SOLUTION OF QUIZ 2, VERSION A, MATH100B, WINTER 2021

- 1. Answer the following questions and briefly justify your answers.
 - (a) (2 point) Find all primes p such that x 1 is a factor of $x^5 2x^4 + 3x^3 + 5x^2 + 6$ in \mathbb{Z}_p .

By the factor theorem, x - 1 is a factor of f(x) if and only if f(1) = 0. Hence x - 1 is a factor of $x^5 - 2x^4 + 3x^3 + 5x^2 + 6$ in $\mathbb{Z}_p[x]$ if and only if p divides 1 - 2 + 3 + 5 + 6 = 13. Hence the only possible p is 13.

(b) (3 points) True or false. $\mathbb{Z}[x]$ is a PID.

No, it is not a PID as $\langle 2, x \rangle$ is not principal. Suppose to the contrary that it is a principal ideal, and it is generated by f(x). Then there is $p(x) \in \mathbb{Z}[x]$ such that 2 = f(x)p(x). Comparing the degrees, we deduce that $f(x) = c \in \mathbb{Z}$ is a constant. Since $x \in \langle f(x) \rangle$, there is $q(x) \in \mathbb{Z}[x]$, such that x = f(x)q(x) = cq(x). Comparing the leading coefficients we obtain that $c = \pm 1$. This means that $\langle 2, x \rangle = \langle \pm 1 \rangle = \mathbb{Z}[x]$. Hence there are $r(x), s(x) \in \mathbb{Z}[x]$ such that 1 = 2r(x) + xs(x). Evaluating both sides at 0, we deduce that 1 = 2r(0) which is a contradiction as 1 is not even.

2. (5 points) Determine whether $f(x) := x^5 - 2x^4 + 5x^3 - x + 1$ has a zero in \mathbb{Q} . Justify your answer.

Suppose $\frac{a}{b}$ is a zero of f and gcd(a, b) = 1. By the rational root criterion, a divides the constant term of f and b divides the leading coefficient of f. Therefore a and b divide 1. Hence $\frac{a}{b} = \pm 1$. We evaluate f at 1 and -1, and check whether or not we get zero. We have $f(1) = 1 - 2 + 5 - 1 + 1 = 4 \neq 0$ and $f(-1) = -1 - 2 - 5 + 1 + 1 = -6 \neq 0$. Therefore f does not have a rational zero.

- 3. Recall that $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
 - (a) (4 points) Prove that 5 + 2i is irreducible in $\mathbb{Z}[i]$. (Hint: Think about $N(a + bi) = |a + bi|^2 = a^2 + b^2$.)

Notice that for $z \in \mathbb{Z}[i]^{\times}$ if and only if there is $z' \in \mathbb{Z}[i]$ such that zz' = 1. In this case, we have N(z)N(z') = 1. As N(z) and N(z') are non-negative integers, we obtain that N(z) = 1. The only points of $\mathbb{Z}[i]$ that have complex norm 1 are ± 1 and $\pm i$. Notice that these are units in $\mathbb{Z}[i]$. In particular, 5 + 2i is not a unit. Now suppose $5 + 2i = z_1z_2$. Comparing the norm of both sides we deduce that $29 = N(z_1)N(z_2)$. As $N(z_i)$'s are non-negative integers, we deduce that either $N(z_1) = 1$ or $N(z_2) = 1$. This means either z_1 or z_2 is a unit in $\mathbb{Z}[i]$. Therefore 5 + 2i is irreducible in $\mathbb{Z}[i]$.

(b) (4 points) Prove that $\mathbb{Z}[i]/\langle 5+2i \rangle$ is a field.

We have proved that $\mathbb{Z}[i]$ is a PID. In a PID the ideal generated by an irreducible element is maximal. Hence $\langle 5+2i \rangle$ is a maximal ideal. The quotient ring by a maximal ideal of a unital commutative ring is a field. Hence $\mathbb{Z}[i]/\langle 5+2i \rangle$ is a field.

(c) (2 points) Prove that the characteristic of $\mathbb{Z}[i]/\langle 5+2i\rangle$ is 29.

Notice that $29 = (5+21)(5-2i) \in \langle 5+2i \rangle$. Hence $29(1 + \langle 5+2i \rangle) = 0$. Since the additive order of 1 in the quotient ring is 29. This implies that the characteristic of the quotient ring is 29.

SOLUTION OF QUIZ 2, VERSION A, MATH100B, WINTER 2021

- 4. Suppose E is a field extension of \mathbb{Z}_3 , and $\alpha \in E$ is a zero of $x^3 x + 2$.
 - (a) (6 points) Prove that $\mathbb{Z}_3[\alpha]$ is a field of order 27.

By Fermat's little theorem, for every $i \in \mathbb{Z}_3$, we have that $i^3 - i + 2 = 2 \neq 0$. Hence $x^3 - x + 2$ does not have a zero in \mathbb{Z}_3 . By the degree 2 or 3 irreducibility criterion, we have that $x^3 - x + 2$ is irreducible in $\mathbb{Z}_3[x]$. Since $x^3 - x + 2$ is monic and irreducible, and α is a zero of $x^3 - x + 2$, we deduce that $m_{\alpha,\mathbb{Z}_3}(x) = x^3 - x + 2$. Using the map of evaluation at α and the first isomorphism theorem, we have

$$\mathbb{Z}_3[\alpha] \simeq \mathbb{Z}_3[x]/\langle x^3 - x + 2 \rangle.$$

Every element of $\mathbb{Z}_3[x]/\langle x^3 - x + 2 \rangle$ can be uniquely written as $(a_0 + a_1x + a_2x^2) + \langle x^3 - x + 2 \rangle$ for some $a_i \in \mathbb{Z}_3$. For each a_0, a_1 , and a_2 we have 3 possibilities, and so we get $3^3 = 27$ elements in $\mathbb{Z}_3[\alpha]$.

We know that if E is a field extension of F and $\alpha \in E$ is algebraic over F, then $F[\alpha]$ is a field. Hence $\mathbb{Z}_3[\alpha]$ is a field.

(b) (2 points) Prove that $\alpha^{26} = 1$. (Hint: Think about $(\mathbb{Z}_3[\alpha])^{\times}$.)

The group of units of $\mathbb{Z}_3[\alpha]$ has 27 - 1 = 26 elements as $\mathbb{Z}_3[\alpha]$ is a field of order 27. Hence $\alpha^{26} = 1$. (Recall that if G is a finite group of order n, then for every $g \in G$ we have $g^n = 1$.)

(c) (2 points) Prove that $x^3 - x + 2$ divides $x^{26} - 1$.

 α is a zero of $x^{26} - 1 \in \mathbb{Z}_3[x]$. Hence $m_{\alpha,\mathbb{Z}_3}(x)|x^{26} - 1$. As it is proved in part (a), the minimal polynomial $m_{\alpha,\mathbb{Z}_3}(x)$ of α over \mathbb{Z}_3 is $x^3 - x + 2$. Hence $x^3 - x + 2|x^{26} - 1$.