SOLUTION OF QUIZ 3, VERSION B, MATH100B, WINTER 2021

(Thanks to Alex Mathers for providing these solutions.)

1. (5 points) Suppose p is prime. Prove that $x^{p-1}+x^{p-2}+\cdots+1 \in \mathbb{Q}[x]$ is irreducible.

See Example 12.2.4 in the lecture notes.
2. (5 points) Suppose every ideal of a unital commutative ring A is finitely generated. Prove that A is Noetherian.

See Lemma 12.3.5 in the lecture notes.
3. Suppose A is a subring of B, B is a unital commutative ring, $1_{B} \in A$, and I is an ideal of B.
(a) (3 points) Prove that $f: A \rightarrow B / I, f(a):=a+I$ is a ring homomorphism and $\operatorname{ker} f=I \cap A$.

Notice that f factors as $p_{I} \circ i$ where $i: A \rightarrow B$ is the inclusion map and $p_{I}: B \rightarrow B / I$ is the natural quotient map. Because i and p_{I} are both homomorphisms so is their composition f. For the kernel one has

$$
\operatorname{ker} f=f^{-1}(0)=\left(p_{I} \circ i\right)^{-1}(0)=i^{-1}\left(p_{I}^{-1}(0)\right)=i^{-1}(I)=I \cap A
$$

(b) (5 points) Prove that if I is a prime ideal of B, then $I \cap A$ is a prime ideal of A.

Solution 1. Notice $I \cap A$ is an ideal of A because it equals the kernel of a homomorphism, as seen in part (a). We first need to show $I \cap A$ is proper, i.e. $I \cap A \neq A$: if $I \cap A=A$ then we have $1_{B} \in I \cap A \subseteq I$, but then because I is an ideal of B one deduces that $I=B$, which contradicts that I is a prime ideal of B (recall again prime ideals are proper).
For the other condition, suppose $a b \in I \cap A$ for $a, b \in A$. Then $a b \in I$ and $a, b \in B$, so from the fact that I is a prime ideal of B we deduce that either $a \in I$ or $b \in I$. But in the former case we have $a \in I \cap A$ and in the latter case we have $b \in I \cap A$.

Solution 2. Notice the map f in part (a) is in fact a unital ring homomorphism. Because ker $f=I \cap A$ by part (a), one has by the first isomorphism theorem an isomorphism

$$
A /(I \cap A) \simeq \operatorname{Im} f
$$

where the latter is a unital subring of B / I. But B / I is an integral domain because I is prime, so $\operatorname{Im} f$ is an integral domain as well, and then so is $A /(I \cap A)$ by the above isomorphism. From this we deduce that $I \cap A$ is a prime ideal of A.
(c) (2 points) Provide an example where I is a maximal ideal of B, but $I \cap A$ is not a maximal ideal of A.

Take $A=\mathbb{Z}$ and $B=\mathbb{Q}$. Then $I=\{0\}$ is a maximal ideal of \mathbb{Q}, but $I \cap A=\{0\}$ is not a maximal ideal of \mathbb{Z}.
4. Suppose p is prime and $f(x):=\left(x^{p}-x+1\right)^{2}+p$.
(a) (5 points) Suppose $f(x)=q(x) h(x)$ for some monic non-constant polynomials $q, h \in \mathbb{Z}[x]$. Prove that there are polynomial $q_{1}, h_{1} \in \mathbb{Z}[x]$ such that

$$
q(x)=x^{p}-x+1+p q_{1}(x), \text { and } h(x)=x^{p}-x+1+p h_{1}(x)
$$

(You are allowed to use a relevant result from HW assignment after you carefully state it.)
Notice in $\mathbb{Z}_{p}[x]$ we get the factorization $c_{p}(f)=c_{p}(q) c_{p}(h)$. But on the other hand notice that $c_{p}(f(x))=\left(x^{p}-x+1\right)^{2}$; thus we have

$$
\left(x^{p}-x+1\right)^{2}=c_{p}(q(x)) c_{p}(h(x))
$$

in $\mathbb{Z}_{p}[x]$. Also notice that $c_{p}(q)$ and $c_{p}(h)$ are monic and non-constant, as q and h are monic and non-constant by assumption. From a homework problem, we know that $x^{p}-x+1$ is irreducible in $\mathbb{Z}_{p}[x]$, and so by unique factorization in $\mathbb{Z}_{p}[x]$ we must have $c_{p}(q(x))=c_{p}(h(x))=x^{p}-x+1$. From this one gets the result, for instance we have $q(x)-\left(x^{p}-x+1\right) \in \operatorname{ker}\left(c_{p}\right)$, and so $q(x)-\left(x^{p}-x+1\right)=p q_{1}(x)$ for some $q_{1} \in \mathbb{Z}[x]$.
(b) (3 points) Suppose q_{1} and h_{1} are as in the previous part. Prove that

$$
\left(x^{p}-x+1\right)\left(q_{1}+h_{1}\right) \equiv 1 \quad(\bmod p)
$$

and discuss why this is a contradiction.
We calculate

$$
\begin{aligned}
\left(x^{p}-x+1\right)^{2}+p & =f(x)=q(x) h(x) \\
& =\left(x^{p}-x+1+p q_{1}(x)\right)\left(x^{p}-x+1+p h_{1}(x)\right) \\
& =\left(x^{p}-x+1\right)^{2}+p\left(x^{p}-x+1\right)\left(q_{1}+h_{1}\right)+p^{2} q_{1} h_{1} .
\end{aligned}
$$

From this we deduce that $\left(x^{p}-x+1\right)\left(q_{1}+h_{1}\right)+p q_{1} h_{1}=1$ in $\mathbb{Z}[x]$, and reducing mod p gives the result. We obtain a contradiction by comparing degrees on both sides.
(c) (2 points) Prove that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Clearly f is nonzero and a non-unit. Because f is monic (hence primitive), we know that $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. Suppose we have $f(x)=q(x) h(x)$ for $q, h \in \mathbb{Z}[x]$; parts (a) and (b) together show this cannot happen for q and h non-constant. But if, say, q is constant, then comparing leading terms in $f(x)=q(x) h(x)$ shows that q is a unit. The same logic applies if h is constant, so either q or h is a unit. Thus $f(x)$ is irreducible in $\mathbb{Z}[x]$.

