1. Let $\zeta_n := e^{2\pi i/n}$.
 (a) (2 points) Prove that $\mathbb{Q}[\zeta_n]/\mathbb{Q}$ is Galois.

 Outline of solution. One can show that $\mathbb{Q}[\zeta_n]$ is the splitting field of $x^n - 1$ over \mathbb{Q}. Separability is automatic as we are in characteristic 0, or alternatively one can directly see that $x^n - 1$ does not have multiple zeros.

 (b) (2 points) Prove that $\text{Aut}_\mathbb{Q}(\mathbb{Q}[\zeta_n])$ is abelian.

 Outline of solution. One can prove that the map $\text{Aut}_\mathbb{Q}(\mathbb{Q}[\zeta_n]) \rightarrow \mathbb{Z} \times n$, taking $\theta \mapsto [i]$ whenever $\theta(\zeta_n) = \zeta_i^n$, is an isomorphism. In particular, $\text{Aut}_\mathbb{Q}(\mathbb{Q}[\zeta_n])$ is abelian.

 (c) (2 points) Prove that F/\mathbb{Q} is Galois for every $F \in \text{Int}(\mathbb{Q}[\zeta_n]/\mathbb{Q})$.

 Solution. By the fundamental theorem of Galois theory, an intermediate subfield F of $\mathbb{Q}[\zeta_n]/\mathbb{Q}$ is Galois over \mathbb{Q} if and only if the corresponding subgroup of $\text{Aut}_\mathbb{Q}(\mathbb{Q}[\zeta_n])$ is normal. By part (b) this is always the case.

 (d) (2 points) Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of $\mathbb{Q}[\zeta_n]$ for any positive integer n.

 Solution. If $\mathbb{Q}(\sqrt[3]{2})$ were a subfield of $\mathbb{Q}[\zeta_n]$ then it would be Galois over \mathbb{Q} by part (c), but we have seen that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal.

2. Suppose E/F is a field of characteristic $p > 0$ and E/F is a field extension. Suppose $\gcd([E : F], p) = 1$.

 (a) (4 points) Prove that $m_{\alpha,F}(x)$ is separable in $F[x]$ for every $\alpha \in E$.

 Solution. We have proven that one can write $m_{\alpha,F}(x) = h(x^{p^k})$ for some irreducible, separable polynomial $h \in F[x]$ and some $k \in \mathbb{Z} \geq 0$. As a result one sees that $[F[\alpha] : F] = \deg(m_{\alpha,F}) = p^k \cdot \deg(h)$.

 Thus p^k divides $[F[\alpha] : F]$ and then by tower law one also obtains $p^k|[E : F]$. This contradicts our original hypothesis unless $k = 0$, but then $m_{\alpha,F}(x) = h(x)$, which is separable.

 (b) (2 points) Prove that E/F is a separable extension.

 Solution. By definition E/F is separable if and only if $m_{\alpha,F}(x)$ is separable in $F[x]$ for every $\alpha \in E$, and this is exactly what we proved in (a).

3. Suppose $f(x) \in \mathbb{Q}[x]$ is irreducible and it has both a real and non-real complex zero. Suppose $E \subseteq \mathbb{C}$ is a splitting field of f over \mathbb{Q}.

 (a) (2 points) Let $F := E \cap \mathbb{R}$. Prove that $[E : F] = 2$.

 Solution. Consider complex conjugation $\tau : \mathbb{C} \to \mathbb{C}$, i.e. $\tau(z) = \bar{z}$. Because E/\mathbb{Q} is separable, one has $\tau(E) = E$ and so $\tau|_E \in \text{Aut}_\mathbb{Q}(E)$. Notice then F is exactly equal to $\text{Fix}((\tau|_E))$, and thus we have $[E : F] = [E : \text{Fix}((\tau|_E))] = |(\tau|_E)| = 2$.

 (Notice the fact that $o(\tau|_E) = 2$ is dependent on the fact that f has a non-real complex solution.)
(b) (4 points) Prove that \(F/\mathbb{Q} \) is not a normal extension.

Solution. By assumption \(f \) has a zero in \(F \), but \(f \) does not split in \(F \) because \(f \) has a non-real complex zero by hypothesis. Because \(f \) is irreducible, this violates the condition (3) for an extension to be normal as given in Theorem 22.2.1 (notice that if \(\alpha \in F \) is a real zero of \(f \) then \(f(x) = m_{\alpha, \mathbb{Q}}(x) \)).

4. (10 points) Suppose \(f(x) \in \mathbb{Q}[x] \) is monic, irreducible and \(\deg(f) = p \) is prime. Suppose \(E \subseteq \mathbb{C} \) is a splitting field of \(f \) over \(\mathbb{Q} \) and \(\alpha \in E \) is a zero of \(f \). Prove there is a \(\theta \in \text{Aut}_\mathbb{Q}(E) \) such that
\[
f(x) = \prod_{i=0}^{p-1} (x - \theta^i(\alpha)).
\]

Outline of solution. If we let \(R \) denote the roots of \(f \) in \(E \) then \(\theta \mapsto \theta|_R \) defines an injective homomorphism \(\text{Aut}_\mathbb{Q}(E) \to S_R \cong S_p \), and in this way we identify \(\text{Aut}_\mathbb{Q}(E) \) with a subgroup of \(S_p \). Because \(f \) is irreducible one has \([\mathbb{Q}[\alpha] : \mathbb{Q}] = \deg(f) = p \), and by the tower law one then sees that \(p \) divides \([E : \mathbb{Q}] \). One can see that \(E/\mathbb{Q} \) is Galois (separability is automatic because we are in characteristic 0) so one has \([E : \mathbb{Q}] = |\text{Aut}_\mathbb{Q}(E)| \), and thus \(p \) divides \(|\text{Aut}_\mathbb{Q}(E)| \). Thus by Cauchy’s theorem \(\text{Aut}_\mathbb{Q}(E) \) has an element of order \(p \). Under the identification of \(\text{Aut}_\mathbb{Q}(E) \) with \(S_p \) this says that \(\text{Aut}_\mathbb{Q}(E) \) contains a cycle of length \(p \) (these are the only elements of order \(p \) in \(S_p \)). If we call this element \(\theta \) then this means that \(\alpha, \theta(\alpha), \ldots, \theta^{p-1}(\alpha) \) are all distinct roots of \(f \), and then one gets the equality above by generalized factor theorem.