## QUIZ 2, VERSION B, MATH100B, WINTER 2021

1. (3 points) Suppose $I$ is an ideal of a unital commutative ring $A$ and $A / I$ is a finite integral domain. Show that $I$ is a maximal ideal.
2. (5 points) Suppose $D$ is an integral domain, $f, g \in D[x]$ are polynomials of degree at most $n$, and $a_{1}, \ldots, a_{n+1}$ are distinct elements of $D$. Prove that if $f\left(a_{i}\right)=g\left(a_{i}\right)$ for every $i$, then $f(x)=g(x)$.
3. (5 points) Determine whether $f(x):=x^{3^{2021}}-x+100$ has a zero in $\mathbb{Q}$. Justify your answer.
4. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^{3}-x+1$.
(a) (3 points) Find the minimal polynomial of $\alpha$ over $\mathbb{Q}$.
(b) (4 points) Argue why $\left(\alpha^{2}+1\right)^{-1}$ can be written as $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$ for some $a_{i} \in \mathbb{Q}$. (You are allowed to use all the results proved in the lectures after carefully stating them.)
5. Suppose $D$ is an integral domain which is not a field and $a \in D$.
(a) (4 points) Prove that $x-a$ is irreducible in $D[x]$.
(b) (4 points) Prove that $D[x] /\langle x-a\rangle \simeq D$.
(c) (2 points) Prove that $D[x]$ is not a PID.
