1. Prove that the following polynomials are irreducible:

(a) \(x^n - 12 \in \mathbb{Q}[x] \) if \(n \geq 2 \).

 It suffices to show \(x^n - 12 \) is irreducible in \(\mathbb{Z}[x] \) by Gauss’s lemma. \(3 \mid 12 \) and \(3^2 = 9 \nmid 12 \) so the conclusion follows by Eisenstein Criterion applied for the prime 3.

(b) \(x^3 - 3x^2 + 3x + 4 \in \mathbb{Q}[x] \).

 Since a polynomial of degree two or three over a field \(F \) is reducible iff it has a root in \(F \), it is enough to show the above polynomial \(f(x) \) has no roots in \(\mathbb{Q} \). By rational root theorem, if it has a root \(r/s \), then \(s \mid 1 \) and \(r \mid 4 \). Since \(f(r) \neq 0 \) for \(r = \pm 1, \pm 2, \pm 4 \), it has no rational roots.

(c) \(x^5 - 10x^3 + 25x^2 - 51x + 2017 \in \mathbb{Q}[x] \).

 It suffices to show the above polynomial is irreducible in \(\mathbb{Z}[x] \) by Gauss’s lemma. Reduce modulo 5, \(x^5 - x^2 \in \mathbb{Z}/5\mathbb{Z}[x] \) is irreducible. Hence the original polynomial is irreducible in \(\mathbb{Z}[x] \).

(d) \(x^4 + 3x^2 + 27x - 12 \in \mathbb{Q}[x] \).

 It suffices to show the above polynomial is irreducible in \(\mathbb{Z}[x] \) by Gauss’s lemma. 3 divides all the coefficients except the leading coefficient and \(3^2 = 9 \nmid 12 \), so the conclusion follows by Eisenstein Criterion applied for the prime 3.

(e) \(x^5 - x + 1 \in \mathbb{Z}/3\mathbb{Z}[x] \).

 \(0^5 - 0 + 1 = 1 \), \(1^5 - 1 + 1 = 1 \), and \(2^5 - 2 + 1 = 1 \) so \(x^5 - x + 1 \) has no roots in \(\mathbb{Z}/3\mathbb{Z} \). If it were reducible, it must have a factor of a monic polynomial of degree 2 because it can not have linear factors, which give rise to roots. Since the only monic polynomial of degree 2 in \(\mathbb{Z}/3\mathbb{Z}[x] \) that do not have a root in \(\mathbb{Z}/3\mathbb{Z} \) are \(x^2 + 1 \), \(x^2 + x - 1 \), and \(x^2 - x - 1 \) and by long division none of these divide \(x^5 - x + 1 \), \(x^5 - x + 1 \) is irreducible in \(\mathbb{Z}/3\mathbb{Z}[x] \).

(f) \(x^5 + 2x + 4 \in \mathbb{Q}[x] \).

 It suffices to show the above polynomial is irreducible in \(\mathbb{Z}[x] \) by Gauss’s lemma. Reduce modulo 3, \(x^5 + 2x + 1 = x^5 - x + 1 \) is irreducible in \(\mathbb{Z}/3\mathbb{Z}[x] \) by part (e). Hence the conclusion follows.
2. Prove that \(\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle \) is a field of order 3^5.

Proof. By part (e), \(x^5 - x + 1 \) is irreducible in \(\mathbb{Z}/3\mathbb{Z}[x] \). Since \(\mathbb{Z}/3\mathbb{Z} \) is a field, \(\mathbb{Z}/3\mathbb{Z}[x] \) is a Euclidean domain and hence a P.I.D. So the ideal generated by the irreducible element \(x^5 - x + 1 \) is maximal. Hence \(\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle \) is a field. By the division algorithm in \(\mathbb{Z}/3\mathbb{Z}[x] \), for every \(f(x) \in \mathbb{Z}/3\mathbb{Z}[x] \), \(\exists q(x), r(x) \in \mathbb{Z}/3\mathbb{Z}[x] \) such that \(f(x) = q(x)(x^5 - x + 1) + r(x) \), where \(r(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \), and \(a_i \in \mathbb{Z}/3\mathbb{Z} \). Hence

\[
\overline{f(x)} = f(x) + \langle x^5 - x + 1 \rangle = r(x) + \langle x^5 - x + 1 \rangle.
\]

Let \(\phi \) be the map from \(\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle \) to \((\mathbb{Z}/3\mathbb{Z})^5 \) given by

\[
\overline{f(x)} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \langle x^5 - x + 1 \rangle \mapsto (a_0, a_1, \ldots, a_4).
\]

\(\phi \) is obviously surjective. Suppose \(\phi(f(x)) = \phi(g(x)) \). Then \(\overline{f(x)} - \overline{g(x)} = 0 \). So \(\phi \) is injective. Since \(\phi \) is a bijective, \(|\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle| = |(\mathbb{Z}/3\mathbb{Z})^5| = 3^5 \). ■

Remark (Construction of field of order \(p^n \)). *To construct a field of order \(p^n \), take a monic irreducible polynomial \(f(x) \) of degree \(n \) in \(\mathbb{Z}/p\mathbb{Z}[x] \), which always exist, and the field \(\mathbb{Z}/p\mathbb{Z}[x]/\langle f(x) \rangle \) is a field of order \(p^n \) by the same reasoning as the above problem.*