SOLUTION OF QUIZ 2, VERSION A, MATH100B, WINTER 2021

1. Answer the following questions and briefly justify your answers.
(a) (2 point) Find all primes p such that $x-1$ is a factor of $x^{5}-2 x^{4}+3 x^{3}+5 x^{2}+6$ in \mathbb{Z}_{p}.

By the factor theorem, $x-1$ is a factor of $f(x)$ if and only if $f(1)=0$. Hence $x-1$ is a factor of $x^{5}-2 x^{4}+3 x^{3}+5 x^{2}+6$ in $\mathbb{Z}_{p}[x]$ if and only if p divides $1-2+3+5+6=13$. Hence the only possible p is 13 .
(b) (3 points) True or false. $\mathbb{Z}[x]$ is a PID.

No, it is not a PID as $\langle 2, x\rangle$ is not principal. Suppose to the contrary that it is a principal ideal, and it is generated by $f(x)$. Then there is $p(x) \in \mathbb{Z}[x]$ such that $2=f(x) p(x)$. Comparing the degrees, we deduce that $f(x)=c \in \mathbb{Z}$ is a constant. Since $x \in\langle f(x)\rangle$, there is $q(x) \in \mathbb{Z}[x]$, such that $x=f(x) q(x)=c q(x)$. Comparing the leading coefficients we obtain that $c= \pm 1$. This means that $\langle 2, x\rangle=\langle \pm 1\rangle=\mathbb{Z}[x]$. Hence there are $r(x), s(x) \in \mathbb{Z}[x]$ such that $1=2 r(x)+x s(x)$. Evaluating both sides at 0 , we deduce that $1=2 r(0)$ which is a contradiction as 1 is not even.
2. (5 points) Determine whether $f(x):=x^{5}-2 x^{4}+5 x^{3}-x+1$ has a zero in \mathbb{Q}. Justify your answer.

Suppose $\frac{a}{b}$ is a zero of f and $\operatorname{gcd}(a, b)=1$. By the rational root criterion, a divides the constant term of f and b divides the leading coefficient of f. Therefore a and b divide 1 . Hence $\frac{a}{b}= \pm 1$. We evaluate f at 1 and -1 , and check whether or not we get zero. We have $f(1)=1-2+5-1+1=4 \neq 0$ and $f(-1)=-1-2-5+1+1=-6 \neq 0$. Therefore f does not have a rational zero.
3. Recall that $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(a) (4 points) Prove that $5+2 i$ is irreducible in $\mathbb{Z}[i]$.
(Hint: Think about $N(a+b i)=|a+b i|^{2}=a^{2}+b^{2}$.)
Notice that for $z \in \mathbb{Z}[i]^{\times}$if and only if there is $z^{\prime} \in \mathbb{Z}[i]$ such that $z z^{\prime}=1$. In this case, we have $N(z) N\left(z^{\prime}\right)=1$. As $N(z)$ and $N\left(z^{\prime}\right)$ are non-negative integers, we obtain that $N(z)=1$. The only points of $\mathbb{Z}[i]$ that have complex norm 1 are ± 1 and $\pm i$. Notice that these are units in $\mathbb{Z}[i]$. In particular, $5+2 i$ is not a unit. Now suppose $5+2 i=z_{1} z_{2}$. Comparing the norm of both sides we deduce that $29=N\left(z_{1}\right) N\left(z_{2}\right)$. As $N\left(z_{i}\right)$'s are non-negative integers, we deduce that either $N\left(z_{1}\right)=1$ or $N\left(z_{2}\right)=1$. This means either z_{1} or z_{2} is a unit in $\mathbb{Z}[i]$. Therefore $5+2 i$ is irreducible in $\mathbb{Z}[i]$.
(b) (4 points) Prove that $\mathbb{Z}[i] /\langle 5+2 i\rangle$ is a field.

We have proved that $\mathbb{Z}[i]$ is a PID. In a PID the ideal generated by an irreducible element is maximal. Hence $\langle 5+2 i\rangle$ is a maximal ideal. The quotient ring by a maximal ideal of a unital commutative ring is a field. Hence $\mathbb{Z}[i] /\langle 5+2 i\rangle$ is a field.
(c) (2 points) Prove that the characteristic of $\mathbb{Z}[i] /\langle 5+2 i\rangle$ is 29 .

Notice that $29=(5+21)(5-2 i) \in\langle 5+2 i\rangle$. Hence $29(1+\langle 5+2 i\rangle)=0$. Since the additive order of 1 in the quotient ring is 29 . This implies that the characteristic of the quotient ring is 29.
4. Suppose E is a field extension of \mathbb{Z}_{3}, and $\alpha \in E$ is a zero of $x^{3}-x+2$.
(a) (6 points) Prove that $\mathbb{Z}_{3}[\alpha]$ is a field of order 27.

By Fermat's little theorem, for every $i \in \mathbb{Z}_{3}$, we have that $i^{3}-i+2=2 \neq 0$. Hence $x^{3}-x+2$ does not have a zero in \mathbb{Z}_{3}. By the degree 2 or 3 irreducibility criterion, we have that $x^{3}-x+2$ is irreducible in $\mathbb{Z}_{3}[x]$. Since $x^{3}-x+2$ is monic and irreducible, and α is a zero of $x^{3}-x+2$, we deduce that $m_{\alpha, \mathbb{Z}_{3}}(x)=x^{3}-x+2$. Using the map of evaluation at α and the first isomorphism theorem, we have

$$
\mathbb{Z}_{3}[\alpha] \simeq \mathbb{Z}_{3}[x] /\left\langle x^{3}-x+2\right\rangle
$$

Every element of $\mathbb{Z}_{3}[x] /\left\langle x^{3}-x+2\right\rangle$ can be uniquely written as $\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+\left\langle x^{3}-x+2\right\rangle$ for some $a_{i} \in \mathbb{Z}_{3}$. For each a_{0}, a_{1}, and a_{2} we have 3 possibilities, and so we get $3^{3}=27$ elements in $\mathbb{Z}_{3}[\alpha]$.
We know that if E is a field extension of F and $\alpha \in E$ is algebraic over F, then $F[\alpha]$ is a field. Hence $\mathbb{Z}_{3}[\alpha]$ is a field.
(b) (2 points) Prove that $\alpha^{26}=1$. (Hint: Think about $\left(\mathbb{Z}_{3}[\alpha]\right)^{\times}$.)

The group of units of $\mathbb{Z}_{3}[\alpha]$ has $27-1=26$ elements as $\mathbb{Z}_{3}[\alpha]$ is a field of order 27. Hence $\alpha^{26}=1$. (Recall that if G is a finite group of order n, then for every $g \in G$ we have $g^{n}=1$.)
(c) (2 points) Prove that $x^{3}-x+2$ divides $x^{26}-1$.
α is a zero of $x^{26}-1 \in \mathbb{Z}_{3}[x]$. Hence $m_{\alpha, \mathbb{Z}_{3}}(x) \mid x^{26}-1$. As it is proved in part (a), the minimal polynomial $m_{\alpha, \mathbb{Z}_{3}}(x)$ of α over \mathbb{Z}_{3} is $x^{3}-x+2$. Hence $x^{3}-x+2 \mid x^{26}-1$.

