QUIZ 1, VERSION B, MATH100B, WINTER 2021

1. Answer the following questions and briefly justify your answers.
(a) (1 points) True or false. Every integral domain is a field.
(b) (2 point) True or false. A field has exactly two ideals.
(c) (3 points) Find the characteristic of $\mathbb{Z}_{3} \times \mathbb{Z}_{7}$.
(d) (4 points) Find $\left|\left(\mathbb{Z}_{25} \times \mathbb{Z}_{7}\right)^{\times}\right|$.
2. Let's recall that $\mathbb{Q}[i]=\{a+b i \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C}.
(a) (4 points) Prove that $\mathbb{Q}[x] /\left\langle x^{2}+1\right\rangle \simeq \mathbb{Q}[i]$
(b) (2 points) Prove that $\mathbb{Q}[x] /\left\langle x^{2}+1\right\rangle$ is a field.
3. (4 points) Suppose p is prime. Prove that $x^{p^{2}}-x+1$ has no zero in \mathbb{Z}_{p}.
4. (4 points) Suppose $\alpha \in \mathbb{C}$ is a zero of a polynomial $p(x) \in \mathbb{Q}[x]$ of degree 3 . Use the long division for polynomials to prove that $\mathbb{Q}[\alpha]=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{Q}\right\}$.
5. Let's recall that $\mathbb{Z}[i]:=\{a+b i \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}.
(a) (2 points) Suppose p is a prime and there is a ring homomorphism $f: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{p}$ such that $f(1)=1$. Prove that there is $x \in \mathbb{Z}_{p}$ such that $x^{2}=-1$.
(b) (4 points) Find a surjective ring homomorphism $f: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{13}$ such that $3-2 i \in \operatorname{ker} f$. (Notice that $8^{2}+1$ is a multiple of 13 .)
