QUIZ 3, VERSION A, MATH100B, WINTER 2021

1. (5 points) Suppose n is a positive odd integer. Prove that $f(x)=(x-2)(x-4) \cdots(x-2 n)-1 \in \mathbb{Q}[x]$ is irreducible.
2. (5 points) Suppose $f, g \in \mathbb{Z}[x]$ are monic, p is prime, and $c_{p}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{p}[x]$ is the modulo- p residue map. Prove that if $\operatorname{gcd}\left(c_{p}(f), c_{p}(g)\right)=1$ in $\mathbb{Z}_{p}[x]$, then $\operatorname{gcd}(f, g)=1$ in $\mathbb{Q}[x]$.
3. Suppose D is a PID and $I=\langle p\rangle$ is a non-zero prime ideal of D.
(a) (5 points) Prove that p is an irreducible element of D.
(b) (3 points) Prove that I is a maximal ideal of D.
4. Suppose p is a prime, $a \in \mathbb{Z}_{p}^{\times}$, and $f(x):=x^{p}-x+a \in \mathbb{Z}_{p}[x]$. Suppose E is a field extension of \mathbb{Z}_{p}, and $\alpha \in E$ is a zero of $f(x)$. Notice that the characteristic of E is p.
(a) (3 points) Prove that $x^{p}-x+a=(x-\alpha) \cdots(x-\alpha-(p-1))$ in $E[x]$.
(b) (5 points) Prove that $x^{p}-x+a \in \mathbb{Z}_{p}[x]$ is irreducible.
(c) (2 points) State the relevant results from the lectures or HW assignments and show that $\mathbb{Z}_{p}[\alpha]$ is a finite field of order p^{p}.
(d) (2 points) Prove that $\prod_{a \in \mathbb{Z}_{p}^{\times}}\left(x^{p}-x+a\right)$ divides $x^{p^{p}}-x$.
