1. Suppose \(E \) is a finite field. Prove \(\prod_{\alpha \in E \setminus \{0\}} (x-\alpha) = (-1)^{|E|} \).

 (Hint. Suppose \(|E| = q \). Use \(x^q - x = \prod_{\alpha \in E} (x-\alpha) \).

2. Suppose \(p \) is prime, \(n \in \mathbb{Z}^+ \), \(p \nmid n \), and \(E \) is a field of characteristic \(p \). Prove that \(x^n - 1 \) does not have a zero with multiplicity more than 1.

3. Suppose \(f(x) \in \mathbb{Z}_p[x] \) is irreducible of degree \(n \). Prove that \(f(x) \mid x^n - x \).

 (Hint. Let \(E := \mathbb{Z}_p[x] / \langle f(x) \rangle \), and \(\alpha := x + \langle f(x) \rangle \).

 Then \(E \) is a finite field of order \(q^n \). Hence \(\alpha^{q^n} = \alpha \).

 This implies \(\alpha^{q^n} - x \in \langle f(x) \rangle \).

 (In class, I took a more advanced route.)

4. Suppose \(f(x) \in \mathbb{Z}_p[x] \) is of positive degree. Prove that \(f(x) \mid x^k - x \) for some \(k \in \mathbb{Z}^+ \) if \(f(x) \) is not divisible by the square of an irreducible poly.

 (Hint. Write \(f(x) \) as a product of irreducible; use problem 3; use \(x^{m^n} - x \mid x^{k^n} - x \) if \(m \mid n \).)
5. Prove that \(\mathbb{Z}_3[x]/\langle x^3 - x + 1 \rangle \cong \mathbb{Z}_3[x]/\langle x^3 - x + 2 \rangle \)

(Hint: Prove that both sides are fields of order \(3^3 = 27 \).)

6. Let \(\mathbb{Q}(e^{\frac{2\pi i}{n}}) \) be the smallest subfield of \(\mathbb{C} \) that contains \(\mathbb{Q} \) and \(e^{\frac{2\pi i}{n}} \). Prove that \(\mathbb{Q}(e^{\frac{2\pi i}{n}}) \) is a splitting field of \(x^n - 1 \) over \(\mathbb{Q} \).