Third problem set Friday, August 18, 2017 2:34 PM 1. In class we proved that, for any $a \in \mathbb{Z}_p$, we have a = a. (where p is prime). Use this result to show $\chi - \chi = \chi (\chi - 1) \cdots (\chi - (p - 1))$ in $\mathbb{Z}_p[x]$. Use this result to deduce (p-1)! = -1 in \mathbb{Z}_p . (<u>Hint</u>. Think about zeros of X - X in \mathbb{Z}_{p} .) 2. (a) Show that $\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} where $\omega = -\frac{1+\sqrt{-3}}{2}$ 6 Show that the field of fractions of Z Iwj is $\mathbb{Q}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Q}\}$ (<u>Hint</u>. Use $\omega^2 + \omega + 1 = 0$; and compute $(\alpha + b\omega)(\alpha + b\omega)$ where $\overline{\omega} = \frac{-1-\sqrt{-3}}{2} \cdot (\text{Notice } \omega + \overline{\omega} = -1 \text{ and } \omega \overline{\omega} = 1.))$ 3. Find all the primes p such that x+2 is a factor of $\chi^6 - \chi^4 + \chi^3 - \chi + 1$ in Zp[x]. 4. Find a zero of $\chi^3 - 2\chi + 1$ in \mathbb{Z}_5 and express it as a product of a degree 1 and a degree 2 polynomial. 5. How many degree 2 and degree 3 polynomials with no zeros in \mathbb{Z} [X] are there?