In the previous lecture we proved:

Theorem. If \(f(x) \in \mathbb{Z}_p[x] \) is irreducible of degree \(n \), then \(E := \mathbb{Z}_p[x] / \langle f(x) \rangle \) is a field of order \(p^n \).

An important property of a finite field of order \(p^n \) is the following:

Lemma. Suppose \(E \) is a field and \(|E| = q \). Then

\[
\forall \alpha \in E, \quad \alpha^q = \alpha.
\]

Proof. If \(\alpha = 0 \), then \(\alpha^q = 0 = \alpha \). If \(\alpha \neq 0 \), then \(\alpha \in U(E) \).

By Lagrange's theorem \(|U(E)| = q-1 \); and so \(\alpha^{q-1} = 1 \Rightarrow \alpha^q = \alpha \).

Theorem. Suppose \(E \) is a finite field and \(|E| = q \). Then

\[
\prod_{\alpha \in E} (x - \alpha) = x^q - x.
\]

Proof. By the previous lemma, \(\forall \alpha \in E \) is a zero of \(x^q - x \). And so \(\exists g(x) \in \mathbb{Z}_p[x], \quad x^q - x = g(x) \prod_{\alpha \in E} (x - \alpha) \).

Comparing degrees we get \(q = \deg g + |E| = \deg g + q \).
And so \(\deg g = 0 \). This means \(g(x) = c \in \mathbb{E} \setminus \mathbb{F} \).

Comparing the leading coefficients, we deduce that \(c = 1 \) and the claim follows.

We will come back to this theorem later. For now let's go back to zeros of polynomials. So far we have found a field extension that contains a zero of an irreducible polynomial. Can we find a field extension that contains all the zeros of an arbitrary positive degree polynomial?

Def. Suppose \(\mathbb{F} \) is a field, \(f(x) \in \mathbb{F}[x] \) has positive degree; \(\mathbb{E} \) is called a splitting field of \(f \) over \(\mathbb{F} \) if

1. \(\mathbb{E} \) is a field, \(\mathbb{E} \supseteq \mathbb{F} \); that means \(i \) is an injective ring homomorphism.

2. \(\exists \alpha_1, \ldots, \alpha_n \in \mathbb{E} \), \(f(x) = c (x-\alpha_1) \cdots (x-\alpha_n) \) \(c \in \mathbb{E} \)

3. \(\mathbb{E} \) is the smallest field that contains \(i(\mathbb{F}) \) and \(\alpha_1, \ldots, \alpha_n \).
Ex. \(\mathbb{Q} \sqrt{2} \) is a splitting field of \(x^2 - 2 \) over \(\mathbb{Q} \).

Solution. \(\mathbb{Q} \leftarrow \mathbb{Q} \sqrt{2} \)
\[a \rightarrow a \]

\[x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}) \]

If a ring contains \(\mathbb{Q} \) as a subring and \(\sqrt{2} \), then
\[
\forall a, b \in \mathbb{Q}, \ a + b\sqrt{2} \text{ is in that ring. Hence } \mathbb{Q} \sqrt{2} \text{ is the smallest subring of } \mathbb{Q} \sqrt{2} \text{ that contains } \mathbb{Q} \text{ and } \sqrt{2}.
\]

Ex. Find a splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \).

Solution. A splitting field \(E \) of \(x^3 - 2 \) over \(\mathbb{Q} \) contains zeros of \(x^3 - 2 \). Let's start with finding zeros of this polynomial in \(\mathbb{C} \).

If a complex number \(z \) is a zero of \(x^3 - 2 \), then
\[z^3 = 2. \]
Using polar coordinates and Euler's formula, we have
\[z = r e^{i\theta} \text{ where } r = |z| \text{ and } \theta = \arg(z). \]
Hence
\[
(r e^{i\theta})^3 = 2 \text{ implies } r^3 = 2 \text{ and } e^{3i\theta} = 1. \text{ And so } r = \sqrt[3]{2} \text{ and } 3\theta = 2k\pi \text{ for some } k \in \mathbb{Z}. \text{ Hence }
\]

\[
\cos \theta = \frac{\sqrt[3]{2}}{2} \quad \text{and} \quad \sin \theta = \frac{\sqrt[3]{2}}{2}.
\]
Recall from complex numbers:

If \(z \in \mathbb{C} \) and \(z^n = 1 \), then \(|z^n| = 1 \) implies \(|z| = 1 \). And so \(z \) is on the unit circle. If the argument of \(z \) is \(\theta \), then multiplying \(z \) is just rotation by angle \(\theta \) about the origin. So \(z^n = 1 \) means after \(n \) times rotation we get back to 1. Therefore \(n \theta = 2k \pi \) for some \(k \in \mathbb{Z} \). Hence we get \(n \) possible values \(1, \zeta, \zeta^2, \ldots, \zeta^{n-1} \) where \(\zeta = e^{\frac{2\pi i}{n}} = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right) \).

And so \(y^n - 1 = (y - 1)(y - \zeta)(y - \zeta^2) \ldots (y - \zeta^{n-1}) \).

Hence \(3\sqrt{2}, 3\sqrt{2} \zeta, 3\sqrt{2} \zeta^2 \) are zeros of \(x^3 - 2 \) where \(\zeta = e^{\frac{2\pi i}{3}} = \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \). So a splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \) is \(\mathbb{Q}[3\sqrt{2}, 3\sqrt{2} \zeta, 3\sqrt{2} \zeta^2] \) which is the smallest subfield of \(\mathbb{C} \) that contains \(\mathbb{Q}, 3\sqrt{2}, 3\sqrt{2} \zeta, \) and \(3\sqrt{2} \zeta^2 \). Then \(\zeta = 3\sqrt{2} \zeta/3\sqrt{2} \) is in this field; and so
\[\zeta \in \mathbb{Q}[\sqrt{2}, \sqrt[3]{2}, \sqrt[3]{2} \zeta^2]. \] Hence \(\mathbb{Q}[\sqrt{2}, \zeta] \subseteq \mathbb{Q}[\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^2]. \)

Clearly \(\sqrt{2}, \sqrt[3]{2}, \sqrt[3]{2} \zeta^2 \in \mathbb{Q}([\sqrt{2}, \zeta]). \) So \(\mathbb{Q}([\sqrt{2}, \zeta]) \) is a splitting field of \(x^3 - 2 \) over \(\mathbb{Q}. \)

Theorem. Suppose \(F \) is a field and \(f(x) \in F[x] \) has positive degree. Then \(f(x) \) has a splitting field over \(F. \)

Proof. We proceed by induction on \(\deg(f). \)

Base. If \(\deg(f) = 1, \) then \(f(x) = a_1 x + a_0 \) and \(a_1 \in F \setminus \{0\}. \)

Hence \(f(x) = a_1 (x + a_0/a_1), \) \(a_0 \neq 0 \in F; \) and so \(F \) is a splitting field of \(f(x) \) over \(F. \)

Induction Step. \(F[x] \) is a UFD. So \(f(x) = \prod_{i=1}^{m} p_i(x) \) where \(p_i(x) \) is irreducible in \(F[x]. \) Hence \(\exists F \xrightarrow{\iota} \overline{F} \) and \(\alpha \in \overline{F} \) s.t. \(\iota(p_1)(\alpha) = 0. \) (Hence \(\iota(f)(\alpha) = 0 \)) and \(\overline{F} \) is the smallest ring that contains \(\alpha \) and \(\iota(F). \) Therefore by the factor theorem, \(\exists \overline{f}(x) \in \overline{F}[x] \) s.t. \(\deg \overline{f} = \deg f - 1 \) and \(\overline{f}(x) = (x-\alpha) \overline{f}(x). \) Now by the induction hypothesis,
We go over this part of argument in the next lecture.

Hence it should be E and claim follows.

And so it contains $\bar{i}(\bar{f}(F))$ and $\bar{i}(a)$.

A subfield of E that contains $\bar{i}(\bar{f}(F))$ and $\bar{i}(a)$.

Consider, \bar{i} induces \bar{i} in \bar{E}.

The smallest subfield of E that contains $\bar{i}(\bar{f}(F))$ and a_1, \ldots, a_n. For some $c \in \bar{F}$.

If a field E and \bar{i} isomorphic over \bar{F}, that means $\bar{i}(\bar{f}(F)) = \bar{c}$.

E has a splitting field over \bar{F}, that means $\bar{f}(F) = (x-a_1) \cdots (x-a_n)$ for some $c \in \bar{F}$.