1. In class we proved that, for any $a \in \mathbb{Z}_{p}$, we have $a^{p}=a$.
(where p is prime). Use this result to show

$$
x^{p}-x=x(x-1) \cdots \cdots(x-(p-1))
$$

in $\mathbb{Z}_{p}[x]$. Use this result to deduce $(p-1)!=-1$ in \mathbb{Z}_{p}.
(Hint. Think about zeros of $x^{P}-x$ in \mathbb{Z}_{P}.)
2.(a) Show that $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} where $\omega=\frac{-1+\sqrt{-3}}{2}$
(b) Show that the field of fractions of $\mathbb{Z}[\omega]$ is

$$
\mathbb{Q}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Q}\} .
$$

(Hint. Use $\omega^{2}+\omega+1=0$; and compute $(a+b \omega)(a+b \bar{\omega})$ where $\bar{\omega}=\frac{-1-\sqrt{-3}}{2}$. (Notice $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$.))
3. Find all the primes p such that $x+2$ is a factor of $x^{6}-x^{4}+x^{3}-x+1$ in $\mathbb{Z}_{p}[x]$.
4. Find a zero of $x^{3}-2 x+1$ in \mathbb{Z}_{5} and express it as a product of a degree 1 and a degree 2 polynomial.
5. How many degree 2 and degree 3 polynomials with no zeros in $\mathbb{Z}_{2}[x]$ are there?

