SOLUTION OF QUIZ 2, VERSION B, MATH100B, WINTER 2021

1. (3 points) Suppose I is an ideal of a unital commutative ring A and A / I is a finite integral domain. Show that I is a maximal ideal.
A / I is a finite integral domain. Every finite integral domain is a field. Hence A / I is a field. A / I is a field if and only if I is maximal.
2. (5 points) Suppose D is an integral domain, $f, g \in D[x]$ are polynomials of degree at most n, and a_{1}, \ldots, a_{n+1} are distinct elements of D. Prove that if $f\left(a_{i}\right)=g\left(a_{i}\right)$ for every i, then $f(x)=g(x)$.

Let $h(x):=f(x)-g(x)$. Then a_{1}, \ldots, a_{n+1} are distinct zeros of h. Hence by the generalized factor theorem, there is $r(x) \in D[x]$ such that

$$
\begin{equation*}
h(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n+1}\right) r(x) . \tag{1}
\end{equation*}
$$

Notice that since D is an integral domain, we are allowed to use the generalized factor theorem. By (1), comparing the degrees of both sides of (1) we obtain that $\operatorname{deg} h=n+1+\operatorname{deg} r$. Since $\operatorname{deg} f, \operatorname{deg} g \leq n, \operatorname{deg} h \leq n$. From these we deduce that $\operatorname{deg} r<-1$. Hence $r(x)=0$, which in turn implies that $h(x)=0$; and so $f(x)=g(x)$.
3. (5 points) Determine whether $f(x):=x^{3^{2021}}-x+100$ has a zero in \mathbb{Q}. Justify your answer.

Notice that by Fermat's little theorem for every $a \in \mathbb{Z}_{3}$, we have $a^{3}=a$. And so $a^{3^{n}}=a$ for every positive integer n. Hence for every $a \in \mathbb{Z}_{3}$, we have that $f(a)=a^{3^{2021}}-a+100=1 \neq 0$. This means that the monic polynomial $f(x)$ does not have a zero in \mathbb{Z}_{3}. Hence by the mod- n criterion, we deduce that $f(x)$ does not have a rational zero.
4. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^{3}-x+1$.
(a) (3 points) Find the minimal polynomial of α over \mathbb{Q}.

By Fermat's little theorem, for every $i \in \mathbb{Z}_{3}$, we have $i^{3}-i+1=1 \neq 0$. Hence the monic polynomial $x^{3}-x+1$ does not have a zero in \mathbb{Z}_{3}. Hence by the mod- n criterion, $x^{3}-x+1$ does not have a rational zero. Therefore by the degree 2 or 3 irreducibility criterion, we obtain that $x^{3}-x+1$ is irreducible in $\mathbb{Q}[x]$. Since α is the zero of the monic irreducible polynomial $x^{3}-x+1$, we have that $m_{\alpha, \mathbb{Q}}(x)=x^{3}-x+1$.
(b) (4 points) Argue why $\left(\alpha^{2}+1\right)^{-1}$ can be written as $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$ for some $a_{i} \in \mathbb{Q}$. (You are allowed to use all the results proved in the lectures after carefully stating them.)

We know that if E is a field extension of F and $\alpha \in E$ is algebraic over F, then
(a) $F[\alpha]$ is a field.
(b) If $\operatorname{deg} m_{\alpha, F}(x)=n$, then every element of $F[\alpha]$ can be uniquely written as

$$
a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}
$$

for some a_{i} 's in F.
Hence $\mathbb{Q}[\alpha]$ is a field and every element of $\mathbb{Q}[\alpha]$ can be written as $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$ for some $a_{i}{ }^{\prime}$ s in \mathbb{Q}. Since the minimal polynomial of α over \mathbb{Q} is of degree $3, \alpha^{2}+1 \neq 0$. Hence $\left(\alpha^{2}+1\right)^{-1} \in \mathbb{Q}[\alpha]$, and the claim follows.
5. Suppose D is an integral domain which is not a field and $a \in D$.
(a) (4 points) Prove that $x-a$ is irreducible in $D[x]$.

Since D is an integral domain, $D[x]^{\times}=D^{\times}$. Hence $x-a$ is not a unit. Suppose $x-a=f(x) g(x)$ for some $f, g \in D[x]$. Comparing the degrees we deduce that either $\operatorname{deg} f=0$ or $\operatorname{deg} g=0$. Without loss of generality, we can and will assume that $f(x)=c$ is a constant. Comparing the leading coefficients of $x-a$ and $c g(x)$, we obtain that c is a unit. This means $f(x)$ is a unit in $D[x]$.
(b) (4 points) Prove that $D[x] /\langle x-a\rangle \simeq D$.

Let $\phi_{a}: D[x] \rightarrow D$ be the map oof evaluation at a. For every $c \in D, \phi_{a}(c)=c$. Hence ϕ_{a} is surjective. Notice that $f \in \operatorname{ker} \phi_{a}$ if and only if a is a zero of $f(x)$. By the factor theorem, we have that a is a zero of f if and only if $f(x)=(x-a) g(x)$ for some $g \in D[x]$. Altogether, we obtain that $\operatorname{ker} \phi_{a}=\langle x-a\rangle$. Thus by the first isomorphism theorem, we have that

$$
D[x] /\langle x-a\rangle \simeq D
$$

(c) (2 points) Prove that $D[x]$ is not a PID.

Suppose to the contrary that $D[x]$ is a PID. Then the ideal generated by an irreducible element of $D[x]$ is a maximal ideal. Hence by part (a), $\langle x-a\rangle$ is maximal. Therefore $D[x] /\langle x-a\rangle$ is a field. By part (b), we deduce that D is a field, which is a contradiction.

