1. DISCUSSION AND PROBLEM SESSION 1

1.1. Ring of functions.

(a) Is the set of continuous real valued functions on the interval [0, 1] a ring under the point-wise addition and multiplication

$$(f+g)(x) := f(x) + g(x), \quad (f \cdot g)(x) := f(x)g(x)?$$

- (b) How about the set of non-negative real valued continuous functions on the interval [0, 1]?
- (c) Suppose X is a non-empty set and A is a ring. Is the set $\{f : X \to A\}$ of functions from X to A is a ring under the point-wise addition and multiplication

$$(f+g)(x) := f(x) + g(x), \quad (f \cdot g)(x) := f(x) \cdot g(x)?$$

1.2. Ring of polynomials.

- (a) Let $f(x) \in (\mathbb{Z}_2 \times \mathbb{Z}_3)[x], f(x) := (1, 2)x + (0, 2)$ and $g(x) \in (\mathbb{Z}_2 \times \mathbb{Z}_3)[x], g(x) := (1, 0)x + (2, 2)$. Find f(x)g(x).
- (b) What is the caveat of viewing polynomials in A[x] as functions from A to A?
- (c) Suppose p is a prime. Find $(x+1)^p$ in $\mathbb{Z}_p[x]$.

1.3. Certain subrings of complex numbers.

(a) Show that the smallest subring of $\mathbb C$ that contains $\mathbb Q$ and i is

$$\{a+bi \mid a, b \in \mathbb{Q}\}.$$

(b) Show that the smallest subring of \mathbb{C} that contains \mathbb{Q} and $\sqrt{2}$ is

$$\{a + \sqrt{2}b \mid a, b \in \mathbb{Q}\}.$$

(c) Describe the smallest subring of \mathbb{C} that contains \mathbb{Q} and $\sqrt[3]{2}$.

2. Discussion and Problem session 2

2.1. Ring isomorphism, kernel, and image.

- (a) Describe all ring isomorphisms from \mathbb{Z}_n to \mathbb{Z}_n .
- (b) Notice that $A := \{(a, a) | a \in \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$. Can A be a kernel of a ring homomorphism from $\mathbb{Z} \times \mathbb{Z}$ to some other ring?
- (c) Prove that the rings $\{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ and

$$\left\{ \begin{pmatrix} a & b\\ 2b & a \end{pmatrix} \mid a, b \in \mathbb{Q} \right\}$$

are isomorphic.

(d) Prove that the rings $\mathbb{Z}_5 \times \mathbb{Z}_5$ and

$$\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_5 \right\}$$

are isomorphic. (This is more challenging. Do not do it in the first round.)

2.2. Scaler multiplication by integers in rings.

(a) Suppose A is a unital commutative ring. Prove that for every $n \in \mathbb{Z}$, $a, b \in A$, we have

$$(na) \cdot b = n(a \cdot b) = a \cdot (nb).$$

Do you think this is because of the associative property or the distributive property?

(b) Suppose A is a unital commutative ring. Prove that for every $m, n \in \mathbb{Z}$ and $a, b \in A$ we have

$$(ma) \cdot (nb) = (mn)(a \cdot b)$$

(c) Let $e: \mathbb{Z} \to A, e(k) := k1_A$ and $A := \mathbb{Z}_n \times \mathbb{Z}_m$ where $m, n \in \mathbb{Z}$ and gcd(m, n). Find ker e and Im e.

2.3. The evaluation map.

- (a) What is the kernel of the evaluation map $\phi_i : \mathbb{Q}[x] \to \mathbb{C}, \phi_i(f(x)) := f(i)$?
- (b) What is the kernel of the evaluation map $\phi_{\sqrt{2}}: \mathbb{Q}[x] \to \mathbb{C}, \phi_{\sqrt{2}}(f(x)):=f(\sqrt{2})$?

3. DISCUSSION AND PROBLEM SESSION 3

3.1. Evaluation map.

(a) Let $\phi_i : \mathbb{Q}[x] \to \mathbb{C}$ be the valuation map $\phi_i(f(x)) = f(i)$. Prove that

$$\mathbb{Q}[i] := \operatorname{Im} \phi_i = \{ a_0 + a_1 i | a_0, a_1 \in \mathbb{Q} \}.$$

(b) Let $\phi_{\sqrt[3]{3}}: \mathbb{Q}[x] \to \mathbb{C}$ be the evaluation map $\phi_{\sqrt[3]{3}}(f(x)) = f(\sqrt[3]{3})$. Prove that

$$\mathbb{Q}[\sqrt[3]{3}] := \operatorname{Im} \phi_{\sqrt[3]{3}} = \{a_0 + a_1\sqrt[3]{3} + a_2\sqrt[3]{3}^2 | a_0, a_1, a_2 \in \mathbb{Q}\}.$$

(c) Suppose $\alpha \in \mathbb{C}$ is a zero of $p(x) = x^3 - x - 1$. Let $\phi_{\alpha} : \mathbb{Q}[x] \to \mathbb{C}$ be the corresponding evaluation map. Describe $\mathbb{Q}[\alpha]$.

3.2. Units.

- (a) Find $|\mathbb{Z}_{p^k}^{\times}|$ where p is prime and k is a positive integer.
- (b) Find $|(\mathbb{Z}_{p_1^{k_1}} \times \cdots \times \mathbb{Z}_{p_n^{k_n}})^{\times}|$, where p_i 's are prime.
- (c) Prove the Fermat's little theorem which states $a^p \equiv a \pmod{p}$ for every integer a and every prime
- (d) Find $\mathbb{Q}[x]^{\times}$.

3.3. Fields.

- (a) Prove that $\mathbb{Q}[i]$ is a field.
- (b) Prove that $\mathbb{Q}[\sqrt{2}]$ is a field.
- (c) Prove that $F := \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_3 \right\}$ is a field of order 9. Is F isomorphic to \mathbb{Z}_9 ? Is F isomorphic to \mathbb{Z}_9 ? Is F isomorphic to \mathbb{Z}_9 ?

4. Discussion and Problem session 4

4.1. Kernel, image, and isomorphism.

- (a) Suppose F is a field and $f: F \to A$ is a ring homomorphism. Prove that either f is injective or f(x) = 0 for every $x \in F$.
- (b) Prove that $\mathbb{Q}[i]$ is not isomorphic to $\mathbb{Q}[\sqrt{2}]$.
- (c) Suppose A is a unital ring and D is an integral domain. Suppose $f : A \to D$ is a ring homomorphism. Prove that either $f(1_A) = 1_D$ or f(x) = 0 for every $x \in A$. Does this statement hold if D is not an integral domain?

4.2. Field of fractions.

- (a) Prove that $Q(\mathbb{Z}) \simeq \mathbb{Q}$.
- (b) Suppose F is a field. Prove that $Q(F) \simeq F$.
- (c) Suppose F is a field of characteristic zero. Prove that \mathbb{Q} can be embedded into F.
- (d) Prove that $Q(\mathbb{Z}[\sqrt{2}]) \simeq \mathbb{Q}[\sqrt{2}]$.
- (e) Give an example of an infinite field of characteristic p > 0.

4.3. Ring of formal power series. (Additional related topic for more motivated students) Suppose F is a field. Let F[x] be the ring of formal power series with coefficients in F; that means

$$F[\![x]\!] := \left\{ \sum_{i=0}^{\infty} a_i x^i | a_i \in F \right\}$$

and we have

$$(\sum_{i=0}^{\infty} a_i x^i) + (\sum_{i=0}^{\infty} b_i x^i) := \sum_{i=0}^{\infty} (a_i + b_i) x^i \quad \text{and} \quad (\sum_{i=0}^{\infty} a_i x^i) (\sum_{i=0}^{\infty} b_i x^i) := \sum_{n=0}^{\infty} (\sum_{i=0}^n a_i b_{n-i}) x^n.$$

One can easily check that $(F[x]], +, \cdot)$ is a ring. Similarly let

$$F((x)) := \left\{ \sum_{i=n}^{\infty} a_i x^i | n \in \mathbb{Z}, a_i \in F \right\}$$

and make this into a ring.

- (a) Prove that F[x] is an integral domain.
- (b) Prove that F((x)) is a field.
- (c) Prove that $Q(F[x]) \simeq F((x))$.

5. Discussion and Problem session 5

5.1. Ideals.

(a) Suppose A is a unital commutative ring and $I, J \triangleleft A$. Let

$$I + J := \{ x + y | x \in I, y \in J \},\$$

and

$$I \cdot J := \{ \sum_{i=1}^{n} x_i y_i | n \in \mathbb{Z}^+, x_i \in I, y_i \in J \}.$$

- Prove that I + J and $I \cdot J$ are ideals of A. Is the set $\{xy | x \in I, y \in J\}$ an ideal of A?
- (b) Show that every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some non-negative integer n. Deduce that all ideals of \mathbb{Z} are principal.
- (c) Prove that $\langle 2, x \rangle$ in $\mathbb{Z}[x]$ is not a principal ideal.

- (d) Describe all the ideals of \mathbb{Z}_n .
- (e) Suppose A is a finite unital commutative ring and $I \triangleleft A$ is a non-trivial ring; that means I is not the zero ideal and it is not the entire A. Prove that A has a zero-divisor.

5.2. The first isomorphism theorem.

- (a) Prove that $\mathbb{Z}[x]/n\mathbb{Z}[x] \simeq \mathbb{Z}_n[x]$.
- (b) Prove that $\mathbb{Q}[x]/\langle x^3-2\rangle \simeq \mathbb{Q}[\sqrt[3]{2}]$ and moreover

$$\mathbb{Q}[\sqrt[3]{2}] = \{a_0 + a_1\sqrt[3]{2} + a_2(\sqrt[3]{2})^2 | a_0, a_1, a_2 \in \mathbb{Q}\}.$$

(c) Suppose $p(x) \in \mathbb{Q}[x]$ has no zero in \mathbb{Q} , deg p = 3, and $\alpha \in \mathbb{C}$ is a zero of p(x). Prove that

$$\mathbb{Q}[x]/\langle p(x)\rangle \simeq \mathbb{Q}[\alpha],$$

and moreover

$$\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha_1 + a_2\alpha^2 \mid a_i \in \mathbb{Q}\}.$$

6. DISCUSSION AND PROBLEM SESSION 6

6.1. The first isomorphism theorem. Since in the previous session we did not have time to go over the problems related to the first isomorphism theorem, I have included them here.

- (a) Prove that $\mathbb{Z}[x]/n\mathbb{Z}[x] \simeq \mathbb{Z}_n[x]$.
- (b) Prove that $\mathbb{Q}[x]/\langle x^3-2\rangle \simeq \mathbb{Q}[\sqrt[3]{2}]$ and moreover

$$\mathbb{Q}[\sqrt[3]{2}] = \{a_0 + a_1\sqrt[3]{2} + a_2(\sqrt[3]{2})^2 \mid a_0, a_1, a_2 \in \mathbb{Q}\}.$$

(c) Suppose $p(x) \in \mathbb{Q}[x]$ has no zero in \mathbb{Q} , deg p = 3, and $\alpha \in \mathbb{C}$ is a zero of p(x). Prove that

$$\mathbb{Q}[x]/\langle p(x)\rangle \simeq \mathbb{Q}[\alpha],$$

and moreover

$$\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha_1 + a_2\alpha^2 \mid a_i \in \mathbb{Q}\}.$$

(d) Prove that $\mathbb{Z}[i]/\langle 2+i\rangle \simeq \mathbb{Z}_5$.

6.2. Polynomials.

- (a) Find the quotient and the remainder of $x^3 x + 1$ divided by $x^2 1$ in $\mathbb{Q}[x]$.
- (b) Let $f(x, y) := x^4 + x^2y^3 + xy + y^5$. We can view f as an element of $(\mathbb{Q}[x])[y]$ or as an element of $(\mathbb{Q}[y])[x]$.
 - 1. View f as an element of $(\mathbb{Q}[x])[y]$, and find $\mathrm{Ld}(f)$.
 - 2. View f as an element of $(\mathbb{Q}[y])[x]$, and find $\mathrm{Ld}(f)$.
- (c) Let $f = x^3 + xy + y^2$ and $g = x^2 y$. View f and g as elements of $(\mathbb{Q}[x])[y]$, and find the remainder of f divided by g.
- (d) Suppose that A is a unital commutative ring and a₁,..., a_n are nilpotent elements of A and a₀ ∈ A[×].
 1. Prove that a₁x + a₂x² + ··· + a_nxⁿ is nilpotent.
 - 2. Prove that $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in A^{\times}$.

4

7. DISCUSSION AND PROBLEM SESSION 7

7.1. Quiz 1, version a.

- 1. Answer the following questions and briefly justify your answers.
 - (a) (1 point) True or false. Every integral domain can be embedded into a field.
 - (b) (2 point) Find $|(\mathbb{Z}[x])^{\times}|$.
 - (c) (3 points) True or false. There is an integral domain D such that

$$\underbrace{1_D + \dots + 1_D}_{9 \text{ times}} = 0 \text{ and } 1_D + 1_D + 1_D \neq 0.$$

- (d) (4 points) Find $|(\mathbb{Z}_9 \times \mathbb{Z}_5)^{\times}|$.
- 2. (5 points) Prove that $\mathbb{Q}[x]/\langle x^2 3 \rangle \simeq \mathbb{Q}[\sqrt{3}]$ where $\mathbb{Q}[\sqrt{3}]$ is the smallest subring of \mathbb{C} that contains \mathbb{Q} and $\sqrt{3}$.
- 3. (5 points) Suppose p is a prime number and $f(x) \in \mathbb{Z}_p[x]$ is a polynomial of degree 3. Use the long division for polynomials to prove that $|\mathbb{Z}_p[x]/\langle f(x) \rangle| = p^3$.
- 4. Suppose *m* and *n* are positive integers and gcd(m, n) = 1. Let $e : \mathbb{Z} \to \mathbb{Z}_n \times \mathbb{Z}_m$, $e(k) := k([1]_n, [1]_m)$. You can use without proof that *e* is a ring homomorphism.
 - (a) (3 points) Find the kernel of e.
 - (b) (4 points) Prove that e is surjective.
 - (c) (3 points) Prove that $\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}_n \times \mathbb{Z}_m$.

7.2. Quiz 1, version b.

- 1. Answer the following questions and briefly justify your answers.
 - (a) (1 points) True or false. Every integral domain is a field.
 - (b) (2 point) True or false. A field has exactly two ideals.
 - (c) (3 points) Find the characteristic of $\mathbb{Z}_3 \times \mathbb{Z}_7$.
 - (d) (4 points) Find $|(\mathbb{Z}_{25} \times \mathbb{Z}_7)^{\times}|$.
- 2. Let's recall that $\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C} .
 - (a) (4 points) Prove that $\mathbb{Q}[x]/\langle x^2+1\rangle \simeq \mathbb{Q}[i]$
 - (b) (2 points) Prove that $\mathbb{Q}[x]/\langle x^2+1\rangle$ is a field.
- 3. (4 points) Suppose p is prime. Prove that $x^{p^2} x + 1$ has no zero in \mathbb{Z}_p .
- 4. (4 points) Suppose $\alpha \in \mathbb{C}$ is a zero of a polynomial $p(x) \in \mathbb{Q}[x]$ of degree 3. Use the long division for polynomials to prove that $\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + a_2\alpha^2 | a_0, a_1, a_2 \in \mathbb{Q}\}.$
- 5. Let's recall that $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .
 - (a) (2 points) Suppose p is a prime and there is a ring homomorphism $f : \mathbb{Z}[i] \to \mathbb{Z}_p$ such that f(1) = 1. Prove that there is $x \in \mathbb{Z}_p$ such that $x^2 = -1$.
 - (b) (4 points) Find a surjective ring homomorphism $f : \mathbb{Z}[i] \to \mathbb{Z}_{13}$ such that $3-2i \in \ker f$. (Notice that $8^2 + 1$ is a multiple of 13.)

8. DISCUSSION AND PROBLEM SESSION 8

8.1. Polynomials. (In the previous session we did not have time to go over these problems.)

- 1. Find the quotient and the remainder of $x^3 x + 1$ divided by $x^2 1$ in $\mathbb{Q}[x]$.
- 2. Let $f(x,y) := x^4 + x^2y^3 + xy + y^5$. We can view f as an element of $(\mathbb{Q}[x])[y]$ or as an element of $(\mathbb{Q}[y])[x]$.
 - 1. View f as an element of $(\mathbb{Q}[x])[y]$, and find $\mathrm{Ld}(f)$.
 - 2. View f as an element of $(\mathbb{Q}[y])[x]$, and find $\mathrm{Ld}(f)$.
- 3. Let $f = x^3 + xy + y^2$ and $g = x^2 y$. View f and g as elements of $(\mathbb{Q}[x])[y]$, and find the remainder of f divided by g.
- 4. Suppose that A is a unital commutative ring and a₁,..., a_n are nilpotent elements of A and a₀ ∈ A[×].
 1. Prove that a₁x + a₂x² + ··· + a_nxⁿ is nilpotent.
 - 2. Prove that $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in A[x]^{\times}$.

8.2. Euclidean domains.

- 1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain and a PID.
- 2. Suppose F is a field. For an indeterminant x, let

$$F[x, x^{-1}] := \Big\{ \sum_{i=-n}^{m} a_i x^i \mid a_i \in F \Big\}.$$

One can easily see that $F[x, x^{-1}]$ with natural addition and multiplication is a ring. This is called the ring of *Laurent polynomials*. Prove that $F[x, x^{-1}]$ is a Euclidean domain.

(Hint. Every non-zero element of $F[x, x^{-1}]$ can be uniquely written as $x^{-n}f(x)$ for some non-negative integer n and polynomial $f(x) \in F[x]$.)

8.3. Problems related to earlier topics.

- 1. Is there an integral that contains exactly 12 elements?
- 2. Suppose F is a field of characteristic p > 0. Prove that $F[x]/\langle x^p \rangle \simeq F[x]/\langle x^p 1 \rangle$.

9. DISCUSSION AND PROBLEM SESSION 9

9.1. Problems related to earlier topics. (In the previous session we did not have time to go over these problems.)

1. Suppose F is a field. For an indeterminant x, let

$$F[x, x^{-1}] := \Big\{ \sum_{i=-n}^{m} a_i x^i \mid a_i \in F \Big\}.$$

One can easily see that $F[x, x^{-1}]$ with natural addition and multiplication is a ring. This is called the ring of *Laurent polynomials*. Prove that $F[x, x^{-1}]$ is a Euclidean domain.

(Hint. Every non-zero element of $F[x, x^{-1}]$ can be uniquely written as $x^{-n}f(x)$ for some non-negative integer n and polynomial $f(x) \in F[x]$.)

- 2. Is there an integral that contains exactly 12 elements?
- 3. Suppose F is a field of characteristic p > 0. Prove that $F[x]/\langle x^p \rangle \simeq F[x]/\langle x^p 1 \rangle$.

9.2. Minimal polynomial and elements of a quotient of a ring of polynomials.

- 1. How many elements does $\mathbb{Z}_3[x]/\langle x^3 x + 1 \rangle$ have?
- 2. Suppose α is a zero of $x^3 x + 1 \in \mathbb{Q}[x]$. Find the minimal polynomial $m_{\alpha,\mathbb{Q}}(x)$.
- 3. Show that every element of $\mathbb{Q}[\alpha]$ can be uniquely written as $a_0 + a_1\alpha + a_2\alpha^2$ for some $a_0, a_1, a_2 \in \mathbb{Q}$.
- 4. Find $\langle x^3 x + 1, x^2 + 1 \rangle \subseteq \mathbb{Q}[x]$.
- 5. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^3 x + 1$. Is $(\alpha^2 + 1)^{-1} \in \mathbb{Q}[\alpha]$?
- 6. Can we show that $\mathbb{Q}[\alpha]$ is a field?

10. DISCUSSION AND PROBLEM SESSION 10

10.1. Minimal polynomial and elements of a quotient of a ring of polynomials. (In the previous session we did not have time to go over these problems.)

- 1. How many elements does $\mathbb{Z}_3[x]/\langle x^3 x + 1 \rangle$ have?
- 2. Suppose α is a zero of $x^3 x + 1 \in \mathbb{Q}[x]$. Find the minimal polynomial $m_{\alpha,\mathbb{Q}}(x)$.
- 3. Show that every element of $\mathbb{Q}[\alpha]$ can be uniquely written as $a_0 + a_1\alpha + a_2\alpha^2$ for some $a_0, a_1, a_2 \in \mathbb{Q}$.
- 4. Find $\langle x^3 x + 1, x^2 + 1 \rangle \subseteq \mathbb{Q}[x]$.
- 5. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^{\overline{3}} x + 1$. Is $(\alpha^2 + 1)^{-1} \in \mathbb{Q}[\alpha]$?
- 6. Can we show that $\mathbb{Q}[\alpha]$ is a field?

10.2. Irreducible elements.

- 1. Suppose $p = a^2 + b^2$ is prime for some integers a and b. Prove that a + ib is irreducible in $\mathbb{Z}[i]$ and p is not irreducible in $\mathbb{Z}[i]$.
- 2. Suppose p is a prime which cannot be written as $a^2 + b^2$ for some integers a and b. Prove that p is irreducible in $\mathbb{Z}[i]$.
- 3. Let $\omega := \frac{-1+\sqrt{-3}}{2}$. Suppose $p = a^2 ab + b^2$ is a prime for some integers a and b. Prove that $a + b\omega$ is irreducible in $\mathbb{Z}[\omega]$ and p is not irreducible in $\mathbb{Z}[\omega]$.
- 4. Suppose p is a prime which cannot be written as $a^2 ab + b^2$ for some integers a and b. Prove that p is irreducible in $\mathbb{Z}[\omega]$.

10.3. Maximal ideal.

- 1. Let $\mathbf{p} := (p_1, \ldots, p_n) \in \mathbb{C}$ and $\phi_{\mathbf{p}}(f(x_1, \ldots, x_n)) := f(\mathbf{p})$ be the evaluation map from the ring of multivariable polynomials $\mathbb{C}[x_1, \ldots, x_n]$ to \mathbb{C} . Prove that ker $\phi_{\mathbf{p}}$ is a maximal ideal of $\mathbb{C}[x_1, \ldots, x_n]$.
- 2. Suppose I is a maximal ideal of a unital commutative ring A. Prove that if $ab \in I$, then either $a \in I$ or $b \in I$.
- 3. Suppose D is a PID and $a \in D$ is irreducible. Prove that a|bc implies that either a|b or a|c.

11. DISCUSSION AND PROBLEM SESSION 11

11.1. Irreducible elements. (In the previous session we did not have time to go over these problems.)

- 1. Let $\omega := \frac{-1+\sqrt{-3}}{2}$. Suppose $p = a^2 ab + b^2$ is a prime for some integers a and b. Prove that $a + b\omega$ is irreducible in $\mathbb{Z}[\omega]$ and p is not irreducible in $\mathbb{Z}[\omega]$.
- 2. Suppose p is a prime which cannot be written as $a^2 ab + b^2$ for some integers a and b. Prove that p is irreducible in $\mathbb{Z}[\omega]$.

- 11.2. Maximal ideal. (Some of these problems have been mentioned in the previous session.)
 - 1. Let $\mathbf{p} := (p_1, \ldots, p_n) \in \mathbb{C}$ and $\phi_{\mathbf{p}}(f(x_1, \ldots, x_n)) := f(\mathbf{p})$ be the evaluation map from the ring of multivariable polynomials $\mathbb{C}[x_1, \ldots, x_n]$ to \mathbb{C} . Prove that ker $\phi_{\mathbf{p}}$ is a maximal ideal of $\mathbb{C}[x_1, \ldots, x_n]$.
 - 2. Suppose I is a maximal ideal of a unital commutative ring A. Prove that if $ab \in I$, then either $a \in I$ or $b \in I$.
 - 3. Suppose D is a PID and $a \in D$ is irreducible. Prove that a|bc implies that either a|b or a|c.
 - 4. There is a result in ring theory which states that every proper ideal is contained in a maximal ideal. Using this result prove that if M is the only maximal ideal of a unital commutative ring A, then $A^{\times} = A \setminus M.$
 - 5. Use the fundamental theorem of algebra which states that every non-constant polynomial $f(x) \in \mathbb{C}[x]$ has a complex root to prove that an ideal I of $\mathbb{C}[x]$ is maximal if and only if $I = \langle x - a \rangle$ for some $a \in \mathbb{C}$.
 - 6. (a) Use the fundamental theorem of algebra, to show that every non-constant polynomial $f(x) \in f(x)$ $\mathbb{C}[x]$ can be written as a product of degree one polynomials.
 - (b) Suppose E is a field extension of \mathbb{C} . Prove that if $\alpha \in E$ is algebraic over \mathbb{C} , then $\alpha \in \mathbb{C}$.
 - (c) Suppose M is a maximal ideal of $\mathbb{C}[x_1, \ldots, x_n]$. Prove that $\mathbb{C}[x_1, \ldots, x_n]/M \simeq \mathbb{C}$.

12.1. Zeros of polynomials.

- 1. Show that a polynomial of degree n with coefficients in an integral domain does not have more than n distinct zero.
- 2. Find all primes p such that x + 2 is a factor of $x^4 x + 1$ in $\mathbb{Z}_p[x]$.
- 3. Show that $x^5 + x^4 + x^3 + x^2 + x 1$ does not have a zero in \mathbb{Q} . 4. Show that $x^{125} x^{25} + x^5 x + 6$ does not have a zero in \mathbb{Q} .
- 5. Show that $x^{125} x^{25} + x^5 x + 1 + 5f(x)$ for some $f(x) \in \mathbb{Z}[x]$ with degree less than 125 does not have a zero in \mathbb{Q} .

12.2. Irreducible polynomials.

- 1. Prove that $x^3 3x^2 + 3x + 4$ is irreducible in $\mathbb{Q}[x]$.
- 2. We are told that the only monic degree 2 irreducible polynomials in $\mathbb{Z}_3[x]$ are $x^2 + 1$, $x^2 + x 1$, and $x^2 - x - 1$. Prove that $x^5 - x + 1$ is irreducible in $\mathbb{Z}_3[x]$.
- 3. Prove that $x^5 + 2x + 4$ is irreducible in $\mathbb{Q}[x]$.
- 4. Let $F := \mathbb{Z}_3[x]/\langle x^5 x + 1 \rangle$.
 - (a) Prove that F is a field of order 3^5 .
 - (b) Prove that $X^5 X + 1$ has a zero in F.

13. DISCUSSION AND PROBLEM SESSIONS 13

We had quiz.

14. DISCUSSION AND PROBLEM SESSION 14

14.1. Quiz 2, version a.

- 1. Answer the following questions and briefly justify your answers.
 - (a) (2 point) Find all primes p such that x 1 is a factor of $x^5 2x^4 + 3x^3 + 5x^2 + 6$ in \mathbb{Z}_n .
 - (b) (3 points) True or false. $\mathbb{Z}[x]$ is a PID.

- 2. (5 points) Determine whether $f(x) := x^5 2x^4 + 5x^3 x + 1$ has a zero in \mathbb{Q} . Justify your answer.
- 3. Recall that $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
 - (a) (4 points) Prove that 5 + 2i is irreducible in $\mathbb{Z}[i]$.
 - (Hint: Think about $N(a + bi) = |a + bi|^2 = a^2 + b^2$.)
 - (b) (4 points) Prove that $\mathbb{Z}[i]/\langle 5+2i\rangle$ is a field.
 - (c) (2 points) Prove that the characteristic of $\mathbb{Z}[i]/\langle 5+2i\rangle$ is 29.
- 4. Suppose E is a field extension of \mathbb{Z}_3 , and $\alpha \in E$ is a zero of $x^3 x + 2$.

 - (a) (6 points) Prove that Z₃[α] is a field of order 27.
 (b) (2 points) Prove that α²⁶ = 1. (Hint: Think about (Z₃[α])[×].)
 - (c) (2 points) Prove that $x^3 x + 2$ divides $x^{26} 1$.

14.2. Quiz 2, version b.

- 1. (3 points) Suppose I is an ideal of a unital commutative ring A and A/I is a finite integral domain. Show that I is a maximal ideal.
- 2. (5 points) Suppose D is an integral domain, $f, g \in D[x]$ are polynomials of degree at most n, and a_1, \ldots, a_{n+1} are distinct elements of D. Prove that if $f(a_i) = g(a_i)$ for every i, then f(x) = g(x).
- 3. (5 points) Determine whether $f(x) := x^{3^{2021}} x + 100$ has a zero in \mathbb{Q} . Justify your answer.
- 4. Suppose $\alpha \in \mathbb{C}$ is a zero of $x^3 x + 1$.
 - (a) (3 points) Find the minimal polynomial of α over \mathbb{Q} .
 - (b) (4 points) Argue why $(\alpha^2 + 1)^{-1}$ can be written as $a_0 + a_1\alpha + a_2\alpha^2$ for some $a_i \in \mathbb{Q}$. (You are allowed to use all the results proved in the lectures after carefully stating them.)
- 5. Suppose D is an integral domain which is not a field and $a \in D$.
 - (a) (4 points) Prove that x a is irreducible in D[x].
 - (b) (4 points) Prove that $D[x]/\langle x a \rangle \simeq D$.
 - (c) (2 points) Prove that D[x] is not a PID.

15. Discussion and Problem sessions 15

15.1. Noetherian rings.

- 1. Prove that the ring of polynomials $\mathbb{Q}[x_1, x_2, \ldots]$ with infinitely many indeterminants x_1, x_2, \ldots is not Noetherian.
- 2. Let $A := \mathbb{Q}[x, xy, xy^2, \ldots] \subseteq \mathbb{Q}[x, y]$. Prove that A is not Noetherian.

15.2. Decomposition.

- 1. Suppose F is a field and $f(x) \in F[x]$ is a monic positive degree polynomial.
 - (a) Suppose f is irreducible. Let $E := F[x]/\langle f \rangle$. Prove that E is a field extension of F.
 - (b) Suppose f is irreducible in F[x]. Prove that there is a field extension E of F which contains a zero of f.
 - (c) Prove that there is a field extension E' of F such that $f(x) = \prod_{i=1}^{n} (x \alpha_i)$ for some α_i 's in E'.
- 2. Suppose p is prime.

(a) For every prime p, there is a finite field E such that

$$x^{p^n} - x = \prod_{i=1}^{p^n} (x - \alpha_i)$$

for some $\alpha_i \in E$.

(b) Let $F := \{ \alpha \in E \mid \alpha^{p^n} = \alpha \}$. Prove that F is a finite field of order p^n .

16. Discussion and Problem sessions 16

16.1. Decomposition.

1. Suppose p is prime.

(a) For every prime p, there is a finite field E extension of \mathbb{Z}_p such that

$$x^{p^n} - x = \prod_{i=1}^{p^n} (x - \alpha_i)$$

for some $\alpha_i \in E$.

- (b) Let $F := \{ \alpha \in E \mid \alpha^{p^n} = \alpha \}$. Prove that F is a finite field of order at most p^n .
- (c) Prove that $|F| = p^n$.
- 2. Suppose D is a UFD, $p \in D$ is prime, and $f(x) := c_n x^n + \cdots + a_0 \in D[x]$ satisfies the following property:

$$p \nmid c_n, p \mid c_{n-1}, \dots, p \mid c_0, \text{ and } p^2 \nmid c_0$$

Prove that f(x) cannot be written as a product of two smaller degree polynomials in D[x].

- 3. Prove that $x^n + yx^{n-1} + \cdots + yx + y$ is irreducible in $\mathbb{Z}[x, y]$.
- 4. Prove that $a_n x^n + \cdots + a_0 \in \mathbb{Q}[x]$ is irreducible if and only if $a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in \mathbb{Q}[x]$ is irreducible.
- 5. Suppose $f(x) := a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and for a prime p we have

 $p|a_0, p|a_1, \ldots, p|a_k, p \nmid a_{k+1}$, and $p^2 \nmid a_0$.

Prove that f(x) has an irreducible factor in $\mathbb{Q}[x]$ that has degree greater than k.

- 6. Prove that $x^n + 5x^{n-1} + 3$ is irreducible in $\mathbb{Q}[x]$.
- 7. decompose 2 as a product of irreducible elements in $\mathbb{Z}[i]$. How many *distinct* factors does it have?

17. Discussion and Problem sessions 17

17.1. Decomposition.

1. Suppose D is a UFD, $p \in D$ is prime, and $f(x) := c_n x^n + \cdots + a_0 \in D[x]$ satisfies the following property:

 $p \nmid c_n, p \mid c_{n-1}, \dots, p \mid c_0, \text{ and } p^2 \nmid c_0.$

Prove that f(x) cannot be written as a product of two smaller degree polynomials in D[x].

- Prove that xⁿ + yxⁿ⁻¹ + · · · + yx + y is irreducible in Z[x, y].
 Prove that xⁿ + yⁿ − 1 is irreducible in C[x, y].
- 4. Prove that $x^3 + 12x^2 + 18x + 6$ is irreducible in $(\mathbb{Z}[i])[x]$.
- 5. Prove that $a_n x^n + \cdots + a_0 \in \mathbb{Q}[x]$ is irreducible if and only if $a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in \mathbb{Q}[x]$ is irreducible.
- 6. Suppose $f(x) := a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and for a prime p we have

$$p|a_0, p|a_1, \dots, p|a_k, p \nmid a_{k+1}, \text{ and } p^2 \nmid a_0.$$

Prove that f(x) has an irreducible factor in $\mathbb{Q}[x]$ that has degree greater than k.

7. Prove that $x^n + 5x^{n-1} + 3$ is irreducible in $\mathbb{Q}[x]$.

10

8. decompose 2 as a product of irreducible elements in $\mathbb{Z}[i]$. How many *distinct* factors does it have?

17.2. UFD and PID.

- 1. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.
- 2. Prove that $\mathbb{C}[x,y]/\langle x^n + y^n 1 \rangle$ is an integral domain.
- 3. Suppose D is a UFD, and $\langle a, b \rangle = \langle \gcd(a, b) \rangle$ for every $a, b \in D \setminus \{0\}$.
 - (a) Prove that every finitely generated ideal of D is principal.
 - (b) For every non-zero non-unit element a of D, $\{\langle d \rangle \mid d | a\}$ is a finite set.
 - (c) Prove that D is a PID.
- 4. Suppose D is a UFD. Prove that D is a PID if and only if $\langle a, b \rangle = \langle \gcd(a, b) \rangle$, for every $a, b \in D \setminus \{0\}$.

18. DISCUSSION AND PROBLEM SESSIONS 18

18.1. Quiz 3, version a.

- 1. (5 points) Suppose n is a positive odd integer. Prove that $f(x) = (x-2)(x-4)\cdots(x-2n)-1 \in \mathbb{Q}[x]$ is irreducible.
- 2. (5 points) Suppose $f, g \in \mathbb{Z}[x]$ are monic, p is prime, and $c_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ is the modulo-p residue map. Prove that if $gcd(c_p(f), c_p(g)) = 1$ in $\mathbb{Z}_p[x]$, then gcd(f, g) = 1 in $\mathbb{Q}[x]$.
- 3. Suppose D is a PID and I = ⟨p⟩ is a non-zero prime ideal of D.
 (a) (5 points) Prove that p is an irreducible element of D.
 - (b) (3 points) Prove that I is a maximal ideal of D.
- 4. Suppose p is a prime, $a \in \mathbb{Z}_p^{\times}$, and $f(x) := x^p x + a \in \mathbb{Z}_p[x]$. Suppose E is a field extension of \mathbb{Z}_p , and $\alpha \in E$ is a zero of f(x). Notice that the characteristic of E is p.
 - (a) (3 points) Prove that $x^p x + a = (x \alpha) \cdots (x \alpha (p 1))$ in E[x].
 - (b) (5 points) Prove that $x^p x + a \in \mathbb{Z}_p[x]$ is irreducible.
 - (c) (2 points) State the relevant results from the lectures or HW assignments and show that $\mathbb{Z}_p[\alpha]$ is a finite field of order p^p .
 - (d) (2 points) Prove that $\prod_{a \in \mathbb{Z}_n^{\times}} (x^p x + a)$ divides $x^{p^p} x$.

18.2. Quiz 3, version b.

- 1. (5 points) Suppose p is prime. Prove that $x^{p-1} + x^{p-2} + \cdots + 1 \in \mathbb{Q}[x]$ is irreducible.
- 2. (5 points) Suppose every ideal of a unital commutative ring A is finitely generated. Prove that A is Noetherian.
- 3. Suppose A is a subring of B, B is a unital commutative ring, $1_B \in A$, and I is an ideal of B. (a) (3 points) Prove that $f: A \to B/I$, f(a) := a + I is a ring homomorphism and ker $f = I \cap A$.
 - (b) (5 points) Prove that if I is a prime ideal of B, then $I \cap A$ is a prime ideal of A.
 - (c) (2 points) Provide an example where I is a maximal ideal of B, but $I \cap A$ is not a maximal ideal of A.

- 4. Suppose p is prime and $f(x) := (x^p x + 1)^2 + p$.
 - (a) (5 points) Suppose f(x) = q(x)h(x) for some monic non-constant polynomials $q, h \in \mathbb{Z}[x]$. Prove that there are polynomial $q_1, h_1 \in \mathbb{Z}[x]$ such that

 $q(x) = x^p - x + 1 + p q_1(x)$, and $h(x) = x^p - x + 1 + p h_1(x)$.

(You are allowed to use a relevant result from HW assignment after you carefully state it.)

(b) (3 points) Suppose q_1 and h_1 are as in the previous part. Prove that

$$(x^p - x + 1)(q_1 + h_1) \equiv 1 \pmod{p}$$

and discuss why this is a contradiction.

(c) (2 points) Prove that f(x) is irreducible in $\mathbb{Q}[x]$.

19. DISCUSSION AND PROBLEM SESSIONS 19

19.1. Decomposition.

- 1. Prove that $x^n + yx^{n-1} + \cdots + yx + y$ is irreducible in $\mathbb{Z}[x, y]$. (Use Eisenstein's criterion for UFDs.)
- 2. Prove that $x^n + y^n 1$ is irreducible in $\mathbb{C}[x, y]$.
- 3. Prove that $x^3 + 12x^2 + 18x + 6$ is irreducible in $(\mathbb{Z}[i])[x]$.
- 4. Prove that $a_n x^n + \cdots + a_0 \in \mathbb{Q}[x]$ is irreducible if and only if $a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in \mathbb{Q}[x]$ is irreducible.
- 5. Suppose $f(x) := a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and for a prime p we have

 $p|a_0, p|a_1, \ldots, p|a_k, p \nmid a_{k+1}$, and $p^2 \nmid a_0$.

Prove that f(x) has an irreducible factor in $\mathbb{Q}[x]$ that has degree greater than k.

- 6. Prove that $x^n + 5x^{n-1} + 3$ is irreducible in $\mathbb{Q}[x]$.
- 7. Decompose 2 as a product of irreducible elements in $\mathbb{Z}[i]$. How many *distinct* factors does it have?
- 8. Decompose 30 into prime factors in $\mathbb{Z}[i]$.

19.2. UFD and PID.

- 1. Suppose D is a PID. Prove that every non-zero prime ideal is maximal.
- 2. Prove that $\mathbb{C}[x,y]/\langle x^n+y^n-1\rangle$ is an integral domain.
- 3. Suppose D is a UFD, and $\langle a, b \rangle = \langle \gcd(a, b) \rangle$ for every $a, b \in D \setminus \{0\}$.
 - (a) Prove that every finitely generated ideal of D is principal.
 - (b) For every non-zero non-unit element a of D, $\{\langle d \rangle \mid d \mid a\}$ is a finite set.
 - (c) Prove that D is a PID.
- 4. Suppose D is a UFD. Prove that D is a PID if and only if $\langle a, b \rangle = \langle \gcd(a, b) \rangle$, for every $a, b \in D \setminus \{0\}$.

20. DISCUSSION AND PROBLEM SESSIONS 20

20.1. Decomposition.

1. Suppose $f(x) := a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and for a prime p we have

 $p|a_0, p|a_1, \ldots, p|a_k, p \nmid a_{k+1}$, and $p^2 \nmid a_0$.

Prove that f(x) has an irreducible factor in $\mathbb{Q}[x]$ that has degree greater than k.

- 2. Prove that $x^n + 5x^{n-1} + 3$ is irreducible in $\mathbb{Q}[x]$.
- 3. Decompose 2 as a product of irreducible elements in $\mathbb{Z}[i]$. How many distinct factors does it have?
- 4. Decompose 30 into prime factors in $\mathbb{Z}[i]$.

12

20.2. Splitting field.

- 1. Find a splitting field of $x^p 1$ over \mathbb{Z}_p .
- 2. Find a splitting field of $x^3 1$ over \mathbb{Q} .
- 3. Suppose p is prime, and let E be a splitting field of $x^p 2$ over \mathbb{Q} . Find as many isomorphisms as you can from E to E.

21. DISCUSSION AND PROBLEM SESSIONS 21

21.1. Splitting field.

- 1. Find a splitting field of $x^p 1$ over \mathbb{Z}_p .
- 2. Find a splitting field of $x^3 1$ over \mathbb{Q} .
- 3. Suppose F is a finite field of order p^n where p is prime. Find as many isomorphisms as you can from F to F. (Hint: think about the Frobenious map $\sigma : F \to F, \sigma(a) := a^p$.)
- 4. Suppose E is a field extension of F, $f(x) \in F[x]$, and $\alpha \in E$ is a zero of f. Suppose $\theta : E \to E$ is an isomorphism such that $\theta(c) = c$ for every $c \in F$. Prove that $\theta(\alpha)$ is a zero of f.
- 5. Suppose n is a positive integer, and let E be a splitting field of $x^n 1$ over \mathbb{Q} . Find as many isomorphisms as you can from E to E.
- 6. Suppose p is prime, and let E be a splitting field of $x^p 2$ over \mathbb{Q} . Find as many isomorphisms as you can from E to E.
- 7. Suppose E is a splitting field of $f \in F[x]$ and f is irreducible and has n distinct zeros. Argue that there are at least n isomorphisms from E to E.

22. DISCUSSION AND PROBLEM SESSIONS 22

22.1. Splitting field.

- 1. Suppose p is prime, and let E be a splitting field of $x^p 2$ over \mathbb{Q} . Find as many isomorphisms as you can from E to E.
- 2. Suppose E is a splitting field of $f \in F[x]$ and f is irreducible and has n distinct zeros. Argue that there are at least n isomorphisms from E to E.

22.2. Finite fields.

- 1. Suppose m and n are positive integers and p is prime.
 - (a) Prove that $p^m 1|p^n 1$ if and only if m|n.
 - (b) Suppose m|n. Prove that $x^{p^m} x$ divides $x^{p^n} x$ in $\mathbb{Z}_p[x]$.
 - (c) Prove that \mathbb{F}_{p^m} can be embedded into \mathbb{F}_{p^n} if and only if m|n.
- 2. Suppose $\mathbb{F}_{p^n}^{\times}$ is generated by α . Prove that $m_{\alpha,\mathbb{Z}_p}(x)$ has degree n.
- 3. Prove that for every positive integer n there is an irreducible polynomial of degree n in $\mathbb{Z}_p[x]$.
- 4. Let $\operatorname{Irr}_p(d) := \{ f(x) \in \mathbb{Z}_p[x] \mid \deg f = d, f \text{ is irreducible in } \mathbb{Z}_p[x] \}.$
 - (a) Prove that f is an irreducible factor of $x^{p^n} x$ if and only if deg f|n.
 - (b) Prove that $x^{p^n} x = \prod_{d|n} \prod_{f \in \operatorname{Irr}_p(d)} f(x).$
- 5. Let $\operatorname{Aut}(\mathbb{F}_{p^n}) := \{\theta : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n} \mid \theta \text{ is an isomorphism}\}$. Prove that $|\operatorname{Aut}(\mathbb{F}_{p^n})| = n$.

23. DISCUSSION AND PROBLEM SESSIONS 23

For a field extension E of F, we let $\operatorname{Aut}_F(E)$ be the set of all F-isomorphims from E to E.

23.1. Group of automorphisms.

- 1. Justify why $(\operatorname{Aut}_F(E), \circ)$ is a group.
- 2. Prove that $\operatorname{Aut}_{\mathbb{Z}_p}(\mathbb{F}_{p^n})$ is a cyclic group of order n which is generated by the Frobinus map $\sigma : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}, \sigma(a) := a^p$.
- 3. Suppose n is a positive integer.
 - (a) Suppose, for some integer a, p is a prime factor of $\Phi_n(a)$ which does not divide n. Prove that $p \equiv 1 \pmod{n}$ and gcd(p, a) = 1. (Hint: Use Problem 4(b) and show that $E_{n,p} = \mathbb{Z}_p$. Then use Problem 4(c).)
 - (b) Prove that there are infinitely many primes in the arithmetic progression $\{nk+1\}_{k=1}^{\infty}$. (Hint: suppose p_1, \ldots, p_k are the only primes in this arithmetic progression. Since $\Phi_n(np_1 \cdots p_k x)$ is not a constant polynomial, $\Phi_n(np_1 \cdots p_k a) \neq \pm 1, 0$ for some integer a. Hence there is a prime factor p of $\Phi_n(np_1 \cdots p_k a)$. Use Part (a) to deduce that p is different from p_i 's and $p \equiv 1 \pmod{n}$.)
- 4. Suppose G is a finite subgroup of $\operatorname{Aut}_F(E)$. Let

$$E^G := \{ a \in E \mid \forall \theta \in G, \theta(a) = a \}.$$

- (a) Prove that E^G is a subfield of E.
- (b) For $\alpha \in E$, let $\mathcal{O}_{\alpha,G} := \{\theta(\alpha) \mid \theta \in G\}$, and

$$p_{G,\alpha}(x) = \prod_{\alpha' \in \mathcal{O}_{\alpha,G}} (x - \alpha').$$

Prove that $p_{G,\alpha}(x) \in E^G[x]$ and α is a zero of $p_{G,\alpha}(x)$.

(c) Prove that $m_{\alpha,E^G}(x) = p_{G,\alpha}(x)$.

24. DISCUSSION AND PROBLEM SESSIONS 24

For a field extension E of F, we let $\operatorname{Aut}_F(E)$ be the set of all F-isomorphims from E to E.

24.1. Group of automorphisms.

1. Suppose n is a positive integer.

- (a) Suppose, for some integer a, p is a prime factor of $\Phi_n(a)$ which does not divide n. Prove that $p \equiv 1 \pmod{n}$ and gcd(p, a) = 1. (Hint: Use Problem 4(b) and show that $E_{n,p} = \mathbb{Z}_p$. Then use Problem 4(c).)
- (b) Prove that there are infinitely many primes in the arithmetic progression $\{nk+1\}_{k=1}^{\infty}$. (Hint: suppose p_1, \ldots, p_k are the only primes in this arithmetic progression. Since $\Phi_n(np_1 \cdots p_k x)$ is not a constant polynomial, $\Phi_n(np_1 \cdots p_k a) \neq \pm 1, 0$ for some integer a. Hence there is a prime factor p of $\Phi_n(np_1 \cdots p_k a)$. Use Part (a) to deduce that p is different from p_i 's and $p \equiv 1 \pmod{n}$.)
- 2. Suppose G is a finite subgroup of $\operatorname{Aut}_F(E)$. Let

$$E^G := \{ a \in E \mid \forall \theta \in G, \theta(a) = a \}.$$

- (a) Prove that E^G is a subfield of E.
- (b) For $\alpha \in E$, let $\mathcal{O}_{\alpha,G} := \{\theta(\alpha) \mid \theta \in G\}$, and

$$p_{G,\alpha}(x) = \prod_{\alpha' \in \mathcal{O}_{\alpha,G}} (x - \alpha').$$

Prove that $p_{G,\alpha}(x) \in E^G[x]$ and α is a zero of $p_{G,\alpha}(x)$.

- (c) Prove that $m_{\alpha,E^G}(x) = p_{G,\alpha}(x)$.
- (d) Prove that E is a normal extension of E^G , and for every $\alpha \in E$, $gcd(m_{\alpha,E^G}, m'_{\alpha,E^G}) = 1$.
- (e) Prove that $\operatorname{Aut}_{E^G}(E) = G$.

For a field extension E of F, we let $\operatorname{Aut}_F(E)$ be the set of all F-isomorphims from E to E.

25.1. Group of automorphisms.

1. Suppose G is a finite subgroup of $\operatorname{Aut}_F(E)$. Let

$$E^G := \{ a \in E \mid \forall \theta \in G, \theta(a) = a \}.$$

- (a) Prove that E^G is a subfield of E.
- (b) For $\alpha \in E$, let $\mathcal{O}_{\alpha,G} := \{\theta(\alpha) \mid \theta \in G\}$, and

$$p_{G,\alpha}(x) = \prod_{\alpha' \in \mathcal{O}_{\alpha,G}} (x - \alpha').$$

Prove that $p_{G,\alpha}(x) \in E^G[x]$ and α is a zero of $p_{G,\alpha}(x)$.

- (c) Prove that $m_{\alpha,E^G}(x) = p_{G,\alpha}(x)$.
- (d) Prove that E is a normal extension of E^G , and for every $\alpha \in E$, $gcd(m_{\alpha,E^G}, m'_{\alpha,E^G}) = 1$.
- 2. Suppose p is prime and $\zeta_p = e^{2\pi i/p}$. Prove that

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}[\zeta_p, \sqrt[p]{2}]) \simeq \left\{ \begin{pmatrix} i & j \\ 0 & 1 \end{pmatrix} \mid i \in \mathbb{Z}_p^{\times}, j \in \mathbb{Z}_p \right\}.$$

3. Suppose m|n. Let $\sigma : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}, \sigma(a) := a^p$. Prove that the fixed points of σ^m is a field of order p^m . Identify this field with \mathbb{F}_{p^m} . Prove that $\operatorname{Aut}_{\mathbb{F}_{p^m}}(\mathbb{F}_{p^n})$ is a cyclic group of order n/m which is generated by σ^m .

25.2. Normal extensions.

- 1. Suppose [E:F] = 2. Prove that E is a normal extension of F.
- 2. Can $\mathbb{Q}[\sqrt[n]{2}]$ be a normal extension of \mathbb{Q} if n > 2?
- 3. Suppose $x^n 1$ has *n* zeros in a field *F*. Prove that $F[\sqrt[n]{a}]$ is a normal extension of *F* for every $a \in F$. Prove that $\operatorname{Aut}_F(F[\sqrt[n]{a}])$ is a cyclic group.