QUIZ 2, VERSION B, MATH100B, WINTER 2021

- 1. (3 points) Suppose I is an ideal of a unital commutative ring A and A/I is a finite integral domain. Show that I is a maximal ideal.
- 2. (5 points) Suppose D is an integral domain, $f, g \in D[x]$ are polynomials of degree at most n, and a_1, \ldots, a_{n+1} are distinct elements of D. Prove that if $f(a_i) = g(a_i)$ for every i, then f(x) = g(x).
- 3. (5 points) Determine whether $f(x) := x^{3^{2021}} x + 100$ has a zero in \mathbb{Q} . Justify your answer.
- 4. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^3 x + 1$.

 - (a) (3 points) Find the minimal polynomial of α over \mathbb{Q} . (b) (4 points) Argue why $(\alpha^2 + 1)^{-1}$ can be written as $a_0 + a_1\alpha + a_2\alpha^2$ for some $a_i \in \mathbb{Q}$. (You are allowed to use all the results proved in the lectures after carefully stating them.)
- 5. Suppose D is an integral domain which is not a field and $a \in D$.
 - (a) (4 points) Prove that x a is irreducible in D[x].
 - (b) (4 points) Prove that $D[x]/\langle x a \rangle \simeq D$.
 - (c) (2 points) Prove that D[x] is not a PID.