1) = 1. Prove that there is $x \in \mathbb{Z}_p$ such that $x^2 = -1$.

Since f is a ring homomorphism,

$$f(i)^2 = f(i^2) = f(-1) = -f(1) = -1;$$

and so $f(i) \in \mathbb{Z}_p$ is a solution of $x^2 = -1$ in \mathbb{Z}_p .

(b) (4 points) Find a surjective ring homomorphism $f : \mathbb{Z}[i] \to \mathbb{Z}_{13}$ such that $3-2i \in \ker f$. (Notice that $8^2 + 1$ is a multiple of 13.)

By part (a), we know that f(i) is a zero of $x^2 = -1$. So we look for the solutions of this equation in \mathbb{Z}_{13} . We are given that 8 is a zero of $x^2 = -1$ in \mathbb{Z}_3 , and so is -8. This means it might be legitimate to have either f(i) = 8 or f(i) = -8. In the first case, $f(3 - 2i) = 3 - 2 \times 8 = 0$. So that one should be a good choice for us, which means we let f(a + bi) := a + 8b. Let's check why it is a ring homomorphism. For $a, b, c, d \in \mathbb{Z}$, we have

$$f((a+bi) + (c+di)) = f((a+c) + (b+d)i)$$

=(a+c) + 8(b+d) = (a+8b) + (c+8d)
=f(a+bi) + f(c+di).

We also have

$$f((a+bi)(c+di)) = f((ac-bd) + (ad+bc)i) = (ac-bd) + 8(ad+bc),$$

and

$$f(a+bi)f(c+di) = (a+8b)(c+8d) = (ac-bd) + 8(ad+bc);$$

this implies that f is a ring homomorphism. We have already observed that 3 - 2i is in the kernel of f.