QUIZ 3, VERSION A, MATH100B, WINTER 2021

- 1. (5 points) Suppose n is a positive odd integer. Prove that $f(x) = (x-2)(x-4)\cdots(x-2n)-1 \in \mathbb{Q}[x]$ is irreducible.
- 2. (5 points) Suppose $f, g \in \mathbb{Z}[x]$ are monic, p is prime, and $c_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ is the modulo-p residue map. Prove that if $gcd(c_p(f), c_p(g)) = 1$ in $\mathbb{Z}_p[x]$, then gcd(f, g) = 1 in $\mathbb{Q}[x]$.
- 3. Suppose D is a PID and $I = \langle p \rangle$ is a non-zero prime ideal of D. (a) (5 points) Prove that p is an irreducible element of D.
 - (b) (3 points) Prove that I is a maximal ideal of D.
- 4. Suppose p is a prime, $a \in \mathbb{Z}_p^{\times}$, and $f(x) := x^p x + a \in \mathbb{Z}_p[x]$. Suppose E is a field extension of \mathbb{Z}_p , and $\alpha \in E$ is a zero of f(x). Notice that the characteristic of E is p. (a) (3 points) Prove that $x^p - x + a = (x - \alpha) \cdots (x - \alpha - (p - 1))$ in E[x].

 - (b) (5 points) Prove that $x^p x + a \in \mathbb{Z}_p[x]$ is irreducible.
 - (c) (2 points) State the relevant results from the lectures or HW assignments and show that $\mathbb{Z}_p[\alpha]$ is a finite field of order p^p .
 - (d) (2 points) Prove that $\prod_{a \in \mathbb{Z}_n^{\times}} (x^p x + a)$ divides $x^{p^p} x$.