QUIZ 2, VERSION A, MATH100B, WINTER 2021

1. Answer the following questions and briefly justify your answers.
(a) (2 point) Find all primes p such that $x-1$ is a factor of $x^{5}-2 x^{4}+3 x^{3}+5 x^{2}+6$ in \mathbb{Z}_{p}.
(b) (3 points) True or false. $\mathbb{Z}[x]$ is a PID.
2. (5 points) Determine whether $f(x):=x^{5}-2 x^{4}+5 x^{3}-x+1$ has a zero in \mathbb{Q}. Justify your answer.
3. Recall that $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(a) (4 points) Prove that $5+2 i$ is irreducible in $\mathbb{Z}[i]$.
(Hint: Think about $N(a+b i)=|a+b i|^{2}=a^{2}+b^{2}$.)
(b) (4 points) Prove that $\mathbb{Z}[i] /\langle 5+2 i\rangle$ is a field.
(c) (2 points) Prove that the characteristic of $\mathbb{Z}[i] /\langle 5+2 i\rangle$ is 29 .
4. Suppose E is a field extension of \mathbb{Z}_{3}, and $\alpha \in E$ is a zero of $x^{3}-x+2$.
(a) (6 points) Prove that $\mathbb{Z}_{3}[\alpha]$ is a field of order 27.
(b) (2 points) Prove that $\alpha^{26}=1$. (Hint: Think about $\left(\mathbb{Z}_{3}[\alpha]\right)^{\times}$.)
(c) (2 points) Prove that $x^{3}-x+2$ divides $x^{26}-1$.
