QUIZ 2, VERSION A, MATH100B, WINTER 2021

- 1. Answer the following questions and briefly justify your answers.
 - (a) (2 point) Find all primes p such that x 1 is a factor of $x^5 2x^4 + 3x^3 + 5x^2 + 6$ in \mathbb{Z}_p .
 - (b) (3 points) True or false. $\mathbb{Z}[x]$ is a PID.
- 2. (5 points) Determine whether $f(x) := x^5 2x^4 + 5x^3 x + 1$ has a zero in \mathbb{Q} . Justify your answer.
- 3. Recall that $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
 - (a) (4 points) Prove that 5 + 2i is irreducible in $\mathbb{Z}[i]$. (Hint: Think about $N(a + bi) = |a + bi|^2 = a^2 + b^2$.)
 - (b) (4 points) Prove that $\mathbb{Z}[i]/\langle 5+2i\rangle$ is a field.
 - (c) (2 points) Prove that the characteristic of $\mathbb{Z}[i]/\langle 5+2i\rangle$ is 29.
- 4. Suppose E is a field extension of \mathbb{Z}_3 , and $\alpha \in E$ is a zero of $x^3 x + 2$.

 - (a) (6 points) Prove that $\mathbb{Z}_3[\alpha]$ is a field of order 27. (b) (2 points) Prove that $\alpha^{26} = 1$. (Hint: Think about $(\mathbb{Z}_3[\alpha])^{\times}$.) (c) (2 points) Prove that $x^3 x + 2$ divides $x^{26} 1$.