1. (a) \(\mathbb{Z}_3 \) is a field, \(x^3 - x + 1 \) has degree 3.

\(x^3 - x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \) iff \(x^3 - x + 1 \) has no root in \(\mathbb{Z}_3 \).

Since \(0^3 - 0 + 1 = 1 \neq 0 \)
\(1^3 - 1 + 1 = 1 \neq 0 \)
\(2^3 - 2 + 1 = 7 \neq 0 \)

\(\Rightarrow x^3 - x + 1 \) has no root in \(\mathbb{Z}_3 \).

(b) \(\mathbb{Z}_3[x] \) is a PID and \(x^3 - x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \)

\(\Rightarrow <x^3 - x + 1> \) is maximal ideal

\(\Rightarrow \mathbb{Z}_3 / <x^3 - x + 1> \) is a field

(c) We know that \(\mathbb{Z}_3 [x] / <x^3 - x + 1> \) has \(3^3 = 27 \) elements.

Consider the map \(\phi_a : \mathbb{Z}_3 [x] \rightarrow \mathbb{C} \)
\(g(x) \rightarrow g(a) \)

\(\text{Im} \phi_a = \{ c_0 + c_1 a + c_2 a^2 \mid c_i \in \mathbb{Z}_3 \} \).

Clearly \(c_0 + c_1 a + c_2 a^2 \in \text{Im} \phi_a \).

Now for any \(g(x) \in \mathbb{Z}_3 [x] \), \(g(x) = p(x) (x^3 - x + 1) + r(x) \), \(p(x), r(x) \in \mathbb{Z}_3 [x] \), \(\deg r(x) \leq 2 \).

Then \(g(a) = p(a) \cdot 0 + r(a) \in \{ c_0 + c_1 a + c_2 a^2 \mid c_i \in \mathbb{Z}_3 \} \).

2 is a root of \(x^3 - x + 1 \) \(\Rightarrow <x^3 - x + 1> \subseteq \text{Ker} \phi_a \).

But \(1 \notin \text{Ker} \phi_a \Rightarrow \text{Ker} \phi_a \neq \mathbb{Z}_3 [x] \Rightarrow <x^3 - x + 1> \neq \text{Ker} \phi_a \).

By 1st Isomorphism Theorem, \(\mathbb{Z}_3 [x] / <x^3 - x + 1> \cong \{ c_0 + c_1 a + c_2 a^2 \mid c_i \in \mathbb{Z}_3 \} \).
\(\Rightarrow \{ c_0 + c_1 a + c_2 a^2 \mid c_i \in \mathbb{Z}_3 \} \) is field of 27 elements, with root of \(x^3 - x + 1 \), which is 2.

2. (a) Consider 3, prime number

\(3 \mid 6, 3 \mid 30, 3 \mid 12 \), but \(3^2 + 12 \)

\(\Rightarrow f(x) \) is irreducible by Eisenstein criteria.

(b) Consider the evaluation map \(\phi_a : \mathbb{R}[x] \rightarrow \mathbb{C} \)
\(g(x) \rightarrow g(a) \)

\(f(x) \) has 2 as root and \(f(x) \) is irreducible

\(\Rightarrow \text{Ker} \phi_a = <f(x)> \).
By the main theorem of evaluation map, we have since deg \(f(x) = 5 \)
\[\text{Im} \phi = \{ c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 \mid c_i \in \mathbb{Q} \} \] and the image is a field.

(2) Suppose we have \(a_0 + a_1 x + \cdots + a_4 x^4 = 0, \ a_i \in \mathbb{Q} \).

Consider \(g(x) = a_0 + a_1 x + \cdots + a_4 x^4, \ g(2) = 0 \) by assumption.

\[g(x) \in \ker \phi = \langle f(x) \rangle \implies g(x) = f(x) \cdot h(x) \]

But \(\deg g(x) \leq 4 < \deg f(x) = 5 \)

\[\implies \text{the only possibility is that } g(x) = h(x) = 0 \]

\[\implies a_i = 0, \ i = 0, \ldots, 4. \]

3. \(f(x) \) is irreducible in \(\mathbb{Q}[x] \) iff \(f(-x) \) is irreducible iff \(f(-1(x+1)) \) is irreducible.

\[f(-1(x+1)) = (x+1)^5 + (x+1)^4 + \cdots + (x+1) + 1 \]

\[= \frac{1 - (1 + x)^6}{1 - (1 + x)} = \frac{x^5 + (5) x^4 + \cdots + (5)(x+1) x + (p)}{p} \]

\[p \mid (\psi) \] but \(p^2 \nmid (\psi) \)

By Eisenstein's criteria, it's irreducible.

Another way of writing 3:

\(f(x) \) is irreducible iff \(f(-x) \) is irreducible.

Let \(g(x) = f(-x) = x^5 + x^4 + \cdots + x + 1 \).

As we did in Lecture, \(g(x) = \frac{x^5 + 1}{x + 1} \)

\[g(y+1) = \frac{(y+1)^5 + 1}{(y+1) + 1} = \frac{y^5 + 5y^4 + \cdots + 5y + 1}{y} = y^4 + (5) y^3 + \cdots + (5) \]

\(g(y+1) \) is irreducible by Eisenstein's criteria. \((p) \mid (\psi), 1 < \psi, p^2 \nmid (\psi) \).

Suppose \(g(x) \) is reducible, then

\[g(x) = g_1(x) g_2(x), \ \text{with deg } g_i(x) \geq 1. \]

\[\implies g(y+1) = g_1(y+1) g_2(y+1), \ \text{with deg } g_i(y+1) \geq 1, \ \text{contradiction.} \]

\[\implies g(x) = f(-x) \text{ is irreducible} \]

\[\implies f(x) \text{ is irreducible.} \]
4. (a) \(x^4 - 2x^2 - 2 = (\sqrt{1+\sqrt{5}})^4 - 2(\sqrt{1+\sqrt{5}})^2 - 2 \)
\[= (1+\sqrt{5})^2 - 2(1+\sqrt{5}) - 2 = 1 + 2\sqrt{5} + 5 - 2 - 2\sqrt{5} - 2 = 0. \]
\[\Rightarrow 2 \text{ is a root of } x^4 - 2x^2 - 2 \]
By Eisenstein's criteria, we notice that \(2 \mid b \text{ but } 2^2 \nmid a \).
\[\Rightarrow x^4 - 2x^2 - 2 \text{ is irreducible} \]
\[\Rightarrow x^4 - 2x^2 - 2 \text{ is minimal polynomial} \]
(b) As usual, consider the evaluation map \(\phi_a \) at \(2 \).
\(x^4 - 2x^2 - 2 \) is irreducible and admits \(2 \) as a root.
\[\Rightarrow \ker \phi_a = \langle x^4 - 2x^2 - 2 \rangle \]
By the main theorem of evaluation map and the fact that \(\deg x^4 - 2x^2 - 2 = 4. \)
We have that \(\text{Im} \phi = \{ a_0 + a_1 2 + a_2 2^2 + a_3 2^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{Q} \} \) is a field.

5. \(x^2 + 2 \) is irreducible in \(\mathbb{Z}_5[x] \) as it has no root.
\[\Rightarrow \mathbb{Z}_5[x]/\langle x^2 + 2 \rangle \text{ is a field with } 5^2 = 25 \text{ elements}. \]