First problem set

Monday, August 7, 2017

2:16 PM

- 1. Suppose R_1 ,..., R_n are rings. Prove that R_1 ,..., R_n are unital if and only if $R_1 \times \cdots \times R_n$ is unital.
- 2. Suppose R is a unital ring. An element x of R is called a unit if it has a multiplicative inverse; that means $\exists x' \in \mathbb{R}$ such that $x x' = x' x = 1_R$.

Let U(R) be the set of all the units of R.

- @ Prove that U(R) is closed under multiplication.
- \bigcirc Prove that $(U(R), \cdot)$ is a group.
 - © Suppose R_i 's are unital rings. Prove that $U(R_1 \times \cdots \times R_n) = U(R_1) \times \cdots \times U(R_n).$
 - 1 Find U(ZxQ).
- 3. Show that 2a+b13 | a, b \ Z& is ring.
- 4. As in problem 3 one can show $F = \{a+b\sqrt{3} \mid a,b\in Q\}$ is a ring. Show that $U(F) = F \setminus \{a\}$; that means any non-zero element is a unit.