QUIZ 5, VERSION A, MATH100B, WINTER 2021

Carefully state theorems that you are using.

- Suppose F is a field and ζ ∈ F has multiplicative order n where n is an integer more than 1; that means ζⁿ = 1 and ζ^d ≠ 1 for every positive integer d < n. Suppose a ∈ F and xⁿ − a is irreducible in F[x]. Suppose E is a field extension of F which contains a zero ⁿ√a of xⁿ − a.
 (a) (5 points) Prove that F[ⁿ√a] is a splitting field of xⁿ − a over F.
 - (b) (2 points) Prove that $[F[\sqrt[n]{a}]:F] = n$.
 - (c) (5 points) Prove that $\operatorname{Aut}_F(F[\sqrt[n]{a}]) \simeq \mathbb{Z}_n$.
- 2. (5 points) Suppose E is a field extension of F and $\alpha \in E$. Suppose $gcd([F[\alpha] : F], 6) = 1$. Prove that $F[\alpha] = F[\alpha^3 2\alpha + 3]$.
- 3. Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of f(x) over F. Suppose there is $\alpha \in E$ such that

$$f(\alpha) = f(\alpha + 1) = 0.$$

- (a) (3 points) Prove that there is $\theta \in \operatorname{Aut}_F(F[\alpha])$ such that $\theta(\alpha) = \alpha + 1$.
- (b) (2 points) Prove that there is a prime p such that char(F) = p.
- (c) (5 points) Suppose $R := \{\alpha_1, \ldots, \alpha_n\}$ is the set of zeros of f in E. Let S_R be the group of all the permutations of R (the symmetric group of the set R). Prove that

$$r: \operatorname{Aut}_F(E) \to S_R, \ r(\theta) := \theta|_R$$

is a well-defined injective group homomorphism.

(d) (3 points) Prove that there is $\hat{\theta} \in \operatorname{Aut}_F(E)$ such that $r(\hat{\theta})$ has $(\alpha, \alpha + 1, \dots, \alpha + p - 1)$ in its cycle decomposition; that means

$$\theta(\alpha) = \alpha + 1, \ \theta(\alpha + 1) = \alpha + 2, \ \dots, \ \theta(\alpha + p - 1) = \alpha$$

(e) (2 bonus points) Prove that $\operatorname{Aut}_F(E)$ has an element of order p.